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Abstract

In this paper, we consider the multi-task sparse learn-
ing problem under the assumption that the dimension-
ality diverges with the sample size. The traditional
l1/l2 multi-task lasso does not enjoy the oracle prop-
erty unless a rather strong condition is enforced. In-
spired by adaptive lasso, we propose a multi-stage pro-
cedure, adaptive multi-task lasso, to simultaneously
conduct model estimation and variable selection across
different tasks. Motivated by adaptive elastic-net, we
further propose the adaptive multi-task elastic-net by
adding another quadratic penalty to address the prob-
lem of collinearity. When the number of tasks is fixed,
under weak assumptions, we establish the asymptotic
oracle property for the proposed adaptive multi-task
sparse learning methods including both adaptive multi-
task lasso and elastic-net. In addition to the desir-
able asymptotic property, we show by simulations that
adaptive sparse learning methods also achieve much im-
proved finite sample performance. As a case study, we
apply adaptive multi-task elastic-net to a cognitive sci-
ence problem, where one wants to discover a compact se-
mantic basis for predicting fMRI images. We show that
adaptive multi-task sparse learning methods achieve su-
perior performance and provide some insights into how
the brain represents meanings of words.

1 Introduction

The traditional learning problem can often be cast to
the estimation of a function f : X 7→ Y, where X ∈ Rp

is the input space and Y ∈ R is the output space. For
many applications, the entire learning task can often
be divided into several sub-tasks. When sub-tasks are
related, it can be advantageous to learn all tasks simul-
taneously instead of learning each task independently.
More formally, given K related tasks, the objective of
multi-task learning [23, 5] is to jointly estimate K func-
tions f (k) : X (k) 7→ Y(k) for 1 ≤ k ≤ K. Multi-task
learning has been applied to many practical problems,
including computer vision [21], natural language pro-
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cessing [1], computational biology [19] and neuroscience
[11]. In multi-task learning, the basic assumption to be
made is how different tasks are related to each other.
Popular ways of modeling the relatedness include as-
suming that all tasks share a common latent feature rep-
resentation [2] (e.g., sparsity-pattern); or parameters for
different tasks are close to each other [7] or share a com-
mon prior [25]. We also note that when different tasks
share the same input space but different output spaces,
the corresponding learning problem is often referred to
as multi-response learning, which can be viewed as a
special case of multi-task learning.

For high-dimensional data, variable selection is of
great importance to improve both prediction accuracy
and model interpretability. The task of conducting
variable selection can always be achieved via learning
the sparsity pattern of parameters. In the multi-task
learning setting, it is often assumed that parameters for
different tasks share the same sparsity pattern [2, 18].
To achieve such an effect, a popular approach is to
adopt a joint sparsity regularization to encourage group-
wise sparsity across multiple tasks. In particular, one
can adopt the l1/lq mixed-norm penalty with q > 1
[26, 19, 16]. Given K tasks, the l1/lq mixed-norm
penalty is defined as:

(1.1) λ1

p∑
j=1

∥βj∥q,

where βj = (β
(1)
j , β

(2)
j , . . . , β

(K)
j ) ∈ RK is the coefficient

vector to be estimated for the j-th variable, λ1 is a
positive regularization parameter and p denotes the
dimensionality of the input space. In this paper, we
focus on the widely used l1/l2 mixed-norm penalty
which encourages the joint sparsity pattern among
different tasks.

The traditional l1/l2 mixed-norm penalty mainly
suffers from two problems: (1) each l2-norm on the co-
efficient vector shares the same amount of regulariza-
tion (i.e., λ1). This condition might be too restrictive
for practical applications. A natural way to address
this issue is to use a different weight wj for the j-th
variable, i.e., to define the penalty as λ1

∑p
j=1 wj∥βj∥2.



When there is a prior on the importance of each variable
(e.g., extracted from biological domain knowledge as in
[10] 1), the weight wj can be determined based on the
prior knowledge. However, when the prior knowledge of
the weight is unavailable, a natural question is how to
automatically estimate wj from the data. (2) From a
statistical point-of-view, according to [8, 9], a good es-
timation procedure for sparse learning should have the
following asymptotical oracle property: model selection
consistency and asymptotic normality (

√
n-estimation

consistency). When the dimensionality p diverges with
the sample size, one fundamental limitation of the l1/l2-
regularized multi-task lasso is that it does not have or-
acle property unless the design matrix satisfies a rather
strong condition [15, 3].2

To address these problems, inspired by adaptive
single-task lasso and its extensions [27, 24, 3, 29], we
propose a multi-stage adaptive estimation procedure
for multi-task sparse learning. More precisely, we first
estimate the initial coefficients from the ordinary multi-
task lasso. Then, we construct adaptive weights for
each variable from the estimated coefficients. As the
last step, final coefficients are estimated by another
l1/l2-regularized multi-task lasso with the constructed
adaptive weights. We establish the oracle property for
the proposed adaptive multi-task lasso.

In addition, it is known that when the correlation
between predictors is high, lasso leads to unstable vari-
able selection performance. To address the problem
of collinearity, Zou et al. [28] proposed the so-called
elastic-net penalty by adding another quadratic penalty
on top of the sparsity-inducing l1 penalty. In this pa-
per, we apply the elastic-net penalty to the multi-task
learning setting by adding the quadratic penalty on top
of l1/l2 mixed-norm penalty. We show that the pro-
posed adaptive multi-task elastic-net, as a generaliza-
tion of adaptive multi-task lasso, also achieves the or-
acle property under the assumption that the number
of variables diverges with the sample size. In addition
to the asymptotic property, we demonstrate via simula-
tions that adaptive multi-task elastic-net leads to much
better empirical performance for finite sample case. We
note that the proof of oracle property for both adap-

1Although the work in [10] also follows the name “adaptive

multi-task lasso”, our work distinguishes from [10] in that we
automatically construct the prior weights purely from the data
instead of relying on any prior knowledge. The method in [10]
defines the weight as a linear combination of the data features

from the prior knowledge and jointly optimizes the regression
parameters and linear combination coefficients. Hence, the
optimization is not only computationally heavy but also has many
local minima.

2The finite sample properties of l1/l2-regularized multi-task
lasso have been studied in [13].

tive lasso [27] and adaptive group lasso [24, 3] assumes
that the dimensionality p is fixed and hence cannot be
applied here. Our proof directly follows the proof for
adaptive single-task elastic-net in [29].

As an important application, we apply adaptive
multi-task learning methods to a cognitive neuroscience
problem [14, 11], where we are interested in simultane-
ously predicting the functional magnetic resonance im-
ages (fMRI) from the presented word and selecting the
corresponding semantic knowledge basis. We show that
the proposed adaptive multi-task elastic-net achieves su-
perior results.

The rest of this paper is organized as follows. In
Section 2, we overview multi-task lasso and elastic-
net penalty. In Section 3, we propose the adaptive
multi-task learning algorithm. In Section 4, we discuss
computational issues. In Section 5, we establish the
oracle property of the proposed adaptive multi-task
learning methods. In Section 6, we present numerical
results on both simulated and real fMRI datasets. We
conclude the paper in Section 7 with a discussion of
possible future work.

2 Background

In this section, we introduce the background of the
multi-task lasso. Consider a K-task linear regression
model:

y(1) = X(1)(β(1))∗ + ϵ(1)(2.2)

y(2) = X(2)(β(2))∗ + ϵ(2)

...

y(K) = X(K)(β(K))∗ + ϵ(K),

where for each task k = 1, . . . ,K, let X(k) be the
prescribed n(k) × p design matrix, (β(k))∗ the true
regression coefficients, y(k) the n(k)-dimensional outputs
and ϵ(1), . . . , ϵ(K) i.i.d. random noises. We assume
that for each task k and dimension j, predictors are
standardized to mean zero and l2-norm one:

(2.3)
n(k)∑
i=1

x
(k)
ij = 0 and

n(k)∑
i=1

(x
(k)
ij )2 = 1.

We further assume that the noise has mean 0 and
variance σ2, i.e., E(ϵ(k)j ) = 0 and Var(ϵ

(k)
j ) = σ2.

For the notation simplicity, we re-write Eq. (2.2) in
a more compact form:

(2.4) y = Xβ∗ + ϵ,

where y and ϵ are
∑K

k=1 n
(k)-dimensional random vec-

tors formed by stacking y(1), . . . , y(K) and ϵ(1), . . . , ϵ(K).



Similarly, β∗ denotes the vector obtained by stacking
{(β(1))∗, . . . , (β(K))∗}. The design matrix X is a block
diagonal matrix with X(k) being the k-th block.

Furthermore, we introduce βj ≡ (β
(k)
j : k ∈

{1, . . . ,K}) for 1 ≤ j ≤ p, that is, the vector formed
by the regression coefficients corresponding to the j-
th variable and let β denote the vector obtained by
stacking {(β(1)), . . . , (β(K))}. The l1/l2 mixed-norm of
β is defined as:

(2.5) ∥β∥2,1 =

p∑
j=1

∥βj∥2,

where ∥βj∥2 ≡
√∑K

k=1(β
(k)
j )2 has the effect to enforce

the elements in βj to achieve zeros simultaneously.
The multi-task lasso is formulated by minimizing

the squared loss with the l1/l2 mixed-norm of β:

β̂ = argmin
β

{ K∑
k=1

∥y(k) −
p∑

j=1

β
(k)
j X

(k)
j ∥22 + λ1

p∑
j=1

∥βj∥2
}

≡ argmin
β

{
∥y −Xβ∥22 + λ1

p∑
j=1

∥βj∥2
}
.(2.6)

To address the problem of collinearity among vari-
ables, similar to single-task elastic-net [28], one can add
another quadratic penalty

∑p
j=1 ∥βj∥22 on top of the

l1/l2-regularization and the corresponding multi-task
elastic-net can be formulated as:
(2.7)

β̂ = (1+ λ2) argmin
β

{
∥y−Xβ∥22 + λ1

p∑
j=1

∥βj∥2 + λ2∥β∥22
}
.

The motivation for the (1 + λ2)-scaling is to correct
the extra bias introduced by the quadratic penalty
λ2

∑p
j=1 ∥βj∥22. The readers may refer to [28] for more

details on this scaling parameter.
As we discussed in the introduction part, it is de-

sirable to have different regularization weights {wj}pj=1

for different variables. When there is no prior knowledge
for constructing such weights, it is impractical to tune
each wj individually. Inspired by the adaptive single-
task lasso [28] and adaptive single-task elastic-net [29],
we propose our adaptive multi-task learning methods
in the next section which use a data-driven method to
automatically construct the regularization weights.

3 Adaptive Multi-task Sparse Learning

In this section, we present the proposed adaptive multi-
task elastic-net in Algorithm 1. The algorithm has three
stages. In the first stage, we estimate the initial regres-
sion coefficients β̂ via the multi-task elastic-net with
uniform weight for each variable. Then we construct

Algorithm 1 Adaptive Multi-task Elastic-Net

Input: Input and response for K tasks {y(k), X(k)}Kk=1,
tuning parameters λ1, λ

∗
1, λ2, and the predefined posi-

tive constant γ for constructing adaptive weights.

1.
(3.8)

β̂ = (1+λ2) argmin
β

{
∥y−Xβ∥22+λ1

p∑
j=1

∥βj∥2+λ2∥β∥22
}
.

2.

(3.9) ŵj = (∥β̂j∥2)−γ , for j = 1, . . . , p

3.
(3.10)

β̂
∗
= (1+λ2) argmin

β

{
∥y−Xβ∥22+λ∗

1

p∑
j=1

ŵj∥βj∥2+λ2∥β∥22
}
.

Output: The final estimated coefficients β̂
∗
.

the adaptive weights {ŵj}pj=1 from the initial estimated

coefficients β̂ as in Eq. (3.9). As the last step, we ob-
tain the final coefficients via the multi-task elastic-net
with the adaptive weights {ŵj}pj=1.

We first note that if λ2 is set to zero, this procedure
reduces to adaptive multi-task lasso. Therefore, we
can view adaptive multi-task lasso as a special case of
adaptive multi-task elastic-net with λ2 = 0.

We also note that for the ease of tuning parame-
ters, Step 1 (Eq. (3.8)) and Step 3 (Eq. (3.10)) share
the same regularization parameter λ2 for the quadratic
penalty. According to our practical experience, us-
ing different regularization parameters for the quadratic
penalty has very limited improvement on the perfor-
mance but makes the tuning process much more time-
consuming. In addition, as we show in the next sec-
tion, the (asymptotic) oracle property can be estab-
lished without assuming two different λ2s for Step 1 and
3. But for λ1 and λ∗

1, both of them have to be tuned to
guarantee empirical performance and statistical prop-
erty. We will discuss the choice of the parameters and
the constant γ in more details in Section 5.

4 Computation

As for the optimization problems in Step 1 and 3, due
to the simple structure of l1/l2 mixed-norm penalty, the
proximal operator associated with the l1/l2 penalty can
be solved in a closed-form. Therefore, one can eas-
ily adopt the Nesterov’s composite gradient methods
[17] (e.g., fast iterative shrinkage thresholding algorithm



Algorithm 2 FISTA for solving Multi-task Elastic-Net
with Adaptive Weights

Input: {X(k)}Kk=1, {y(k)}Kk=1, {ŵj}pj=1, λ
∗
1, λ2.

Initialization: θ0 = 1, v0 = β0,
L = 2 maxKk=1 σmax(X

(k)) + 2λ2

Iterate For t = 0, 1, 2, . . ., until convergence of βt:

1. Compute ∇h(vt) according to (4.11).

2. Solve the proximal operator associated with the
l1/l2 mixed norm penalty:

βt+1 = argmin
β

⟨β,∇h(vt)⟩+ L

2
∥β − vt∥22

+λ∗
1

p∑
j=1

ŵj∥βj∥2(4.12)

3. Set θt+1 =
1+

√
1+4θ2

t

2 .

4. Set vt+1 = βt+1 + θt−1
θt+1

(βt+1 − βt).

Output: β̂
∗
= (1 + λ2)β

t+1.

(FISTA) [4] or a variant of FISTA with line-search in
[12]) to solve the corresponding optimization problems.
For the purpose of completeness, we present the special-
ization of FISTA [4] for solving Step 3 (Step 1 can be
viewed as a special case of Step 3) in Algorithm 2.

Let
h(β) = ∥y −Xβ∥22 + λ2∥β∥22

be the smooth part of the objective function in Eq.
(3.10) with gradient:

(4.11) ∇h(β) = 2XTXβ − 2XTy + 2λ2β.

The Lipschitz constant L for ∇h(β) is defined as
follows: for any β1 and β2, we always have ∥∇h(β1)−
∇h(β2)∥2 ≤ L∥β1 −β2∥2. The closed form of L can be
easily derived:

L = 2 σmax(X) + 2λ2,

= 2
K

max
k=1

σmax(X
(k)) + 2λ2

where σmax(X) is the maximum singular value of X.
The proximal operator in Eq. (4.12) can be solved

in a closed form as shown in [6, 12]. More specifically,
rewrite Eq. (4.12):

βt+1 = argmin
β

1

2
∥β−(vt− 1

L
∇h(vt))∥22+

λ∗
1

L

p∑
j=1

ŵj∥βj∥2

Let α = vt − 1
L∇h(vt). Then we have:

(4.13) βt+1
j =

{
(1− λ∗

1ŵj

L∥αj∥2
)αj if ∥αj∥2 >

λ∗
1ŵj

L

0 otherwise.

According to [4], Algorithm 2 has a convergence rate
of O( 1

T 2 ), where T is the total number of iterations and
the per-iteration complexity is O (min(p, n) · p ·K).

We note that the computational cost for Step 3 is
much cheaper than that for Step 1 since one only needs
to conduct estimation on the variables selected from
Step 1. More specially, recall that β̂ is the initial sparse
estimate obtained from Step 1, let Â = {j : β̂j ̸= 0}
and Âc be the complement set of Â. For those j ∈ Âc,

ŵj = ∞ and hence the final estimate β̂
∗
j = 0. Therefore,

for Step 3, instead of solving the full problem, we can

first set β̂
∗
Âc = 0 and then estimate the remaining

coefficients by:

β̂
∗
Â = (1 + λ2) argmin

β

{ K∑
k=1

∥y(k) −
∑
j∈Â

β
(k)
j X

(k)
j ∥22

+λ∗
1

∑
j∈Â

ŵj∥βj∥2 + λ2

∑
j∈Â

∥βj∥22
}
.(4.14)

When using Algorithm 2 to solve Eq.(4.14),
the per-iteration complexity reduces to

O
(
min(|Â|, n) · |Â| ·K

)
as compared to

O (min(p, n) · p ·K) for solving the full problem.

Since we often have |Â| ≪ p, there is only a little extra
computational cost for adaptive methods.

5 Statistical Property

In this section, we discuss the statistical property of
adaptive multi-task elastic-net and lasso. Using the
same proof technique for adaptive single-task elastic-net
[29], we show that asymptotically adaptive multi-task
elastic-net has the oracle property, that is, the estimated

β̂
∗
satisfies model selection consistency and asymptotic

normality.
We first introduce some necessary notations. We

denote the Gram matrix of X by Ψ = 1
nX

TX, which is

a block-diagonal matrix with 1
n (X

(k))T (X(k)) as its k-
th block. Let A be the set of true relevant variable, i.e.,

A = {j : β∗
j ̸= 0} with |A| = p0 < p. Let X

(k)
j be the

j-th column of X(k) and X
(k)
A be the sub-matrix of X(k)

with the indices of columns in A. Then we define Xj to

be the block diagonal matrix withX
(k)
j as its k-th block,

and XA with X
(k)
A as its k-th block. And we denote ΣA

as XT
AXA. In addition, let β∗

A be the p0K sub-vector of

β∗ formed by stacking {(β(1)
A )∗, . . . , (β

(K)
A )∗}. For the



notation simplicity, we assume that the sample size n
for each task is the same.

To establish the oracle property under the fixed K
scenarios, we make the following assumptions:

(A1) λmin(Ψ) ≥ b, where b is a positive constant.

(A2) p = O(nν) for some 0 ≤ ν < 1

(A3)

lim
n→∞

maxni=1

∑K
k=1

∑p
j=1(x

(k)
ij )2

n
= 0

(A4) There exists δ > 0 such that for any task k and

variable j: E(|ϵ(k)j |2+δ) < ∞

The first condition (A1) assumes the positive defi-
niteness of the Gram matrix. The second one assumes
that p can diverge with n while the last two assumptions
are used for proving the asymptotic normality.

To establish the oracle property, we choose the fixed
constant γ > 2

1−ν for constructing the adaptive weights.
The other parameters should be set according to the
following conditions:

(B1)

lim
n→∞

λ1√
n
= 0; lim

n→∞

λ∗
1√
n
= 0; lim

n→∞

λ2√
n
= 0;

(B2) In addition, let η = minj∈A(∥β∗
j∥2), we assume

that λ∗
1 and λ2 satisfy the following conditions:

lim
n→∞

λ2∥β∗∥2√
n

= 0; lim
n→∞

(
n

pλ∗
1

) 1
γ

η = ∞

The oracle property which contains model selection
consistency and asymptotic normality is stated in the
next theorem:

Theorem 5.1. Let β̂
∗
be the estimator obtained from

adaptive multi-task elastic-net in Algorithm 1, under the
assumptions (A1)–(A4) and (B1)–(B2), we have

1. Let Â∗ = {j : β̂
∗
j ̸= 0} be the set of estimated

relevant variables, Pr(Â∗ = A) → 1.

2. There exists α with ∥α∥2 = 1, such that

αT (I+ λ2Σ
−1
A )Σ

1/2
A

(
β̂
∗
A − β∗

A

)
→d N(0, (1 + λ2)

2σ2),

where ΣA = XT
AXA.

We prove the oracle property by extending the proof
for adaptive single-task elastic-net in [29] to the multi-
task case. The proof of asymptotic normality is based on
Lyapunov central limit theorem as in [29]. The detailed
proof is presented in Appendix.

Remark 1. Since the assumptions involving λ2 only

include limn→∞
λ2√
n

= 0 and limn→∞
λ2∥β∗∥2√

n
= 0,

adaptive multi-task lasso with λ2 = 0 automatically
satisfies these assumptions. Therefore, as a special case
of adaptive multi-task elastic-net, adaptive multi-task
lasso also enjoys the oracle property.

6 Experiment

In this section, we demonstrate the performance of
adaptive multi-task sparse learning methods by both
simulated data and a fMRI case study.

6.1 Simulated Study We generate data from multi-
task linear model withK tasks as in Eq.(2.2). More spe-
cially, each X(k) for 1 ≤ k ≤ K follows a p-dimensional
standard multivariate Gaussian distribution. The true
coefficients are β∗ = (β∗

1 , . . . , β∗
|A|, 0, . . . , 0)

T where

each βj for 1 ≤ j ≤ |A| is drawn from N(3, 0.12). We
compare multi-task lasso (lasso), multi-task elastic-net
(enet), adaptive multi-task lasso (ada-lasso) and adap-
tive multi-task elastic-net (ada-enet). We set the sam-
ple size n for each task n = 200, p = 4⌈

√
n⌉ − 5 = 55,

p0 ≡ |A| = ⌈p/3⌉ = 19, K = 5 or K = 10 and the noise
level σ = 2 or σ = 4. Since ν = 1/2, we set γ = 2

1−ν = 4
according to the theory. According to our experience,
the result is not very sensitive to the choice of λ2 as
long as it falls into a certain range. Therefore, for the
ease of tuning parameters, we directly set λ2 = 1 for
elastic-net. We tune other parameters λ1 and λ∗

1 using
the same sized held-out validation data generated in the
same way as the training data.

For each method, we report the mean squared error

(MSE) defined by E[
∑K

k=1((β̂
(k)

)∗−(β(k))∗)T ((β̂
(k)

)∗−
(β(k))∗)] and the variable selection performance. The
variable selection performance is measured by precision
defined by |Â∗ ∩A|/|Â∗|, recall defined by |Â∗ ∩A|/|A|
and F1-score by 2 · precision · recall/(precision+ recall).
In addition, we report the mean and standard deviation
of each measure based on 100 runs in Table 1.

From Table 1, we make following interesting obser-
vations:

1. For all different settings of K and σ, adaptive
methods outperform non-adaptive methods in both
model fitting and selection. When the number
of task K increases, the advantage of adaptive
procedures becomes more apparent.



Table 1: Simulation study for n = 200, p = 55, p0 = 19.
K σ Method MSE F1-score Precision Recall

5 2

lasso 5.895 ( 1.731 ) 0.781 ( 0.154 ) 0.731 ( 0.216 ) 0.904 ( 0.084 )
enet 5.512 ( 1.663 ) 0.738 ( 0.152 ) 0.658 ( 0.206 ) 0.915 ( 0.091 )
ada-lasso 2.604 ( 0.647 ) 0.815 ( 0.068 ) 0.828 ( 0.105 ) 0.817 ( 0.099 )
ada-enet 2.580 ( 0.617 ) 0.812 ( 0.072 ) 0.814 ( 0.105 ) 0.823 ( 0.095 )

5 4

lasso 11.116 ( 2.914 ) 0.577 ( 0.069 ) 0.524 ( 0.142 ) 0.754 ( 0.222 )
enet 10.879 ( 2.787 ) 0.579 ( 0.066 ) 0.522 ( 0.140 ) 0.763 ( 0.223 )
ada-lasso 10.554 ( 3.074 ) 0.606 ( 0.079 ) 0.706 ( 0.100 ) 0.541 ( 0.097 )
ada-enet 10.551 ( 3.220 ) 0.613 ( 0.078 ) 0.705 ( 0.101 ) 0.554 ( 0.098 )

10 2

lasso 7.761 ( 1.403 ) 0.719 ( 0.039 ) 0.564 ( 0.047 ) 0.998 ( 0.010 )
enet 7.583 ( 1.438 ) 0.665 ( 0.035 ) 0.499 ( 0.040 ) 0.999 ( 0.007 )
ada-lasso 2.391 ( 0.731 ) 0.902 ( 0.057 ) 0.865 ( 0.081 ) 0.948 ( 0.058 )
ada-enet 2.401 ( 0.727 ) 0.896 ( 0.058 ) 0.850 ( 0.086 ) 0.954 ( 0.055 )

10 4

lasso 16.923 ( 2.771 ) 0.644 ( 0.051 ) 0.495 ( 0.050 ) 0.928 ( 0.064 )
enet 16.479 ( 2.808 ) 0.632 ( 0.047 ) 0.477 ( 0.047 ) 0.942 ( 0.053 )
ada-lasso 13.554 ( 4.142 ) 0.743 ( 0.103 ) 0.792 ( 0.099 ) 0.707 ( 0.126 )
ada-enet 13.374 ( 3.970 ) 0.746 ( 0.103 ) 0.794 ( 0.101 ) 0.712 ( 0.127 )

Table 2: Simulation study for n = 200, p = 400, p0 = 134.
K σ Method MSE F1-score Precision Recall

5 2

lasso 8.991 ( 0.786 ) 0.633 ( 0.019 ) 0.507 ( 0.018 ) 0.843 ( 0.030 )
enet 6.571 ( 1.432 ) 0.579 ( 0.049 ) 0.431 ( 0.095 ) 0.934 ( 0.085 )
ada-lasso 8.515 ( 1.143 ) 0.632 ( 0.046 ) 0.767 ( 0.048 ) 0.543 ( 0.068 )
ada-enet 6.895 ( 0.986 ) 0.651 ( 0.035 ) 0.639 ( 0.073 ) 0.681 ( 0.085 )

5 4

lasso 16.078 ( 2.017 ) 0.547 ( 0.035 ) 0.492 ( 0.064 ) 0.656 ( 0.135 )
enet 13.765 ( 1.363 ) 0.506 ( 0.039 ) 0.603 ( 0.047 ) 0.437 ( 0.044 )
ada-lasso 12.270 ( 1.442 ) 0.488 ( 0.039 ) 0.621 ( 0.048 ) 0.404 ( 0.039 )
ada-enet 12.392 ( 1.572 ) 0.549 ( 0.028 ) 0.488 ( 0.075 ) 0.676 ( 0.158 )

10 2

lasso 13.261 ( 1.250 ) 0.703 ( 0.030 ) 0.555 ( 0.033 ) 0.960 ( 0.017 )
enet 12.637 ( 0.968 ) 0.561 ( 0.008 ) 0.391 ( 0.008 ) 0.990 ( 0.009 )
ada-lasso 8.614 ( 1.075 ) 0.809 ( 0.027 ) 0.881 ( 0.024 ) 0.749 ( 0.044 )
ada-enet 6.790 ( 0.897 ) 0.798 ( 0.025 ) 0.765 ( 0.046 ) 0.838 ( 0.053 )

10 4

lasso 20.924 ( 1.443 ) 0.629 ( 0.022 ) 0.514 ( 0.024 ) 0.810 ( 0.039 )
enet 19.082 ( 1.320 ) 0.591 ( 0.015 ) 0.437 ( 0.013 ) 0.912 ( 0.025 )
ada-lasso 18.776 ( 2.050 ) 0.654 ( 0.038 ) 0.744 ( 0.036 ) 0.584 ( 0.046 )
ada-enet 16.306 ( 1.891 ) 0.666 ( 0.036 ) 0.725 ( 0.039 ) 0.618 ( 0.042 )

2. When the noise level is low (σ = 2), the perfor-
mance of adaptive multi-task lasso and adaptive
multi-task elastic-net are similar. For larger noise,
adaptive multi-task elastic-net outperforms adap-
tive multi-task lasso.

3. In terms of variable selection performance, we
observe that the recall for adaptive procedures
is lower than that for non-adaptive ones but the
precision is much higher, which leads to higher F1-
score. This observation indicates that non-adaptive
procedures tend to select an overly dense model,
thus leading to high recall but very low precision.

Now we study a more challenging case for p > n.
We set p = 2n = 400 and p0 = |A| = ⌈p/3⌉ = 134
and repeat the above experiments. Although the theory
does not directly apply to the case when p grows faster
than n asymptotically, for this experiment, we still set γ
to 4 as in the previous example. In fact, we tune γ in the
range {1, 2, . . . , 5} and observe that the performance is
insensitive with respect to γ. The results are presented
in Table 2.

From Table 2, we can see that when p > n, adaptive
multi-task elastic-net is still the best for most cases in
terms of both model fitting and selection. When K is
small, adaptive multi-task lasso could be worse than



Figure 1: Model for predicting fMRI activation given a
stimulus word

multi-task lasso or multi-task elastic-net. When we
add another quadratic penalty (i.e., adaptive multi-task
elastic-net), the performance will be greatly improved.
For non-adaptive methods, when p > n, it is well
known that adding the quadratic penalty leads to much
better performance [28]. From our experiments, similar
conclusions can also be drawn for adaptive methods.

6.2 Application to fMRI Study In this section,
we present a case study of adaptive multi-task elastic-
net by applying it to an important problem in cogni-
tive neuroscience. Specifically, we consider the task of
predicting a person’s neural activity in response to an
English word as described in [14, 11]. The goal is to
predict the neural image recorded using functional mag-
netic resonance imaging (fMRI) when a person stares at
and thinks about a given word. The experimental pro-
tocol is illustrated in Figure 1. In more details, given
a stimulus word w, the first step encodes the meaning
of w in terms of intermediate semantic features. The
second step predicts the neural fMRI activation at each
voxel 3 of the brain, as a sum of neural activations con-
tributed by each of the intermediate semantic features.
The training process uses a small number of words to
learn a multi-task linear model that maps the intermedi-
ate semantic features to neural activation images where
each task is defined by the activation at each voxel.

More specifically, the dataset contains 60 stimulus
words which are composed of nouns from 12 categories
with 5 exemplars per category. For example, a bodypart
category includes Arm, Eye, Foot, Hand, Leg, a tools

3A voxel represents a 1-3 mm3 volume in the brain and is the
basic spatial unit of measurement in fMRI.

Table 3: The 60 stimulus words presented during the
fMRI studies. Each row represents a category.

bear cat cow dog horse
arm eye foot hand leg
apartment barn church house igloo
arch chimney closet door window
coat dress pants shirt skirt
bed chair desk dresser table
ant bee beetle butterfly fly
bottle cup glass knife spoon
bell key refrigeratortelephone watch
chisel hammer pliers saw screwdriver
carrot celery corn lettuce tomato
airplane bicycle car train truck

category includes the words Chisel, Hammer, Pliers,
Saw, Screwdriver, and a furniture category includes Bed,
Chair, Dresser, Desk, Table, etc. All the 60 words are
presented in Table 3.

Then nine participants were presented with 60
different words and were asked to think about each
word for several seconds while their neural activities
were recorded. So that there are altogether n = 60
fMRI images taken for each participant4. A typical
fMRI image contains activities in over 20,000 voxels.
We select the top K = 500 voxel responses using the
stability criterion score as described in [14]. By viewing
the activation at each single voxel as a task, the output
y(k) is the neural activation at the k-th voxel and there
are in total 500 tasks.

As for the input, for each stimulus word, we adopt
the semantic features from 218 questions as in [20]5.
These questions are related to the size, color, shape,
property, usage of an object. Example questions include
IS IT BODY PART? or CAN YOU HOLD IT?. Given
a stimulus word, each question is rated from 1 to 5 (from
definitely not to definitely yes). In other words, each
stimulus word is mapped into a vector of length 218
which corresponds to the answers from 218 questions
to this word. Therefore, in our problem, the design
matrix X has p = 218 columns and is shared across all
K = 500 tasks. These questions can be viewed as a
set of sematic basis and the question which we try to
answer in this experiment is: What is the top 10 basis
to best represent semantic meanings of the words from
different categories 6 ?

4Each image is actually the average of 6 different recordings.
5Our intermediate features are different from the ones used in

[11].
6In addition to the top 10 basis, we also conduct experiments to

select various numbers of basis. We observe that adaptive multi-



To automatically learn the semantic basis, we ap-
ply the proposed adaptive multi-task elastic-net on the
fMRI data which can simultaneously predict the fMRI
images and perform the basis selection. More specifi-
cally, our evaluation is based on the leave-two-out test-
ing. For each trial, we select 2 words out of the 60
for testing and other 58 words for training. To eval-
uate the prediction performance, we convert this re-
gression problem into a classification problem using the
method in [14]. More specifically, let two testing im-
ages be y1 and y2, where each one is a 500 × 1 col-
umn vector and the predicted images be ŷ1 and ŷ2. If
cos(y1, ŷ1) + cos(y2, ŷ2) > cos(y1, ŷ2) + cos(y2, ŷ1), we
say the prediction task for this trial is successful. We
generate all

(
60
2

)
possible pairs for 60 words (1,770 in

total) and count the number of times that the joint la-
beling is correct. The accuracy is defined as the number
of successes over 1770 trials.

For this experiment, lasso methods are always worse
than the corresponding elastic-net methods. There-
fore, we only compare adaptive multi-task elastic-net
and multi-task elastic-net with λ2 and γ set to one7.
For multi-task elastic-net, we tune the regularization
parameter so that 10 basis are selected. For adaptive
multi-task elastic-net, λ1 is tuned using leave-one-out
cross validation on training set; while λ∗ is tuned so
that top 10 basis are included. In addition, there are
in total 9 participants. Therefore, we have two choices
of learning schemes. We can either treat each partici-
pant separately or combine fMRI from all participants
(thereby yielding 500× 9 = 4500 tasks ). The compari-
son results are presented in Figure 2.

From Figure 2, we can see that for most partici-
pants, adaptive procedure significantly outperforms the
non-adaptive procedure. The only exception is for the
3rd participant on the separated data and 4th partic-
ipant on the combined data. The p-value of paired t-
test between the results of adaptive and non-adaptive
methods is 0.03884 < 0.05 for the separated data and
0.008446 < 0.5 for the combined data, which further in-
dicates the adaptive method has the advantages over the
non-adaptive method. From the box plot in Figure 2, we
observe that although the median of the combined data
does not have a notable improvement as compared to
that of the separated data, the variance is much smaller.
This indicates that the results obtained from the com-

task elastic-net always performs better than the non-adaptive
methods. However, we omit the results due to space limitations.

7Similar to what we observe in the simulated study, the
performance is insensitive to λ2 and γ.
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Figure 2: Bar and box plots for accuracies for 9 fMRI
participants

bined data are more stable 8.
In Table 4, we present one example of top 10

questions learned from adaptive multi-task elastic-net.
As we can see, there is a close relationship between
the selected semantic basis and 60 stimulus words. For
example, IS IT AN ANIMAL? refers to words bear,
cat, cow, dog, horse, ant, bee, beetle, butterfly, fly; IS
IT A BODY PART? refers to arm, eye, foot, hand,
leg; IS IT MADE OF WOOD? is related to the
concept furniture, IS IT MANMADE? is related to
many concepts, including clothing, tools, etc. Other
interesting questions are related to the specific property
of the objects, e.g., CAN YOU EAT IT? and CAN

8The reported accuracies are lower than the ones in [20]. This
is mainly because we learn a highly sparse model with only 10

semantic basis selected for the variable selection purpose; while
[20] uses ridge regression, which utilizes all 218 features.



Table 4: An example of 10 learned semantic basis
questions.

IS IT AN ANIMAL?
IS IT A BODY PART?
IS IT A BUILDING?
IS IT A BUILDING PART?
IS IT A TOOL ?
IS IT MANMADE?
CAN YOU EAT IT?
CAN YOU HOLD IT?
IS IT COLORFUL ?
DOES IT HAVE PARTS?

YOU HOLD IT?. We also point out that the correlated
semantic basis IS IT MANMADE? and IS IT A
TOOL? are selected simultaneously. It is mainly due to
the “grouping effect” of the quadratic penalty in elastic-
net which can simultaneously select highly correlated
variables for the purpose of better interpretability.

7 Conclusion

In this paper, we propose adaptive multi-task lasso and
elastic-net for multi-task sparse learning. Our methods
can learn the regularization weight for each variable in a
data-dependent manner and enjoy the asymptotic oracle
property. We further apply the proposed method to an
interesting fMRI study problem, which leads to superior
performance in terms of predicting fMRI images from
stimulus words.

As an immediate next step, we would like to apply
the idea of adaptive learning to multi-task classification
problems where the output space for each task is
discrete. Theoretically, we would like to study the case
where the number of tasks also goes to infinity with
the sample size. In addition, we would like to explore
another aspect of fMRI application: how to decode
the stimulus word from a large set of possible words
according to the recorded fMRI images.
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9 Appendix

In this section, we present the outline of the proof for
model selection consistency in Theorem 5.1. Our proof
directly follows the proof for adaptive single-task elastic-
net [29] and extends it to the multi-task case. The
asymptotic normality can be obtained from Lyapunov
central limit theorem as shown in [29].

Before we go into the details of the proof for the
model selection consistency, we first show the property
of the estimator obtained by multi-task elastic-net with
uniform weights (without (1 + λ2)-scaling):

Lemma 9.1. Let

β̂(λ2, λ1) = argmin
β

{
∥y −Xβ∥22

+λ1

p∑
j=1

wj∥βj∥2 + λ2∥β∥22
}
,(9.15)

then we have:
(9.16)

E
(
∥β̂(λ2, λ1)− β∗∥22

)
≤ 4

λ2
2∥β∗∥22 + pKσ2 + λ2

1

∑p
j=1 w

2
j

(bn+ λ2)2
,

If wj = 1 for all 1 ≤ j ≤ p (i.e., uniform weight), then
we have:
(9.17)

E
(
∥β̂(λ2, λ1)− β∗∥22

)
≤ 4

λ2
2∥β

∗∥22 + pKσ2 + λ2
1p

(bn+ λ2)2
,

Proof. The main idea of the proof follows [29] which
introduces the ridge regression estimator:

β̂(λ2) = argmin
β

{∥y −Xβ∥22 + λ2∥β∥22}

= (XTX+ λ2I)
−1XTy

We decompose β̂(λ2, λ1)−β∗ into β̂(λ2, λ1)−β̂(λ2) and

β̂(λ2)− β∗, and we can show that

E∥β̂(λ2, λ1)− β̂(λ2)∥22 ≤
λ2
1

∑p
j=1 w

2
j

(bn+ λ2)2
(9.18)

E(∥β̂(λ2)− β∗∥22) ≤ 2
λ2
2∥β∗∥22 + pKσ2

(bn+ λ2)2
(9.19)

By the fact that

∥β̂(λ2, λ1)− β∗∥22 ≤ 2 ∥β̂(λ2, λ1)− β̂(λ2)∥22
+2 ∥β̂(λ2)− β∗∥22,

we obtain the result in Eq. (9.17).

We decompose the proof of the model selection con-
sistency into two parts: (1) for any irrelevant variable

j ∈ Ac, the probability that β̂
∗
j = 0 tends to be 1; (2)

for all j ∈ A, the probability that ∥β̂
∗
j∥2 > 0 tends to 1.

Now we present the first part of the model selection
consistency in the following proposition:



Proposition 9.1. Let β̃ be the coefficients estimated
by adaptive multi-task elastic-net without the (1 + λ2)-
scaling:

β̃ = argmin
β

{
∥y −Xβ∥22(9.20)

+λ∗
1

p∑
j=1

ŵj∥βj∥2 + λ2∥β∥22
}
,

where ŵj = (∥β̂j∥2)−γ are the constructed adaptive
weights. Then we have

(9.21) Pr(∀j ∈ Ac, β̃j = 0) → 1,

as n → ∞.

We note that adaptive multi-task elastic-net with
or without (1 + λ2)-scaling shares the same sparsity
pattern. The reason why we consider adaptive multi-
task elastic-net without (1 + λ2)-scaling here is mainly
due to the simplicity of the notation.

Proof. For any vector u, the subdifferential of ∥u∥2 can
be characterized as follows [22]:

(9.22) ∂∥ · ∥2|u =

{
{ξ : ∥ξ∥2 ≤ 1} α = 0

u
∥u∥2

u ̸= 0

According to the Karush-Kuhn-Tucker condition of
convex optimization problem in Eq. (9.20), we have

that the event {∀j ∈ Ac, β̃j = 0} is the same as

(9.23) −2XT
j (y −XAβ̃A) + λ∗

1ŵjαj = 0, ∀j ∈ Ac,

where αj ∈ ∂∥β∥2|β=0. According to the property
of the subdifferential of l2-norm as in Eq. (9.22), the
condition in Eq. (9.23) is equivalent to:

∥2XT
j (y −XAβ̃A)∥2 ≤ λ∗

1ŵj , ∀j ∈ Ac.

Therefore, Proposition 9.1 is equivalent to saying that:

Pr(∀j ∈ Ac, ∥2XT
j (y −XAβ̃A)∥2 ≤ λ∗

1ŵj) → 1,

which is further equivalent to:

Pr(∃j ∈ Ac, ∥2XT
j (y −XAβ̃A)∥2 > λ∗

1ŵj) → 0,

Let η = minj∈A(∥β∗
j∥2) and η̂ =

minj∈A(∥β̂(λ2, λ1)∥2), where β̂(λ2, λ1) is obtained
from Eq. (9.15). By repeatedly using the union bound,
we obtain:

Pr(∃j ∈ Ac, ∥2XT
j (y −XAβ̃A)∥2 > λ∗

1ŵj)(9.24)

≤
∑
j∈Ac

Pr(∥2XT
j (y −XAβ̃A)∥2 > λ∗

1ŵj)

≤
∑
j∈Ac

Pr(∥2XT
j (y −XAβ̃A)∥2 > λ∗

1ŵj , η̂ > η/2)

+Pr(η̂ ≤ η/2)

We first analyze the last term Pr(η̂ ≤ η/2). Let

ĵ = argminj∈A(∥β̂(λ2, λ1)j∥2). The event η̂ ≤ η/2
implies that

(9.25) ∥β̂(λ2, λ1)− β∗∥2 ≥ ∥β∗
ĵ
∥2 − η̂ ≥ η − η̂ ≥ η/2.

By Markov inequality and Lemma 9.1, we obtain that:

Pr(η̂ ≤ η/2) ≤ Pr(∥β̂(λ2, λ1)− β∗∥2 ≥ η/2)

≤ E(∥β̂(λ2, λ1)− β∗∥22)
η2/4

≤ λ2
2∥β

∗∥22 + pKσ2 + λ2
1p

(bn+ λ2)2
· 1

η2
≡ K3(9.26)

Now we analyze the first term in Eq. (9.24). In

order to bound ŵj , we introduce M = (
λ∗
1

n )
1
γ and

consider two separate events ∥β̂(λ2, λ1)j∥ ≤ M and

∥β̂(λ2, λ1)j∥ > M for j ∈ Ac separately. More
specifically, using the union bound, we obtain that:∑

j∈Ac Pr(∥2XT
j (y −XAβ̃A)∥2 > λ∗

1ŵj , η̂ > η/2)

≤
∑

j∈Ac Pr(∥2XT
j (y −XAβ̃A)∥2 > λ∗

1ŵj , η̂ > η/2,

∥β̂(λ2, λ1)j∥ ≤ M)

+
∑

j∈Ac Pr(∥β̂(λ2, λ1)j∥2 > M)(9.27)

By Markov inequality, the last term in Eq. (9.27)
can be easily bounded using the results from Lemma
9.1: ∑

j∈Ac

Pr(∥β̂(λ2, λ1)j∥2 > M)

≤ 1

M2
E
(∑
j∈Ac

∥β̂(λ2, λ1)j∥22
)

≤
E
(
∥β̂(λ2, λ1)− β∗∥22

)
M2

≤ 4
λ2
2∥β

∗∥22 + pKσ2 + λ2
1p

(bn+ λ2)2
· 1

M2
≡ K2(9.28)

As for the first term in (9.27), we obtain the
bound also by Markov inequality with some algebraic
derivations:∑
j∈Ac

Pr
(
∥2XT

j (y −XAβ̃A)∥2 > λ∗
1ŵj ,

η̂ > η/2, ∥β̂(λ2, λ1)j∥ ≤ M
)

≤
∑
j∈Ac

Pr(∥2XT
j (y −XAβ̃A)∥2 > λ∗

1M
−γ , η̂ > η/2)

≤ 4M2γ

(λ∗
1)

2
E

(∑
j∈Ac

∥XT
j (y −XAβ̃A)∥22I(η̂ > η/2

)

≤ 4M2γ

(λ∗
1)

2

(
8p2K

λ2
2∥β∗∥22 + pKσ2 + (λ∗

1)
2(η/2)−2γp

(bn+ λ2)2

+2npKσ2
)
≡ K1(9.29)



Now combining Eq. (9.24) with Eq. (9.26), (9.28)
and (9.29), we have

Pr(∃j ∈ Ac, ∥2XT
j (y−XAβ̃A)∥2 > λ∗

1ŵj) ≤ K1+K2+K3.

Under the assumption (A2) and with the param-
eters satisfying (B1) and (B2) and γ > 2

1−ν , we have
that K1, K2 and K3 all go to zero as n goes to infinity.
Therefore, we obtain that Pr(∀j ∈ Ac, β̃j = 0) → 1.

Now we show the other half of the model selection
consistency: for any j ∈ A, β̃j ̸= 0. We characterize it
in the next proposition.

Proposition 9.2. Let β̃ be obtained from Eq. (9.20),
then we have:

Pr(min
j∈A

∥β̃j∥2 > 0) → 1

We first introduce

(9.30) β̃A(λ2) = argmin
β

{
∥y −XAβ∥22 + λ2

∑
j∈A

∥βj∥
2
2

}
.

By the same argument as in Eq. (9.25), we have

min
j∈A

∥β̃j∥2 > min
j∈A

∥β̃A(λ2)j∥2 − ∥β̃A − β̃A(λ2)∥2

and

min
j∈A

∥β̃A(λ2)j∥2 > min
j∈A

∥β∗
j∥2 − ∥β̃A(λ2)− β∗

A∥2

According to Eq. (9.18) and (9.19), we have

∥β̃A − β̃A(λ2)∥2 ≤
λ∗
1

√∑
j∈A ŵ2

j

bn+ λ2
≤

λ∗
1
√
pmax ŵj

bn+ λ2

≤
λ∗
1
√
pη̂−γ

bn+ λ2
,

and

E(∥β̃A(λ2)− β∗∥22) ≤ 2
λ2
2∥β

∗∥22 + pKσ2

(bn+ λ2)2

Then we can easily show that both ∥β̃A − β̃A(λ2)∥2
and E(∥β̃A(λ2)−β∗∥22) converge to zero in probability,
i.e., op(1). Since η = minj∈A ∥β∗

j∥2 > 0, we have

Pr(minj∈A ∥β̃j∥2 > 0) → 1.


