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Abstract. In this paper, we adapt a statistical learning approach, inspired by 
automated topic segmentation techniques in speech-recognized documents to 
the challenging protein segmentation problem in the context of G-protein cou-
pled receptors (GPCR).  Each GPCR consists of 7 transmembrane helices sepa-
rated by alternating extracellular and intracellular loops.  Viewing the helices 
and extracellular and intracellular loops as 3 different topics, the problem of 
segmenting the protein amino acid sequence according to its secondary struc-
ture is analogous to the problem of topic segmentation.  The method presented 
involves building an n-gram language model for each ‘topic’ and comparing 
their performance in predicting the current amino acid, to determine whether a 
boundary occurs at the current position.  This presents a distinctly different ap-
proach to protein segmentation from the Markov models that have been used 
previously and its commendable results is evidence of the benefit of applying 
machine learning and language technologies to bioinformatics. 

1   Introduction 

Predicting the function of a protein from its amino acid sequence information alone is 
one of the major bottlenecks in understanding genome sequences and an important 
topic in bioinformatics.  Mapping of protein sequence to function can be viewed as a 
multi-step cascaded process: the primary sequence of amino acids encodes secondary 
structure, tertiary or 3-dimensional structure, and finally quaternary structure, a func-
tional unit of multiple interacting protein subunits.  Proteins are divided broadly into 
two classes, soluble proteins and transmembrane proteins.  The problem of predicting 
secondary structure from the primary sequence in soluble proteins has been viewed 
predominantly as a 3-state classification problem with the state-of-the-art perform-
ance at 76% when multiple homologous sequences are available [1].  The problem of 
predicting secondary structure in transmembrane proteins has been limited to predict-
ing the transmembrane portions of helices in helical membrane proteins [2, 3].  Here, 
accuracy is more difficult to assess because there is a very limited number of trans-
membrane proteins with known 3-dimensional structure, and membrane lipids are 
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usually not included in these structures.  For both soluble and transmembrane pro-
teins, a large portion of inaccuracy comes from the boundary cases.  However, in 
many biological applications, knowing the precise boundaries is critical.  This paper 
addresses a subproblem of the general protein segmentation problem by limiting the 
context to G-protein coupled receptors, an important superfamily of helical trans-
membrane proteins where the order and type of secondary structures within each pro-
tein are known.  However, the approach can be extended to any helical transmem-
brane protein.  In order to address structural segmentation in proteins with high 
accuracy, we combine domain insights from structural biology with machine learning 
techniques proven for the analogous task of topic segmentation in text mining. 

1.1   G Protein Coupled Receptors 

G Protein Coupled Receptors (GPCRs) are transmembrane proteins that serve as sen-
sors to the external environment.  There are now more than 8000 GPCR sequences 
known [4], but only a single known 3-dimensional structure, namely that of rhodopsin 
[5, 6].  This is due to the fact that the structures of transmembrane proteins are diffi-
cult to determine by the two main techniques that give high-resolution structural in-
formation, NMR spectroscopy and x-ray crystallography.  However, detailed informa-
tion about the structure of individual GPCRs is urgently needed in drug design as 
approximately 60% of currently approved drugs target GPCR proteins [7].  The dis-
tribution of hydrophobic amino acids suggests a common secondary structure organi-
zation of alternating alpha helices and loops (Fig. 1): there are seven transmembrane 
helices, an (extracellular) N-terminus, three extracellular loops, a (cytoplasmic) C-
terminus, and three cytoplasmic loops. 
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Fig. 1. Schematic of the amino acid sequence and secondary structure of a GPCR.  Extracellu-
lar and cytoplasmic loops are colored dark grey and light grey respectively 

Due to insufficient real training data for predicting the boundaries of transmem-
brane helices in GPCR, the training and testing data used in this study (except for 
rhodopsin) are synthetic.  They are predictions based on hydrophobicity, which have 
been accepted by the majority of biologists as the closest estimates to the true bounda-
ries.  Because our approach does not use hydrophobicity information directly, a con-
sensus between our predictions and the hydrophobicity predictions can be interpreted 
as additional evidence that the particular predicted boundary point is correct. 
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1.2   Related Work 

A number of algorithms have been proposed to predict transmembrane domains in 
proteins using only amino acid sequence information, from the first Kyte-Doolittle 
approach based on hydrophobicity plots [8] to the more recent algorithms TMHMM 
[9] and PRED-TMR [10].  Most of these methods are either window-based or make 
use of Markov models.  Window-based algorithms predict the secondary structure of 
the central amino acid in the window by examining the residues in the local window, 
using information such as frequencies of individual amino acids in each type of sec-
ondary structure, correlations among positions within the window, and evolutionary 
information via multiple sequence alignment of homologous sequences.  Recently, 
improvements have also been found in considering interactions in the sequence out-
side the fixed window [11]. 

Like in most areas of computational biology, Markov models have been found to 
be useful in predicting the locations of transmembrane helices and are among the 
most successful prediction methods, including MEMSAT [12], HMMTOP [13] and 
TMHMM [9].  The models differ in the number of states, where each state is a 
Markov model on its own, representing different regions of the helices, extracellular 
or cytoplasmic loops. 

Due to the lack of a standard dataset, the performance of the various approaches to 
predicting transmembrane alpha helices is controversial.  Recently, a server was es-
tablished that compares the performance of different methods using a single testing 
dataset with both soluble and transmembrane proteins.  However, the training dataset 
is not uniform across the methods, making the results of the comparison unreliable [3, 
14].  Moreover, since these methods are available only as programs pre-trained on dif-
ferent datasets, a fair comparison between these methods and our own is not possible. 

2   Approach 

In human languages, topic segmentation has many applications, particularly in speech 
and video where there are no document boundaries.  Beeferman et al. [15] introduced 
a new statistical approach to segmentation in human languages based on exponential 
models to extract topicality and cue-word features.  In essence, Beeferman and his 
colleagues calculated the predictive ratio of a topic model vs. a background model, 
and where significant changes (discontinuities) were noted, a boundary hypothesis is 
generated.  Other features of the text string cuing boundaries were also used to en-
hance performance.  Here, we adapted their notion of topicality features for GPCR 
segmentation. 

2.1   Segmentation in Human Languages 

Beeferman et al. [15] used the relative performance of two language models, a long-
range model and a short-range model, to help predict the topic boundaries.  The long-
range model was trained on the entire corpus, while the short-range model was trained 
on only data seen since the last (predicted) boundary. This causes the short-range 
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model to be more specifically targeted to the current topic and as a result, it performs 
better than the long-range model while inside the current topic. However, at a topic 
boundary, the short-range model’s performance would suddenly drop below the long-
range model’s performance because it is too specific to the last topic instead of the 
general corpus, and it would need to see a certain amount of data from the new topic 
before it can again outperform the long-range model.  This was tracked using topical-
ity measure — the log ratio of the short-range model’s performance to the long-range 
model’s performance in predicting the current word.  Beeferman et al. [15] used this 
to detect the general position of the topic boundary, and cue-words (words that often 
occur near a topic boundary) to fine-tune the prediction. 

2.2   GPCR Segmentation 

Since the type and order of segments in the GPCR secondary structure is known (Fig. 
1), we built a language model for each of the segments and compared the probability 
each of them assigns to the current amino acid to determine the location of the seg-
ment boundary.  The reason for not building a short-range model and a long-range 
model as in Beeferman et al. [15] is that the average length of a protein segment is 25 
amino acids — too short to train a language model.  Previous segmentation experi-
ments using mutual information [16] and Yule’s association measure [17] have shown 
the helices to be much more similar to each other than to the extracellular and cyto-
plasmic loops.  Similarly, the N-terminus and C-terminus have been shown to be very 
similar to the extracellular and cytoplasmic loops respectively.  Moreover, since no 
two helices, extracellular or cytoplasmic segments occur consecutively, 3 segment 
models for helices, extracellular domains and intracellular domains are sufficient. 

Each of the segment models is an interpolation of 6 basic probability models — a 
unigram model, a bigram model and 4 trigram models, where a ‘gram’ is a single 
amino acid.  One of the trigram models, as well as the unigram and bigram models, 
uses the complete 20 amino acid alphabet.  The other 3 trigram models make use of 
three reduced alphabets where a group of amino acids sharing a common physio-
chemical property, such as hydrophobicity, is reduced to a single alphabet letter: 

1. LVIM, FY, KR, ED, AG, ST, NQ, W, C, H, P 
2. LVIMFYAGCW, KREDH, STNQP, and 
3. LVIMFYAGCW, KREDHSTNQP. 

The reason for using reduced amino acid alphabets is because sometimes a position 
in a primary sequence may call for any amino acid with a certain biochemical prop-
erty rather than a specific amino acid, for example, hydrophobicity in transmembrane 
proteins. 

2.2.1   Boundary Determination 
As expected from the limited context of the trigram models, the relative performance 
of the 3 segment models fluctuates significantly, making it difficult to pinpoint loca-
tions where one model begins to outperform another overall.  To smooth out the fluc-
tuations, we compute running averages of the log probabilities.  Figure 2 shows the 
running averages of the log probabilities over a window size of ±2. 
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Fig. 2. Running averages of log probabilities at each position in D3DR_RAT sequence. Verti-
cal dashed and dotted lines show the “true” and predicted boundaries respectively 

While running averages minimize the fluctuations, we still do not want the system 
to label a position as a boundary point if the model for the next segment outperforms 
the current segment model only for a few positions.  An example is the region in fig-
ure 2 between position 10 and 20 where the helix model performs better than the ex-
tracellular loop model temporarily before losing to the extracellular model again.  
Thus, we set a look-ahead interval: the model for the next segment must outperform 
the current segment model at the current position and at every position in the look-
ahead interval for the current position to be labeled a segment boundary. 

3   Evaluation 

3.1   Dataset 

The data set used in this study is the set of full GPCR sequences uploaded to 
GPCRDB [18] in September 2002.  The headers of the sequence files contain the pre-
dicted segment boundaries taken as the synthetic “truth” in our training and testing 
data.  This header information was retrievable only for a subset of these sequences, 
1298 GPCRs.  Ten-fold cross validation was used to evaluate our method. 

3.2   Evaluation and Parameter Optimization 

Two evaluation metrics were used: average offset and accuracy.  Offset is the abso-
lute value of the difference between the predicted and “true” boundary positions.  An 
average offset was computed across all boundaries and for each of the 4 boundary 
types: extracellular-helix, helix-cytoplasmic, cytoplasmic-helix, and helix-
extracellular.  In computing accuracy, we assigned a score of 1 to a perfect match be-
tween the predicted and true boundary, a score of 0.5 for an offset of ±1, and a score 
of 0.25 for an offset of ±2.  The scores for all the boundaries in all the proteins were 
averaged to produce an accuracy score. 
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The two parameters (running average window size and look-ahead interval) were 
adjusted manually to give the maximum accuracy score. One parameter was held con-
stant, while the other parameter was adjusted to find a local maximum.  Then the roles 
were reversed.  This was repeated until the parameter values converged. 

4   Results and Analysis 

Table 1 describes the accuracy and offsets for all 4 types of boundaries — extracellu-
lar-helix (E-H), helix-cytoplasmic (H-C), cytoplasmic-helix (C-H), and helix-
extracellular (H-E).  Linear interpolation of the six probability models, after normali-
zation to account for the differences in vocabulary size, assigns all of the interpolation 
weight to the trigram model with the full amino acid alphabet.  We experimented with 
“Trained” interpolation weights (i.e. only trigram model with full amino acid alpha-
bet), and pre-set weights to use “All” the models or only the 4 “Trigram” models.  
The window-size for running averages and the look-ahead interval in each case were 
optimized.  Note there is little variance in the offset over the 4 types of boundaries. 

Table 1. Evaluation results of boundary prediction.  “Trained”: trained interpolation weights, 
window-size ±2, look-ahead 5. “All”: 0.1 for unigram and bigram model, 0.2 for trigram model, 
window-size ±5, look-ahead 4.  “Trigram”: 0.25 for each trigram model, window-size ±4, look-
ahead 4 

Offset Weights Accuracy 
E-H H-C C-H H-E Avg 

Trained 0.2410 35.7 35.4 34.5 36.5 35.5 
All 0.2228 47.9 47.5 44.9 48.2 47.2 
Trigram 0.2293 50.4 50.2 47.6 50.6 49.8 

Using only the trigram model with the full amino acid alphabet shows a 5.1% im-
provement over using all 4 trigram models, which in turn shows a 2.9% improvement 
over including the unigram and bigram models.  This suggests that the unigram and 
bigram models and reduced alphabets are not very useful in this task.  However, the 
unigram and bi-gram models help in lessening the offset gap between predicted and 
true boundaries when they are more than 2 positions apart. 

4.1   Discrepancy Between Accuracy and Offset 

The accuracy in all of our results ranges from 0.22 to 0.24, suggesting an offset of ±2 
positions from the synthetic boundaries.  However, our measured offsets lie between 
35 and 50. This is because the offset measure (in the trained interpolation weights 
case) has a large standard deviation of 160 and a maximum of 2813 positions.  A his-
togram of the offsets (Fig. 3) shows a distribution with a very long tail, suggesting 
that large offsets between our predictions and the synthetic true boundaries are rare.  
After removing the 10% of proteins in our dataset with the largest offset averaged 
across their 14 boundaries, the average offset decreases from 36 to 11 positions.  This 
result suggests that the large offsets are localized in a small number of proteins in-
stead of being general for the dataset.  
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Fig. 3. Histogram of the number of sequences with the given average offset from the trained in-
terpolated models. Note that the bars for the small offsets have been cut off at 1000 in the graph 
below for visibility 

The distribution of offsets shows a local maximum at 36 amino acids, approxi-
mately the length of a helix plus a loop.  This suggests that we may be missing the 
beginning of a helix and not predicting any boundaries as a result until the next helix 
approximately 35 positions later.  To test this hypothesis, we re-evaluate our bound-
ary predictions ignoring their order.  That is, we measure the offset as the minimal ab-
solute difference between a predicted boundary point and any synthetic true boundary 
point for the same sequence.  The distribution of the new offsets is plotted in figure 4.  
The lack of a peak at position 36 confirms our hypothesis that the large offsets when 
evaluated in an order-specific fashion are due to missing the beginning of a helix and 
becoming asynchronized. 

Fig. 4. Histogram of the order-independent offsets from the trained interpolated models. Bars 
for the small offsets have been cut off at 100 in the graph below for visibility 

4.2   The Only Truth: Rhodopsin OPSD_HUMAN 

As described in Section 1.1, rhodopsin is the only GPCR for which there is experi-
mental evidence of the segment boundary positions.  Below are the predictions of our 
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approach on rhodopsin using the trained interpolated models.  The average position 
offset is 1.35. 

Predicted: 37 61 72 97 113 130 153 
Difference: 1 0 1 1 0 3 1 
True: 36 61 73 98 113 133 152 

Predicted: 173 201 228 250 275 283 307 
Difference: 3 1 2 2 1 1 2 
True: 176 202 230 252 276 284 309 

5   Conclusions 

In this paper, we addressed the problem of protein segmentation in the limited domain 
of GPCR where the order and type of secondary structure segments are known.  We 
developed a new statistical approach to protein segmentation that is distinctly differ-
ent from the fixed window and Markov model based methods currently used.  Taking 
the different types of segments as “topics” in the protein sequence, we adapted a topic 
segmentation approach for human languages to this biological problem.  We built a 
language model for each of the different segment types present in GPCRs, and by 
comparing their performance in predicting the current amino acid, we determine 
whether a segment boundary occurs at the current position.  Each of the segment models 
is an interpolated model of a unigram, a bigram and 4 trigram language models. 

The results from our approach is promising, with an accuracy of 0.241 on a scale 
where 0.25 is an offset of ±2 positions from the synthetic boundaries predicted by hy-
drophobicity profiles.  When the gap between the predicted boundary and the syn-
thetic “true” boundary is 3 or more amino acids wide, the gap tends to be much larger 
than 3.  This is because our approach relies on knowledge of the segment order and a 
‘missed’ boundary can cause the system’s perception of the protein to be misaligned, 
leading it to compare the wrong models to detect the upcoming boundaries.  This oc-
curred with a small number of GPCRs which have an N-terminus that is several or-
ders of magnitude longer than the average length of that segment.  For such proteins, 
we plan to use HMM in the future to predict multiple possibilities for the first seg-
ment boundary and then apply our approach to predict the upcoming boundaries given 
the first boundary.  The resulting sets of 14 boundaries can then be evaluated to de-
termine the most likely one.  Furthermore, the addition of “cue-words” — n-grams 
frequently found close to segment boundaries — and long-range contact information 
should help to reduce the offset of ±2. 
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