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Abstract. We explore a transfer learning setting, in which a finite sequence of
target concepts are sampled independently with an unknown distribution from a
known family. We study the total number of labeled examples required to learn all
targets to an arbitrary specified expected accuracy, focusing on the asymptotics
in the number of tasks and the desired accuracy. Our primary interest is formally
understanding the fundamental benefits of transfer learning, compared to learning
each target independently from the others. Our approach to the transfer problem
is general, in the sense that it can be used with a variety of learning protocols. As
a particularly interesting application, we study in detail the benefits of transfer for
self-verifying active learning; in this setting, we find that the number of labeled
examples required for learning with transfer is often significantly smaller than
that required for learning each target independently.

1 Introduction

Transfer learning reuses knowledge from past related tasks to ease the process of learn-
ing to perform a new task. The goal of transfer learning is to leverage previous learning
and experience to more efficiently learn novel, but related, concepts, compared to what
would be possible without this prior experience. The utility of transfer learning is typi-
cally measured by a reduction in the number of training examples required to achieve a
target performance on a sequence of related learning problems, compared to the number
required for unrelated problems: i.e., reduced sample complexity. In many real-life sce-
narios, just a few training examples of a new concept or process is often sufficient for
a human learner to grasp the new concept given knowledge of related ones. For exam-
ple, learning to drive a van becomes much easier a task if we have already learned how
to drive a car. Learning French is somewhat easier if we have already learned English
(vs Chinese), and learning Spanish is easier if we know Portuguese (vs German). We
are therefore interested in understanding the conditions that enable a learning machine
to leverage abstract knowledge obtained as a by-product of learning past concepts, to
improve its performance on future learning problems. Furthermore, we are interested
in how the magnitude of these improvements grows as the learning system gains more
experience from learning multiple related concepts.
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The ability to transfer knowledge gained from previous tasks to make it easier to
learn a new task can potentially benefit a wide range of real-world applications, includ-
ing computer vision, natural language processing, cognitive science (e.g., fMRI brain
state classification), and speech recognition, to name a few. As an example, consider
training a speech recognizer. After training on a number of individuals, a learning sys-
tem can identify common patterns of speech, such as accents or dialects, each of which
requires a slightly different speech recognizer; then, given a new person to train a rec-
ognizer for, it can quickly determine the particular dialect from only a few well-chosen
examples, and use the previously-learned recognizer for that particular dialect. In this
case, we can think of the transferred knowledge as consisting of the common aspects of
each recognizer variant and more generally the distribution of speech patterns existing
in the population these subjects are from. This same type of distribution-related knowl-
edge transfer can be helpful in a host of applications, including all those mentioned
above.

Supposing these target concepts (e.g., speech patterns) are sampled independently
from a fixed population, having knowledge of the distribution of concepts in the popu-
lation may often be quite valuable. More generally, we may consider a general scenario
in which the target concepts are sampled i.i.d. according to a fixed distribution. As we
show below, the number of labeled examples required to learn a target concept sampled
according to this distribution may be dramatically reduced if we have direct knowledge
of the distribution. However, since in many real-world learning scenarios, we do not
have direct access to this distribution, it is desirable to be able to somehow learn the
distribution, based on observations from a sequence of learning problems with target
concepts sampled according to that distribution. The hope is that an estimate of the dis-
tribution so-obtained might be almost as useful as direct access to the true distribution
in reducing the number of labeled examples required to learn subsequent target con-
cepts. The focus of this paper is an approach to transfer learning based on estimating
the distribution of the target concepts. Whereas we acknowledge that there are other
important challenges in transfer learning, such as exploring improvements obtainable
from transfer under various alternative notions of task relatedness [EP04, BDS03], or
alternative reuses of knowledge obtained from previous tasks [Thr96], we believe that
learning the distribution of target concepts is a central and crucial component in many
transfer learning scenarios, and can reduce the total sample complexity across tasks.

Note that it is not immediately obvious that the distribution of targets can even be
learned in this context, since we do not have direct access to the target concepts sampled
according to it, but rather have only indirect access via a finite number of labeled ex-
amples for each task; a significant part of the present work focuses on establishing that
as long as these finite labeled samples are larger than a certain size, they hold sufficient
information about the distribution over concepts for estimation to be possible. In par-
ticular, in contrast to standard results on consistent density estimation, our estimators
are not directly based on the target concepts, but rather are only indirectly dependent
on these via the labels of a finite number of data points from each task. One desidera-
tum we pay particular attention to is minimizing the number of extra labeled examples
needed for each task, beyond what is needed for learning that particular target, so that
the benefits of transfer learning are obtained almost as a by-product of learning the tar-
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gets. Our technique is general, in that it applies to any concept space with finite VC
dimension; also, the process of learning the target concepts is (in some sense) decou-
pled from the mechanism of learning the concept distribution, so that we may apply
our technique to a variety of learning protocols, including passive supervised learning,
active supervised learning, semi-supervised learning, and learning with certain general
data-dependent forms of interaction [Han09]. For simplicity, we choose to formulate
our transfer learning algorithms in the language of active learning; as we show, this
problem can benefit significantly from transfer. Formulations for other learning pro-
tocols would follow along similar lines, with analogous theorems; only the results in
Section 5 are specific to active learning.

Transfer learning is related at least in spirit to much earlier work on case-based and
analogical learning [Car83, Car86, VC93, Kol93, Thr96], although that body of work
predated modern machine learning, and focused on symbolic reuse of past problem
solving solutions rather than on current machine learning problems such as classifica-
tion, regression or structured learning. More recently, transfer learning (and the closely
related problem of multitask learning) has been studied in specific cases with inter-
esting (though sometimes heuristic) approaches [Car97, Sil00, MP04, Bax97, BDS03].
This paper considers a general theoretical framework for transfer learning, based on an
Empirical Bayes perspective, and derives rigorous theoretical results on the benefits of
transfer. We discuss the relation of this analysis to existing theoretical work on transfer
learning below.

1.1 Active Learning

Active learning is a powerful form of supervised machine learning characterized by
interaction between the learning algorithm and data source during the learning pro-
cess [CAL94,MN98,CCS00,TK01,NS04,BEYL04,DCB07,DC08,HC08]. In this work,
we consider a variant known as pool-based active learning, in which a learning algo-
rithm is given access to a (typically very large) collection of unlabeled examples, and
is able to select any of those examples, request the supervisor to label it (in agreement
with the target concept), then after receiving the label, select another example from the
pool, etc. This sequential label-requesting process continues until some halting criterion
is reached, at which point the algorithm outputs a classifier, and the objective is for this
classifier to closely approximate the (unknown) target concept in the future. The pri-
mary motivation behind pool-based active learning is that, often, unlabeled examples
are inexpensive and available in abundance, while annotating those examples can be
costly or time-consuming; as such, we often wish to select only the informative exam-
ples to be labeled, thus reducing information-redundancy to some extent, compared to
the baseline of selecting the examples to be labeled uniformly at random from the pool
(passive learning).

There has recently been an explosion of fascinating theoretical results on the ad-
vantages of this type of active learning, compared to passive learning, in terms of the
number of labels required to obtain a prescribed accuracy (called the sample complex-
ity): e.g., [FSST97, Das04, DKM09, Das05, Han07b, BHV10, BBL09, Wan09, Kää06,
Han07a, DHM08, Fri09, CN08, Now08, BBZ07, Han11, Kol10, Han09, BDL09]. In par-
ticular, [BHV10] show that in noise-free binary classifier learning, for any passive learn-
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ing algorithm for a concept space of finite VC dimension, there exists an active learning
algorithm with asymptotically much smaller sample complexity for any nontrivial tar-
get concept. Thus, it appears there are profound advantages to active learning compared
to passive learning. In later work, [Han09] strengthens this result by removing a certain
dependence on the underlying distribution of the data in the learning algorithm.

However, the ability to rapidly converge to a good classifier using only a small
number of labels is only one desirable quality of a machine learning method, and there
are other qualities that may also be important in certain scenarios. In particular, the
ability to verify the performance of a learning method is often a crucial part of machine
learning applications, as (among other things) it helps us determine whether we have
enough data to achieve a desired level of accuracy with the given method. In passive
learning, one common practice for this verification is to hold out a random sample
of labeled examples as a validation sample to evaluate the trained classifier (e.g., to
determine when training is complete). It turns out this technique is not feasible in active
learning, since in order to be really useful as an indicator of whether we have seen
enough labels to guarantee the desired accuracy, the number of labeled examples in
the random validation sample would need to be much larger than the number of labels
requested by the active learning algorithm itself, thus (to some extent) canceling the
savings obtained by performing active rather than passive learning. Another common
practice in passive learning is to examine the training error rate of the returned classifier,
which can serve as a reasonable indicator of performance (after adjusting for model
complexity). However, again this measure of performance is not necessarily reasonable
for active learning, since the set of examples the algorithm requests the labels of is
typically distributed very differently from the test examples the classifier will be applied
to after training.

This reasoning seems to indicate that performance verification is (at best) a far more
subtle issue in active learning than in passive learning. Indeed, [BHV10] note that al-
though the number of labels required to achieve good accuracy in active learning is
significantly smaller than passive learning, it is sometimes the case that the number
of labels required to verify that the accuracy is good is not significantly improved. In
particular, this phenomenon can increase significantly the sample complexity of active
learning algorithms that adaptively determine how many labels to request before termi-
nating. In short, if we require the algorithm both to learn an accurate concept and to
know that its concept is accurate, then the number of labels required by active learn-
ing may sometimes not be significantly smaller than the number required by passive
learning.

In the present work, we are interested in the question of whether a form of transfer
learning can help to bridge this gap, enabling self-verifying active learning algorithms
to obtain the same types of dramatic improvements over passive learning as can be
achieved by their non-self-verifying counterparts.

1.2 Outline of the paper

The remainder of the paper is organized as follows. In Section 2 we introduce basic
notation used throughout, and survey some related work from the existing literature. In
Section 3, we describe and analyze our proposed method for estimating the distribution
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of target concepts, the key ingredient in our approach to transfer learning, which we
then present in Section 4. Finally, in Section 5, we investigate the benefits of this type
of transfer learning for self-verifying active learning.

2 Definitions and Related Work

First, we state a few basic notational conventions. We denote N = {1, 2, . . .} and
N0 = N∪{0}. For any random variable X , we generally denote by PX the distribution
of X (the induced probability measure on the range of X), and by PX|Y the regular
conditional distribution of X given Y . For any pair of probability measures µ1, µ2 on a
measurable space (Ω,F), we define

‖µ1 − µ2‖ = sup
A∈F
|µ1(A)− µ2(A)|.

Next we define the particular objects of interest to our present discussion. Let Θ
be an arbitrary set (called the parameter space), (X ,BX ) be a Borel space [Sch95]
(where X is called the instance space), and D be a fixed distribution on X (called
the data distribution). For instance, Θ could be Rn and X could be Rm, for some
n,m ∈ N, though more general scenarios are certainly possible as well, including
infinite-dimensional parameter spaces. Let C be a set of measurable classifiers h : X →
{−1,+1} (called the concept space), and suppose C has VC dimension d <∞ [Vap82]
(such a space is called a VC class). C is equipped with its Borel σ-algebra B, induced by
the pseudo-metric ρ(h, g) = D({x ∈ X : h(x) 6= g(x)}). Though all of our results can
be formulated for general D in slightly more complex terms, for simplicity throughout
the discussion below we suppose ρ is actually a metric, in that any h, g ∈ C with h 6= g
have ρ(h, g) > 0; this amounts to a topological assumption on C relative to D.

For each θ ∈ Θ, πθ is a distribution on C (called a prior). Our only (rather mild)
assumption on this family of prior distributions is that {πθ : θ ∈ Θ} be totally bounded,
in the sense that ∀ε > 0, ∃ finite Θε ⊆ Θ s.t. ∀θ ∈ Θ,∃θε ∈ Θε with ‖πθ − πθε‖ < ε.
See [DL01] for examples of categories of classes that satisfy this.

The general setup for the learning problem is that we have a true parameter value
θ? ∈ Θ, and a collection of C-valued random variables {h∗tθ}t∈N,θ∈Θ, where for a fixed
θ ∈ Θ the {h∗tθ}t∈N variables are i.i.d. with distribution πθ.

The learning problem is the following. For each θ ∈ Θ, there is a sequence

Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .},

where {Xti}t,i∈N are i.i.d. D, and for each t, i ∈ N, Yti(θ) = h∗tθ(Xti). For k ∈ N we
denote by Ztk(θ) = {(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))}. Since the Yti(θ) are the actual
h∗tθ(Xti) values, we are studying the non-noisy, or realizable-case, setting.

The algorithm receives values ε and T as input, and for each t ∈ {1, 2, . . . , T} in
increasing order, it observes the sequenceXt1, Xt2, . . ., and may then select an index i1,
receive label Yti1(θ?), select another index i2, receive label Yti2(θ?), etc. The algorithm
proceeds in this fashion, sequentially requesting labels, until eventually it produces a
classifier ĥt. It then increments t and repeats this process until it produces a sequence
ĥ1, ĥ2, . . . , ĥT , at which time it halts. To be called correct, the algorithm must have a
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guarantee that ∀θ? ∈ Θ,∀t ≤ T,E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε, for any values of T ∈ N and

ε > 0 given as input. We will be interested in the expected number of label requests
necessary for a correct learning algorithm, averaged over the T tasks, and in particular
in how shared information between tasks can help to reduce this quantity when direct
access to θ? is not available to the algorithm.

2.1 Relation to Existing Theoretical Work on Transfer Learning

Although we know of no existing work on the theoretical advantages of transfer learn-
ing for active learning, the existing literature contains several analyses of the advantages
of transfer learning for passive learning. In his classic work, Baxter ( [Bax97] section 4)
explores a similar setup for a general form of passive learning, except in a full Bayesian
setting (in contrast to our setting, often referred to as “empirical Bayes,” which includes
a constant parameter θ? to be estimated from data). Essentially, [Bax97] sets up a hi-
erarchical Bayesian model, in which (in our notation) θ? is a random variable with
known distribution (hyper-prior), but otherwise the specialization of Baxter’s setting to
the pattern recognition problem is essentially identical to our setup above. This hyper-
prior does make the problem slightly easier, but generally the results of [Bax97] are
of a different nature than our objectives here. Specifically, Baxter’s results on learning
from labeled examples can be interpreted as indicating that transfer learning can im-
prove certain constant factors in the asymptotic rate of convergence of the average of
expected error rates across the learning problems. That is, certain constant complexity
terms (for instance, related to the concept space) can be reduced to (potentially much
smaller) values related to πθ? by transfer learning. Baxter argues that, as the number
of tasks grows large, this effectively achieves close to the known results on the sample
complexity of passive learning with direct access to θ?. A similar claim is discussed by
Ando and Zhang [AZ04] (though in less detail) for a setting closer to that studied here,
where θ? is an unknown parameter to be estimated.

There are also several results on transfer learning of a slightly different variety, in
which, rather than having a prior distribution for the target concept, the learner initially
has several potential concept spaces to choose from, and the role of transfer is to help
the learner select from among these concept spaces [Bax00, AZ05]. In this case, the
idea is that one of these concept spaces has the best average minimum achievable error
rate per learning problem, and the objective of transfer learning is to perform nearly as
well as if we knew which of the spaces has this property. In particular, if we assume the
target functions for each task all reside in one of the concept spaces, then the objective
of transfer learning is to perform nearly as well as if we knew which of the spaces
contains the targets. Thus, transfer learning results in a sample complexity related to
the number of learning problems, a complexity term for this best concept space, and a
complexity term related to the diversity of concept spaces we have to choose from. In
particular, as with [Bax97], these results can typically be interpreted as giving constant
factor improvements from transfer in a passive learning context, at best reducing the
complexity constants, from those for the union over the given concept spaces, down to
the complexity constants of the single best concept space.

In addition to the above works, there are several analyses of transfer learning and
multitask learning of an entirely different nature than our present discussion, in that the
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objectives of the analysis are somewhat different. Specifically, there is a branch of the
literature concerned with task relatedness, not in terms of the underlying process that
generates the target concepts, but rather directly in terms of relations between the target
concepts themselves. In this sense, several tasks with related target concepts should be
much easier to learn than tasks with unrelated target concepts. This is studied in the
context of kernel methods by [MP04, EP04, EMP05], and in a more general theoretical
framework by [BDS03]. As mentioned, our approach to transfer learning is based on
the idea of estimating the distribution of target concepts. As such, though interesting
and important, these notions of direct relatedness of target concepts are not as relevant
to our present discussion.

As with [Bax97], the present work is interested in showing that as the number of
tasks grows large, we can effectively achieve a sample complexity close to that achiev-
able with direct access to θ?. However, in contrast, we are interested in a general ap-
proach to transfer learning and the analysis thereof, leading to concrete results for a
variety of learning protocols such as active learning and semi-supervised learning. In
particular, our analysis of active learning reveals the interesting phenomenon that trans-
fer learning can sometimes improve the asymptotic dependence on ε, rather than merely
the constant factors as in the analysis of [Bax97].

Our work contrasts with [Bax97] in another important respect, which significantly
changes the way we approach the problem. Specifically, in Baxter’s analysis, the results
(e.g., [Bax97] Theorems 4, 6) regard the average loss over the tasks, and are stated as
a function of the number of samples per task. This number of samples plays a dual
role in Baxter’s analysis, since these samples are used both by the individual learning
algorithm for each task, and also for the global transfer learning process that provides
the learners with information about θ?. Baxter is then naturally interested in the rates
at which these losses shrink as the sample sizes grow large, and therefore formulates
the results in terms of the asymptotic behavior as the per-task sample sizes grow large.
In particular, the results of [Bax97] involve residual terms which become negligible for
large sample sizes, but may be more significant for smaller sample sizes.

In our work, we are interested in decoupling these two roles for the sample sizes; in
particular, our results regard only the number of tasks as an asymptotic variable, while
the number of samples per task remains bounded. First, we note a very practical moti-
vation for this: namely, non-altruistic learners. In many settings where transfer learning
may be useful, it is desirable that the number of labeled examples we need to collect
from each particular learning problem never be significantly larger than the number of
such examples required to solve that particular problem (i.e., to learn that target concept
to the desired accuracy). For instance, this is the case when the learning problems are
not all solved by the same individual (or company, etc.), but rather a coalition of coop-
erating individuals (e.g., hospitals sharing data on clinical trials); each individual may
be willing to share the data they used to learn their particular concept, in the interest of
making others’ learning problems easier; however, they may not be willing to collect
significantly more data than they themselves need for their own learning problem. We
should therefore be particularly interested in studying transfer as a by-product of the
usual learning process; failing this, we are interested in the minimum possible number
of extra labeled examples per task to gain the benefits of transfer learning.
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The issue of non-altruistic learners also presents a further technical problem in that
the individuals solving each task may be unwilling to alter their method of gathering
data to be more informative for the transfer learning process. That is, we expect the
learning process for each task is designed with the sole intention of estimating the target
concept, without regard for the global transfer learning problem. To account for this,
we model the transfer learning problem in a reduction-style framework, in which we
suppose there is some black-box learning algorithm to be run for each task, which
takes a prior as input and has a theoretical guarantee of good performance provided the
prior is correct. We place almost no restrictions whatsoever on this learning algorithm,
including the manner in which it accesses the data. This allows remarkable generality,
since this procedure could be passive, active, semi-supervised, or some other kind of
query-based strategy. However, because of this generality, we have no guarantee on the
information about θ? reflected in the data used by this algorithm (especially if it is an
active learning algorithm). As such, we choose not to use the label information gathered
by the learning algorithm for each task when estimating the θ?, but instead take a small
number of additional random labeled examples from each task with which to estimate
θ?. Again, we want to minimize this number of additional samples per task; indeed, in
this work we are able to make due with a mere constant number of additional samples
per task. To our knowledge, no result of this type (estimating θ? using a bounded sample
size per learning problem) has previously been established at the level of generality
studied here.

3 Estimating the Prior

The advantage of transfer learning in this setting is that each learning problem provides
some information about θ?, so that after solving several of the learning problems, we
might hope to be able to estimate θ?. Then, with this estimate in hand, we can use
the corresponding estimated prior distribution in the learning algorithm for subsequent
learning problems, to help inform the learning process similarly to how direct knowl-
edge of θ? might be helpful. However, the difficulty in approaching this is how to define
such an estimator. Since we do not have direct access to the h∗t values, but rather only
indirect observations via a finite number of example labels, the standard results for den-
sity estimation from i.i.d. samples cannot be applied.

The idea we pursue below is to consider the distributions on Ztk(θ?). These vari-
ables are directly observable, by requesting the labels of those examples. Thus, for
any finite k ∈ N, this distribution is estimable from observable data. That is, using
the i.i.d. values Z1k(θ?), . . . ,Ztk(θ?), we can apply standard techniques for density
estimation to arrive at an estimator of PZtk(θ?). Then the question is whether the distri-
bution PZtk(θ?) uniquely characterizes the prior distribution πθ? : that is, whether πθ? is
identifiable from PZtk(θ?).

As an example, consider the space of half-open interval classifiers on [0, 1]: C =
{1±[a,b) : 0 ≤ a ≤ b ≤ 1}, where 1

±
[a,b)(x) = +1 if a ≤ x < b and −1 oth-

erwise. In this case, πθ? is not necessarily identifiable from PZt1(θ?); for instance,
the distributions πθ1 and πθ2 characterized by πθ1({1±[0,1)}) = πθ1({1±[0,0)}) = 1/2
and πθ2({1±[0,1/2)}) = πθ2({1±[1/2,1)}) = 1/2 are not distinguished by these one-
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dimensional distributions. However, it turns out that for this half-open intervals prob-
lem, πθ? is uniquely identifiable from PZt2(θ?); for instance, in the θ1 vs θ2 scenario,
the conditional probability P(Yt1(θi),Yt2(θi))|(Xt1,Xt2)((+1,+1)|(1/4, 3/4)) will distin-
guish πθ1 from πθ2 , and this can be calculated from PZt2(θi). The crucial element of the
analysis below is determining the appropriate value of k to uniquely identify πθ? from
PZtk(θ?) in general. As we will see, k = d (the VC dimension) is always sufficient, a
key insight for the results that follow. We will also see this is not the case for any k < d.

To be specific, in order to transfer knowledge from one task to the next, we use a
few labeled data points from each task to gain information about θ?. For this, for each
task t, we simply take the first d data points in the Zt(θ?) sequence. That is, we request
the labels

Yt1(θ?), Yt2(θ?), . . . , Ytd(θ?)

and use the points Ztd(θ?) to update an estimate of θ?.
The following result shows that this technique does provide a consistent estimator

of πθ? . Again, note that this result is not a straightforward application of the standard
approach to consistent estimation, since the observations here are not the h∗tθ? variables
themselves, but rather a number of the Yti(θ?) values. The key insight in this result is
that πθ? is uniquely identified by the joint distribution PZtd(θ?) over the first d labeled
examples; later, we prove this is not necessarily true for PZtk(θ?) for values k < d. This
identifiability result is stated below in Corollary 1; as we discuss in Section 3.1, there
is a fairly simple direct proof of this result. However, for our purposes, we will actually
require the stronger condition that any θ ∈ Θ with small ‖PZtk(θ) − PZtk(θ?)‖ also
has small ‖πθ − πθ?‖. This stronger requirement adds to the complexity of the proofs.
The results in this section are purely concerned with relating distances in the space of
PZtd(θ) distributions to the corresponding distances in the space of πθ distributions; as
such, they are not specific to active learning or other learning protocols, and hence are
of independent interest.

Theorem 1. There exists an estimator θ̂Tθ? = θ̂T (Z1d(θ?), . . . ,ZTd(θ?)), and func-
tions R : N0 × (0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1], such that for any α > 0,
lim
T→∞

R(T, α) = lim
T→∞

δ(T, α) = 0 and for any T ∈ N0 and θ? ∈ Θ,

P
(
‖πθ̂Tθ? − πθ?‖ > R(T, α)

)
≤ δ(T, α) ≤ α.

One important detail to note, for our purposes, is that R(T, α) is independent from
θ?, so that the value of R(T, α) can be calculated and used within a learning algorithm.
The proof of Theorem 1 will be established via the following sequence of lemmas.
Lemma 1 relates distances in the space of priors to distances in the space of distri-
butions on the full data sets. In turn, Lemma 2 relates these distances to distances in
the space of distributions on a finite number of examples from the data sets. Lemma 3
then relates the distances between distributions on any finite number of examples to
distances between distributions on d examples. Finally, Lemma 4 presents a standard
result on the existence of a converging estimator, in this case for the distribution on d ex-
amples, for totally bounded families of distributions. Tracing these relations back, they
relate convergence of the estimator for the distribution of d examples to convergence of
the corresponding estimator for the prior itself.
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Lemma 1. For any θ, θ′ ∈ Θ and t ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.

Proof. Fix θ, θ′ ∈ Θ, t ∈ N. Let X = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .},
and for k ∈ N let Xk = {Xt1, . . . , Xtk}. and Yk(θ) = {Yt1(θ), . . . , Ytk(θ)}. For
h ∈ C, let cX(h) = {(Xt1, h(Xt1)), (Xt2, h(Xt2)), . . .}.

For h, g ∈ C, define ρX(h, g) = lim
m→∞

1
m

∑m
i=1 1[h(Xti) 6= g(Xti)] (if the limit

exists), and ρXk(h, g) = 1
k

∑k
i=1 1[h(Xti) 6= g(Xti)]. Note that since C has finite VC

dimension, so does the collection of sets {{x : h(x) 6= g(x)} : h, g ∈ C}, so that
the uniform strong law of large numbers implies that with probability one, ∀h, g ∈ C,
ρX(h, g) exists and has ρX(h, g) = ρ(h, g) [Vap82].

Consider any θ, θ′ ∈ Θ, and any A ∈ B. Then since B is the Borel σ-algebra
induced by ρ, any h /∈ A has ∀g ∈ A, ρ(h, g) > 0. Thus, if ρX(h, g) = ρ(h, g) for all
h, g ∈ C, then ∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒ ∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This implies c−1
X (cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c−1
X (cX(A))) = πθ(A),

and similarly for θ′.
Any measurable set C for the range of Zt(θ) can be expressed as C = {cx̄(h) :

(h, x̄) ∈ C ′} for some appropriate C ′ ∈ B ⊗ B∞X . Letting C ′x̄ = {h : (h, x̄) ∈ C ′}, we
have

PZt(θ)(C) =
∫
πθ(c−1

x̄ (cx̄(C ′x̄)))PX(dx̄) =
∫
πθ(C ′x̄)PX(dx̄) = P(h∗tθ,X)(C ′).

Likewise, this reasoning holds for θ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗tθ,X) − P(h∗
tθ′ ,X)‖

= sup
C′∈B⊗B∞X

∣∣∣∣∫ (πθ(C ′x̄)− πθ′(C ′x̄))PX(dx̄)
∣∣∣∣

≤
∫

sup
A∈B
|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.

Since h∗tθ and X are independent, for A ∈ B, πθ(A) = Ph∗tθ (A) = Ph∗tθ (A)PX(X∞) =
P(h∗tθ,X)(A×X∞). Analogous reasoning holds for h∗tθ′ . Thus, we have

‖πθ − πθ′‖ = ‖P(h∗tθ,X)(· × X∞)− P(h∗
tθ′ ,X)(· × X∞)‖

≤ ‖P(h∗tθ,X) − P(h∗
tθ′ ,X)‖ = ‖PZt(θ) − PZt(θ′)‖.

Combining the above, we have ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖. ut
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Lemma 2. There exists a sequence rk = o(1) such that ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk.

Proof. The left inequality follows from Lemma 1 and the basic definition of ‖ · ‖, since
PZtk(θ)(·) = PZt(θ)(· × (X × {−1,+1})∞), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖.

The remainder of this proof focuses on the right inequality. Fix θ, θ′ ∈ Θ, let γ > 0,
and let B ⊆ (X × {−1,+1})∞ be a measurable set such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

Let A be the collection of all measurable subsets of (X × {−1,+1})∞ representable
in the form A′× (X ×{−1,+1})∞, for some measurable A′ ⊆ (X ×{−1,+1})k and
some k ∈ N. In particular, since A is an algebra that generates the product σ-algebra,
Carathéodory’s extension theorem [Sch95] implies that there exist disjoint sets {Ai}i∈N
in A such that B ⊆

⋃
i∈N Ai and

PZt(θ)(B)− PZt(θ′)(B) <
∑
i∈N

PZt(θ)(Ai)−
∑
i∈N

PZt(θ′)(Ai) + γ.

Additionally, as these sums are bounded, there must exist n ∈ N such that

∑
i∈N

PZt(θ)(Ai) < γ +
n∑
i=1

PZt(θ)(Ai),

so that∑
i∈N

PZt(θ)(Ai)−
∑
i∈N

PZt(θ′)(Ai) < γ +
n∑
i=1

PZt(θ)(Ai)−
n∑
i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(
n⋃
i=1

Ai

)
− PZt(θ′)

(
n⋃
i=1

Ai

)
.

As
⋃n
i=1Ai ∈ A, there exists k′ ∈ N and measurable A′ ⊆ (X × {−1,+1})k′ such

that
⋃n
i=1Ai = A′ × (X × {−1,+1})∞, and therefore

PZt(θ)

(
n⋃
i=1

Ai

)
− PZt(θ′)

(
n⋃
i=1

Ai

)
= PZtk′ (θ)(A

′)− PZtk′ (θ′)(A
′)

≤ ‖PZtk′ (θ) − PZtk′ (θ′)‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.

In summary, we have ‖πθ − πθ′‖ ≤ limk→∞ ‖PZtk(θ) − PZtk(θ′)‖ + 3γ. Since this is
true for an arbitrary γ > 0, taking the limit as γ → 0 implies

‖πθ − πθ′‖ ≤ lim
k→∞

‖PZtk(θ) − PZtk(θ′)‖.
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In particular, this implies there exists a sequence rk(θ, θ′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZtk(θ) − PZtk(θ′)‖+ rk(θ, θ′).

This would suffice to establish the upper bound if we were allowing rk to depend
on the particular θ and θ′. However, to guarantee the same rates of convergence for
all pairs of parameters requires an additional argument. Specifically, let γ > 0 and let
Θγ denote a minimal subset of Θ such that, ∀θ ∈ Θ, ∃θγ ∈ Θγ s.t. ‖πθ − πθγ‖ <
γ: that is, a minimal γ-cover. Since |Θγ | < ∞ by assumption, defining rk(γ) =
maxθ,θ′∈Θγ rk(θ, θ′), we have rk(γ) = o(1). Furthermore, for any θ, θ′ ∈ Θ, letting
θγ = argminθ′′∈Θγ ‖πθ − πθ′′‖ and θ′γ = argminθ′′∈Θγ ‖πθ′ − πθ′′‖, we have (by
triangle inequalities)

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′γ‖+ ‖πθ′γ − πθ′‖
< 2γ + rk(γ) + ‖PZtk(θγ) − PZtk(θ′γ)‖.

By triangle inequalities and the left inequality from the lemma statement (established
above), we also have

‖PZtk(θγ) − PZtk(θ′γ)‖

≤ ‖PZtk(θγ) − PZtk(θ)‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖PZtk(θ′) − PZtk(θ′γ)‖

≤ ‖πθγ − πθ‖+ ‖PZtk(θ) − PZtk(θ′)‖+ ‖πθ′ − πθ′γ‖
< 2γ + ‖PZtk(θ) − PZtk(θ′)‖.

Defining rk = infγ>0 (4γ + rk(γ)), we have the right inequality of the lemma state-
ment, and since rk(γ) = o(1) for each γ > 0, we have rk = o(1). ut

Lemma 3. ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖ ≤ 4 · 22k+dkd
√
‖PZtd(θ) − PZtd(θ′)‖.

Proof. Fix any t ∈ N, and let X = {Xt1, Xt2, . . .} and Y(θ) = {Yt1(θ), Yt2(θ), . . .},
and for k ∈ N let Xk = {Xt1, . . . , Xtk} and Yk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, then PZtk(θ)(·) = PZtd(θ)(· × (X × {−1,+1})d−k), so that

‖PZtk(θ) − PZtk(θ′)‖ ≤ ‖PZtd(θ) − PZtd(θ′)‖,

and therefore the result trivially holds.
Now suppose k > d. For a sequence z̄ and I ⊆ N, we will use the notation

z̄I = {z̄i : i ∈ I}. Note that, for any k > d and x̄k ∈ X k, there is a sequence
ȳ(x̄k) ∈ {−1,+1}k such that no h ∈ C has h(x̄k) = ȳ(x̄k) (i.e., ∀h ∈ C, ∃i ≤ k s.t.
h(x̄ki ) 6= ȳi(x̄k)). Now suppose k > d and take as an inductive hypothesis that there is a
measurable set A∗ ⊆ X∞ of probability one with the property that ∀x̄ ∈ A∗, for every
finite I ⊂ N with |I| > d, for every ȳ ∈ {−1,+1}∞ with ‖ȳI − ȳ(x̄I)‖1/2 ≤ k − 1,∣∣PYI(θ)|XI (ȳI |x̄I)− PYI(θ′)|XI (ȳI |x̄I)

∣∣
≤ 2k−1 · max

ỹd∈{−1,+1}d,D∈Id

∣∣PYd(θ)|Xd(ỹd|x̄D)− PYd(θ′)|Xd(ỹd|x̄D)
∣∣ .
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This clearly holds for ‖ȳI − ȳ(x̄I)‖1/2 = 0, since PYI(θ)|XI (ȳI |x̄I) = 0 in this case, so
this will serve as our base case in the inductive proof. Next we inductively extend this
to the value k > 0. Specifically, let A∗k−1 be the A∗ guaranteed to exist by the inductive
hypothesis, and fix any x̄ ∈ A∗, ȳ ∈ {−1,+1}∞, and finite I ⊂ N with |I| > d and
‖ȳI − ȳ(x̄I)‖1/2 = k. Let i ∈ I be such that ȳi 6= ȳi(x̄I), and let ȳ′ ∈ {−1,+1} have
ȳ′j = ȳj for every j 6= i, and ȳ′i = −ȳi. Then

PYI(θ)|XI (ȳI |x̄I) = PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI(θ)|XI (ȳ
′
I |x̄I), (1)

and similarly for θ′. By the inductive hypothesis, this means∣∣PYI(θ)|XI (ȳI |x̄I)− PYI(θ′)|XI (ȳI |x̄I)
∣∣

≤
∣∣∣PYI\{i}(θ)|XI\{i}(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}(ȳI\{i}|x̄I\{i})

∣∣∣
+
∣∣PYI(θ)|XI (ȳ

′
I |x̄I)− PYI(θ′)|XI (ȳ

′
I |x̄I)

∣∣
≤ 2k · max

ỹd∈{−1,+1}d,D∈Id

∣∣PYd(θ)|Xd(ỹd|x̄D)− PYd(θ′)|Xd(ỹd|x̄D)
∣∣ .

Therefore, by the principle of induction, this inequality holds for all k > d, for every
x̄ ∈ A∗, ȳ ∈ {−1,+1}∞, and finite I ⊂ N, where A∗ has D∞-probability one.

In particular, we have that for θ, θ′ ∈ Θ,

‖PZtk(θ) − PZtk(θ′)‖

≤ 2kE
[

max
ȳk∈{−1,+1}k

∣∣PYk(θ)|Xk(ȳk|Xk)− PYk(θ′)|Xk(ȳk|Xk)
∣∣]

≤ 22kE
[

max
ỹd∈{−1,+1}d,D∈{1,...,k}d

∣∣PYd(θ)|Xd(ỹd|XD)− PYd(θ′)|Xd(ỹd|XD)
∣∣]

≤ 22k
∑

ỹd∈{−1,+1}d

∑
D∈{1,...,k}d

E
[∣∣PYd(θ)|Xd(ỹd|XD)− PYd(θ′)|Xd(ỹd|XD)

∣∣] .
Exchangeability implies this is at most

22k
∑

ỹd∈{−1,+1}d

∑
D∈{1,...,k}d

E
[∣∣PYd(θ)|Xd(ỹd|Xd)− PYd(θ′)|Xd(ỹd|Xd)

∣∣]
≤ 22k+dkd max

ỹd∈{−1,+1}d
E
[∣∣PYd(θ)|Xd(ỹd|Xd)− PYd(θ′)|Xd(ỹd|Xd)

∣∣] .
To complete the proof, we need only bound this value by an appropriate function of
‖PZtd(θ) − PZtd(θ′)‖. Toward this end, suppose

E
[∣∣PYd(θ)|Xd(ỹd|Xd)− PYd(θ′)|Xd(ỹd|Xd)

∣∣] ≥ ε,
for some ỹd. Then either

P
(
PYd(θ)|Xd(ỹd|Xd)− PYd(θ′)|Xd(ỹd|Xd) ≥ ε/4

)
≥ ε/4,

or
P
(
PYd(θ′)|Xd(ỹd|Xd)− PYd(θ)|Xd(ỹd|Xd) ≥ ε/4

)
≥ ε/4.



14 Yang, Hanneke, and Carbonell

For which ever is the case, let Aε denote the corresponding measurable subset of X d,
of probability at least ε/4. Then

‖PZtd(θ) − PZtd(θ′)‖ ≥
∣∣PZtd(θ)(Aε × {ỹd})− PZtd(θ′)(Aε × {ỹd})

∣∣
≥ (ε/4)PXd(Aε) ≥ ε2/16.

Therefore,

E
[∣∣PYd(θ)|Xd(ỹd|Xd)− PYd(θ′)|Xd(ỹd|Xd)

∣∣] ≤ 4
√
‖PZtd(θ) − PZtd(θ′)‖,

which means

22k+dkd max
ỹd∈{−1,+1}d

E
[∣∣PYd(θ)|Xd(ỹd|Xd)− PYd(θ′)|Xd(ỹd|Xd)

∣∣]
≤ 4 · 22k+dkd

√
‖PZtd(θ) − PZtd(θ′)‖.

ut

The following lemma is a standard result on the existence of converging density
estimators for totally bounded families of distributions. For our purposes, the details
of the estimator achieving this guarantee are not particularly important, as we will ap-
ply the result as stated. For completeness, we describe a particular estimator that does
achieve the guarantee after the lemma.

Lemma 4. [Yat85, DL01] Let P = {pθ : θ ∈ Θ} be a totally bounded family of
probability measures on a measurable space (Ω,F), and let {Wt(θ)}t∈N,θ∈Θ be Ω-
valued random variables such that {Wt(θ)}t∈N are i.i.d. pθ for each θ ∈ Θ. Then
there exists an estimator θ̂Tθ? = θ̂T (W1(θ?), . . . ,WT (θ?)) and functions RP : N0 ×
(0, 1]→ [0,∞) and δP : N0 × (0, 1]→ [0, 1] such that ∀α > 0, limT→∞RP(T, α) =
limT→∞ δP(T, α) = 0, and ∀θ? ∈ Θ and T ∈ N0,

P
(
‖pθ̂Tθ? − pθ?‖ > RP(T, α)

)
≤ δP(T, α) ≤ α.

In many contexts (though certainly not all), even a simple maximum likelihood esti-
mator suffices to supply this guarantee. However, to derive results under the more gen-
eral conditions we consider here, we require a more involved method: specifically, the
minimum distance skeleton estimate explored by [Yat85, DL01], specified as follows.
LetΘε ⊆ Θ be a minimal-cardinality ε-cover ofΘ: that is, a minimal-cardinality subset
ofΘ such that ∀θ ∈ Θ, ∃θε ∈ Θε with ‖pθε−pθ‖ < ε. For each θ, θ′ ∈ Θε, letAθ,θ′ be
a set inF maximizing pθ(Aθ,θ′)−pθ′(Aθ,θ′), and letAε = {Aθ,θ′ : θ, θ′ ∈ Θε}, known
as a Yatracos class. Finally, forA ∈ F , let p̂T (A) = T−1

∑T
t=1 1A(Wt(θ?)). The min-

imum distance skeleton estimate is θ̂Tθ? = argminθ∈Θε supA∈Aε |pθ(A)− p̂T (A)|.
The reader is referred to [Yat85, DL01] for a proof that this method satisfies the guar-
antee of Lemma 4. In particular, if εT is a sequence decreasing to 0 at a rate such
that T−1 log(|ΘεT |) → 0, and δT is a sequence bounded by α and decreasing to 0
with δT = ω(εT +

√
T−1 log(|ΘεT |)), then the result of [Yat85, DL01], combined
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with Markov’s inequality, implies that to satisfy the condition of Lemma 4, it suffices
to take RP(T, α) = δ−1

T

(
3εT +

√
8T−1 log(2|ΘεT |2 ∨ 8)

)
and δP(T, α) = δT . For

instance, εT = 2 inf
{
ε > 0 : log(|Θε|) ≤

√
T
}

and δT = α∧ (
√
εT +T−1/8) suffice.

We are now ready for the proof of Theorem 1

Proof (Theorem 1). For ε > 0, let Θε ⊆ Θ be a finite subset such that ∀θ ∈ Θ,
∃θε ∈ Θε with ‖πθε−πθ‖ < ε; this exists by the assumption that {πθ : θ ∈ Θ} is totally
bounded. Then Lemma 2 implies that ∀θ ∈ Θ, ∃θε ∈ Θε with ‖PZtd(θε) − PZtd(θ)‖ ≤
‖πθε − πθ‖ < ε, so that {PZtd(θε) : θε ∈ Θε} is a finite ε-cover of {PZtd(θ) : θ ∈
Θ}. Therefore, {PZtd(θ) : θ ∈ Θ} is totally bounded. Lemma 4 then implies that
there exists an estimator θ̂Tθ? = θ̂T (Z1d(θ?), . . . ,ZTd(θ?)) and functions Rd : N0 ×
(0, 1] → [0,∞) and δd : N0 × (0, 1] → [0, 1] such that ∀α > 0, limT→∞Rd(T, α) =
limT→∞ δd(T, α) = 0, and ∀θ? ∈ Θ and T ∈ N0,

P
(
‖PZ(T+1)d(θ̂Tθ? )|θ̂Tθ?

− PZ(T+1)d(θ?)‖ > Rd(T, α)
)
≤ δd(T, α) ≤ α. (2)

Defining
R(T, α) = min

k∈N

(
rk + 4 · 22k+dkd

√
Rd(T, α)

)
,

and δ(T, α) = δd(T, α), and combining (2) with Lemmas 3 and 2, we have

P
(
‖πθ̂Tθ? − πθ?‖ > R(T, α)

)
≤ δ(T, α) ≤ α.

Finally, note that lim
k→∞

rk = 0 and lim
T→∞

Rd(T, α) = 0 imply that lim
T→∞

R(T, α) = 0.
ut

3.1 Identifiability from d Points

Inspection of the above proof reveals that the assumption that the family of priors is
totally bounded is required only to establish the estimability and bounded minimax rate
guarantees. In particular, the implied identifiability condition is, in fact, always satisfied,
as stated formally in the following corollary.

Corollary 1. For any priors π1, π2 on C, if h∗i ∼ πi, X1, . . . , Xd are i.i.d. D inde-
pendent from h∗i , and Zd(i) = {(X1, h

∗
i (X1)), . . . , (Xd, h

∗
i (Xd))} for i ∈ {1, 2}, then

PZd(1) = PZd(2) =⇒ π1 = π2.

Proof. The described scenario is a special case of our general setting, with Θ = {1, 2},
in which case PZd(i) = PZ1d(i). Thus, if PZd(1) = PZd(2), then Lemma 3 and Lemma 2
combine to imply that ‖π1 − π2‖ ≤ infk∈N rk = 0. ut

Since Corollary 1 is interesting in itself, it is worth noting that there is a simple
direct proof of this result. Specifically, by an inductive argument based on the obser-
vation (1) from the proof of Lemma 3, we quickly find that for any k ∈ N, PZtk(θ?)

is identifiable from PZtd(θ?). Then we merely recall that PZt(θ?) is always identifiable
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from {PZtk(θ?) : k ∈ N} [Kal02], and the argument from the proof of Lemma 1 shows
πθ? is identifiable from PZt(θ?).

It is natural to wonder whether identifiability of πθ? from PZtk(θ?) remains true for
some smaller number of points k < d, so that we might hope to create an estimator for
πθ? based on an estimator for PZtk(θ?). However, one can show that d is actually the
minimum possible value for which this remains true for all D and all families of priors.
Formally, we have the following result, holding for every VC class C.

Theorem 2. There exists a data distribution D and priors π1, π2 on C such that, for
any positive integer k < d, if h∗i ∼ πi, X1, . . . , Xk are i.i.d. D independent from h∗i ,
and Zk(i) = {(X1, h

∗
i (X1)), . . . , (Xk, h

∗
i (Xk))} for i ∈ {1, 2}, then PZk(1) = PZk(2)

but π1 6= π2.

Proof. Note that it suffices to show this is the case for k = d−1, since any smaller k is a
marginal of this case. Consider a shatterable set of points Sd = {x1, x2, . . . , xd} ⊆ X ,
and let D be uniform on Sd. Let C[Sd] be any 2d classifiers in C that shatter Sd. Let π1

be the uniform distribution on C[S]. Now let Sd−1 = {x1, . . . , xd−1} and C[Sd−1] ⊆
C[Sd] shatter Sd−1 with the property that ∀h ∈ C[Sd−1], h(xd) =

∏d−1
j=1 h(xj). Let π2

be uniform on C[Sd−1]. Now for any k < d and distinct indices t1, . . . , tk ∈ {1, . . . , d},
{h∗i (xt1), . . . , h∗i (xtk)} is distributed uniformly in {−1,+1}k for both i ∈ {1, 2}.
This implies PZd−1(1)|X1,...,Xd−1 = PZd−1(2)|X1,...,Xd−1 , which implies PZd−1(1) =
PZd−1(2). However, π1 is clearly different from π2, since even the sizes of the supports
are different. ut

4 Transfer Learning

In this section, we look at an application of the techniques from the previous section
to transfer learning. Like the previous section, the results in this section are general, in
that they are applicable to a variety of learning protocols, including passive supervised
learning, passive semi-supervised learning, active learning, and learning with certain
general types of data-dependent interaction (see [Han09]). For simplicity, we restrict
our discussion to the active learning formulation; the analogous results for these other
learning protocols follow by similar reasoning.

The result of the previous section implies that an estimator for θ? based on d-
dimensional joint distributions is consistent with a bounded rate of convergence R.
Therefore, for certain prior-dependent learning algorithms, their behavior should be
similar under πθ̂Tθ? to their behavior under πθ? .

To make this concrete, we formalize this in the active learning protocol as fol-
lows. A prior-dependent active learning algorithm A takes as inputs ε > 0, D, and
a distribution π on C. It initially has access to X1, X2, . . . i.i.d. D; it then selects
an index i1 to request the label for, receives Yi1 = h∗(Xi1), then selects another
index i2, etc., until it eventually terminates and returns a classifier. Denote by Z =
{(X1, h

∗(X1)), (X2, h
∗(X2)), . . .}. To be correct, A must guarantee that for h∗ ∼ π,

∀ε > 0, E [ρ(A(ε,D, π), h∗)] ≤ ε. We define the random variable N(A, f, ε,D, π) as
the number of label requests A makes before terminating, when given ε, D, and π as
inputs, and when h∗ = f is the value of the target function; we make the particular data
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sequence Z the algorithm is run with implicit in this notation. We will be interested in
the expected sample complexity SC(A, ε,D, π) = E [N(A, h∗, ε,D, π)].

We propose the following algorithm Aτ for transfer learning, defined in terms of
a given correct prior-dependent active learning algorithm Aa. We discuss interesting
specifications for Aa in the next section, but for now the only assumption we require
is that for any ε > 0 and D, there is a value sε < ∞ such that for every π and f ∈
C, N(Aa, f, ε,D, π) ≤ sε; this is a very mild requirement, and any active learning
algorithm can be converted into one that satisfies this without significantly increasing
its sample complexities for the priors it is already good for [BHV10]. We additionally
denote by mε = 16d

ε ln
(

24
ε

)
, and B(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.

Algorithm 1Aτ (T, ε): an algorithm for transfer learning, specified in terms of a generic
subroutine Aa.

for t = 1, 2, . . . , T do
Request labels Yt1(θ?), . . . , Ytd(θ?)
if R(t− 1, ε/2) > ε/8 then

Request labels Yt(d+1)(θ?), . . . , Ytmε(θ?)

Take ĥt as any h ∈ C s.t. ∀i ≤ mε, h(Xti) = Yti(θ?)
else

Let θ̌tθ? ∈ B
“
θ̂(t−1)θ? , R(t− 1, ε/2)

”
be such that

SC(Aa, ε/4,D, πθ̌tθ? ) ≤ min
θ∈B(θ̂(t−1)θ? ,R(t−1,ε/2))

SC(Aa, ε/4,D, πθ) + 1/t

Run Aa(ε/4,D, πθ̌tθ? ) with data sequence Zt(θ?) and let ĥt be the classifier it returns
end if

end for

Recall that θ̂(t−1)θ? , which is defined by Theorem 1, is a function of the labels
requested on previous rounds of the algorithm; R(t − 1, ε/2) is also defined by Theo-
rem 1, and has no dependence on the data (or on θ?). The other quantities referred to in
Algorithm 1 are defined just prior to Algorithm 1. We suppose the algorithm has access
to the value SC(Aa, ε/4,D, πθ) for every θ ∈ Θ. This can sometimes be calculated
analytically as a function of θ, or else can typically be approximated via Monte Carlo
simulations. In fact, the result below holds even if SC is merely an accessible upper
bound on the expected sample complexity.

Theorem 3. The algorithmAτ is correct. Furthermore, if ST (ε) is the total number of
label requests made by Aτ (T, ε), then lim sup

T→∞

E[ST (ε)]
T ≤ SC(Aa, ε/4,D, πθ?) + d.

The implication of Theorem 3 is that, via transfer learning, it is possible to achieve
almost the same long-run average sample complexity as would be achievable if the
target’s prior distribution were known to the learner. We will see in the next section
that this is sometimes significantly better than the single-task sample complexity. As
mentioned, results of this type for transfer learning have previously appeared when Aa
is a passive learning method [Bax97]; however, to our knowledge, this is the first such
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result where the asymptotics concern only the number of learning tasks, not the number
of samples per task; this is also the first result we know of that is immediately applicable
to more sophisticated learning protocols such as active learning.

The algorithm Aτ is stated in a simple way here, but Theorem 3 can be improved
with some obvious modifications to Aτ . The extra “+d” in Theorem 3 is not actually
necessary, since we could stop updating the estimator θ̌tθ? (and the corresponding R
value) after some o(T ) number of rounds (e.g.,

√
T ), in which case we would not need

to request Yt1(θ?), . . . , Ytd(θ?) for t larger than this, and the extra d · o(T ) number of
labeled examples vanishes in the average as T → ∞. Additionally, the ε/4 term can
easily be improved to any value arbitrarily close to ε (even (1− o(1))ε) by running Aa
with argument ε− 2R(t− 1, ε/2)− δ(t− 1, ε/2) instead of ε/4, and using this value
in the SC calculations in the definition of θ̌tθ? as well. In fact, for many algorithms Aa
(e.g., with SC(Aa, ε,D, πθ?) continuous in ε), combining the above two tricks yields
lim sup
T→∞

E[ST (ε)]
T ≤ SC(Aa, ε,D, πθ?).

Returning to our motivational remarks from Subsection 2.1, we can ask how many
extra labeled examples are required from each learning problem to gain the benefits
of transfer learning. This question essentially concerns the initial step of requesting
the labels Yt1(θ?), . . . , Ytd(θ?). Clearly this indicates that from each learning problem,
we need at most d extra labeled examples to gain the benefits of transfer. Whether
these d label requests are indeed extra depends on the particular learning algorithm
Aa; that is, in some cases (e.g., certain passive learning algorithms), Aa may itself
use these initial d labels for learning, so that in these cases the benefits of transfer
learning are essentially gained as a by-product of the learning processes, and essentially
no additional labeling effort need be expended to gain these benefits. On the other hand,
for some active learning algorithms, we may expect that at least some of these initial
d labels would not be requested by the algorithm, so that some extra labeling effort is
expended to gain the benefits of transfer in these cases.

One drawback of our approach is that we require the data distribution D to remain
fixed across tasks (this contrasts with [Bax97]). However, it should be possible to relax
this requirement in the active learning setting in many cases. For instance, if X = Rk,
then as long as we are guaranteed that the distribution Dt for each learning task has
a strictly positive density function, it should be possible to use rejection sampling for
each task to guarantee the d queried examples from each task have approximately the
same distribution across tasks. This is all we require for our consistency results on θ̂Tθ?
(i.e., it was not important that the d samples came from the true distribution D, only
that they came from a distribution under which ρ is a metric). We leave the details of
such an adaptive method for future consideration.

4.1 Proof of Theorem 3

Recall that, to establish correctness, we must show that ∀t ≤ T , E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε,

regardless of the value of θ? ∈ Θ. Fix any θ? ∈ Θ and t ≤ T . If R(t− 1, ε/2) > ε/8,
then classic results from passive learning indicate that E

[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε [Vap82].

Otherwise, by Theorem 1, with probability at least 1−ε/2, we have ‖πθ?−πθ̂(t−1)θ?
‖ ≤
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R(t − 1, ε/2). On this event, if R(t − 1, ε/2) ≤ ε/8, then by a triangle inequality
‖πθ̌tθ? − πθ?‖ ≤ 2R(t− 1, ε/2) ≤ ε/4. Thus,

E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ E

[
E
[
ρ
(
ĥt, h

∗
tθ?

) ∣∣∣θ̌tθ?]1 [‖πθ̌tθ? − πθ?‖ ≤ ε/4]]+ ε/2. (3)

For θ ∈ Θ, let ĥtθ denote the classifier that would be returned byAa(ε/4,D, πθ̌tθ? )
when run with data sequence {(Xt1, h

∗
tθ(Xt1)), (Xt2, h

∗
tθ(Xt2)), . . .}. Note that for any

θ ∈ Θ, any measurable function F : C→ [0, 1] has

E
[
F (h∗tθ?)

]
≤ E [F (h∗tθ)] + ‖πθ − πθ?‖. (4)

In particular, supposing ‖πθ̌tθ? − πθ?‖ ≤ ε/4, we have

E
[
ρ
(
ĥt, h

∗
tθ?

) ∣∣∣θ̌tθ?] = E
[
ρ
(
ĥtθ? , h

∗
tθ?

) ∣∣∣θ̌tθ?]
≤ E

[
ρ
(
ĥtθ̌tθ? , h

∗
tθ̌tθ?

) ∣∣∣θ̌tθ?]+ ‖πθ̌tθ? − πθ?‖ ≤ ε/4 + ε/4 = ε/2.

Combined with (3), this implies E
[
ρ
(
ĥt, h

∗
tθ?

)]
≤ ε.

We establish the sample complexity claim as follows. First note that convergence
of R(t − 1, ε/2) implies that limT→∞

∑T
t=1 1 [R(t, ε/2) > ε/8] /T = 0, and that the

number of labels used for a value of t with R(t− 1, ε/2) > ε/8 is bounded by a finite
function mε of ε. Therefore,

lim sup
T→∞

E[ST (ε)]
T

≤ d+ lim sup
T→∞

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )

]
1[R(t− 1, ε/2) ≤ ε/8]/T

≤ d+ lim sup
T→∞

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )

]
/T. (5)

By the definition of R, δ from Theorem 1, we have

lim
T→∞

1
T

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )1

[
‖πθ̂(t−1)θ?

− πθ?‖ > R(t− 1, ε/2)
]]

≤ lim
T→∞

1
T

T∑
t=1

sε/4P
(
‖πθ̂(t−1)θ?

− πθ?‖ > R(t− 1, ε/2)
)

≤ sε/4 lim
T→∞

1
T

T∑
t=1

δ(t− 1, ε/2) = 0.

Combined with (5), this implies

lim sup
T→∞

E[ST (ε)]
T

≤ d+

lim sup
T→∞

1
T

T∑
t=1

E
[
N(Aa, h∗tθ? , ε/4,D, πθ̌tθ? )1

[
‖πθ̂(t−1)θ?

− πθ?‖ ≤ R(t− 1, ε/2)
]]
.
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For any t ≤ T , on the event ‖πθ̂(t−1)θ?
−πθ?‖ ≤ R(t−1, ε/2), we have (by the property

(4) and a triangle inequality)

E
[
N(Aa, h∗tθ? ,ε/4,D, πθ̌tθ? )

∣∣∣θ̌tθ?]
≤ E

[
N(Aa, h∗tθ̌tθ? , ε/4,D, πθ̌tθ? )

∣∣∣θ̌tθ?]+ 2R(t− 1, ε/2)

= SC
(
Aa, ε/4,D, πθ̌tθ?

)
+ 2R(t− 1, ε/2)

≤ SC (Aa, ε/4,D, πθ?) + 1/t+ 2R(t− 1, ε/2),

where the last inequality follows by definition of θ̌tθ? . Therefore,

lim sup
T→∞

E[ST (ε)]
T

≤ d+ lim sup
T→∞

1
T

T∑
t=1

SC (Aa, ε/4,D, πθ?) + 1/t+ 2R(t− 1, ε/2)

= d+ SC (Aa, ε/4,D, πθ?) .

ut

5 Application to Self-Verifying Active Learning

In this section, we examine a specific sample complexity guarantee achievable by ac-
tive learning, when combined with the above transfer learning procedure. As men-
tioned, [BHV10] found that there is often a significant gap between the sample com-
plexities achievable by good active learning algorithms in general and the sample com-
plexities achievable by active learning algorithms that themselves adaptively determine
how many label requests to make for any given problem (referred to as self-verifying ac-
tive learning algorithms). Specifically, while the former can always be strictly superior
to the sample complexities achievable by passive learning, there are simple examples
where this is not the case for self-verifying active learning algorithms.

We should note, however, that all of the above considerations were proven for a
learning scenario in which the target concept is considered a constant, and no informa-
tion about the process that generates this concept is available to the learner. Thus, there
is a natural question of whether, in the context of the transfer learning setting described
above, we might be able to close this gap, so that self-verifying active learning algo-
rithms are able to achieve the same type of guaranteed strict improvements over passive
learning that are achievable by their non-self-verifying counterparts.

The considerations of the previous section indicate that this question is in some
sense reducible to an analogous question for prior-dependent self-verifying active learn-
ing algorithms. The quantity SC(Aa, ε, /4,D, πθ?) then essentially characterizes the
achievable average sample complexity among the sequence of tasks. We will therefore
focus in this section on characterizing this quantity, for a particularly effective active
learning algorithm Aa.
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Throughout this section, we suppose the active learning algorithm Aa is run with
the sequence of examples Z = {(X1, h

∗(X1)), (X2, h
∗(X2)), . . .}, where X1, X2, . . .

are i.i.d. D, and h∗ ∼ πθ? .

5.1 Related Work on Prior-dependent Learning

Prior-dependent learning algorithms have been studied in depth in the context of pas-
sive learning. In particular, [HKS92] found that for any concept space of finite VC
dimension d, for any prior and data distribution, O(d/ε) random labeled examples are
sufficient for the expected error rate of the Bayes classifier produced under the poste-
rior distribution to be at most ε. Furthermore, it is easy to construct learning problems
for which there is an Ω(1/ε) lower bound on the number of random labeled examples
required to achieve expected error rate at most ε, by any passive learning algorithm;
for instance, the problem of learning threshold classifiers on [0, 1] under a uniform data
distribution and uniform prior is one such scenario.

In contrast, a relatively small amount is known about prior-dependent active learn-
ing. [FSST97] analyze the Query By Committee algorithm in this context, and find that
if a certain information gain quantity for the points requested by the algorithm is lower-
bounded by a value g, then the algorithm requires only O((d/g) log(1/ε)) labels to
achieve expected error rate at most ε. In particular, they show that this is satisfied for
constant g for linear separators under a near-uniform prior, and a near-uniform data dis-
tribution over the unit sphere. This represents a marked improvement over the results
of [HKS92] for passive learning, and since the Query by Committee algorithm is self-
verifying, this result is highly relevant to the present discussion. However, the condition
that the information gains be lower-bounded by a constant is quite restrictive, and many
interesting learning problems are precluded by this requirement. Furthermore, there
exist learning problems (with finite VC dimension) for which the Query by Commit-
tee algorithm makes an expected number of label requests exceeding Ω(1/ε). To date,
there has not been a general analysis of how the value of g can behave as a function of
ε, though such an analysis would likely be quite interesting.

In the present section, we take a more general approach to the question of prior-
dependent active learning. We are interested in the broad question of whether access to
the prior bridges the gap between the sample complexity of learning and the sample
complexity of learning with verification. Specifically, we ask the following question.

Can a prior-dependent self-terminating active learning algorithm for a concept
class of finite VC dimension always achieve expected error rate at most ε using o(1/ε)
label requests?

5.2 Prior-Independent Learning Algorithms

One may initially wonder whether we could achieve this o(1/ε) result merely by calcu-
lating the expected sample complexity of some prior-independent method, thus preclud-
ing the need for novel algorithms. Formally, we say an algorithmA is prior-independent
if the conditional distribution of the queries and return value of A(ε,D, π) given Z is
functionally independent of π. Indeed, for some C and D, it is known that there are
prior-independent active learning algorithms A that have E[N(A, h∗, ε,D, π)|h∗] =
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o(1/ε) (always); for instance, threshold classifiers have this property under any D, ho-
mogeneous linear separators have this property under a uniformD on the unit sphere in
k dimensions, and intervals with positive width on X = [0, 1] have this property under
D = Uniform([0, 1]) (see e.g., [Das05]). It is straightforward to show that any such
A will also have SC(A, ε,D, π) = o(1/ε) for every π. In particular, the law of total
expectation and the dominated convergence theorem imply

lim
ε→0

εSC(A, ε,D, π) = lim
ε→0

εE[E[N(A, h∗, ε,D, π)|h∗]]

= E
[

lim
ε→0

εE[N(A, h∗, ε,D, π)|h∗]
]

= 0.

In these cases, we can think of SC as a kind of average-case analysis of these algo-
rithms. However, as we discuss next, there are also many C and D for which there is no
prior-independent algorithm achieving o(1/ε) sample complexity for all priors. Thus,
any general result on o(1/ε) expected sample complexity for π-dependent algorithms
would indicate that there is a real advantage to having access to the prior, beyond the
apparent smoothing effects of an average-case analysis.

As an example of a problem where no prior-independent self-verifying algorithm
can achieve o(1/ε) sample complexity, consider X = [0, 1], D = Uniform([0, 1]),
and C as the concept space of interval classifiers: C = {1±(a,b) : 0 ≤ a ≤ b ≤ 1},
where 1

±
(a,b)(x) = +1 if x ∈ (a, b) and −1 otherwise. Note that because we al-

low a = b, there is a classifier h− ∈ C labeling all of X negative. For 0 ≤ a ≤
b ≤ 1, let π(a,b) denote the prior with π(a,b)({1±(a,b)}) = 1. We now show any cor-
rect prior-independent algorithm has Ω(1/ε) sample complexity for π(0,0), following
a technique of [BHV10]. Consider any ε ∈ (0, 1/144) and any prior-independent ac-
tive learning algorithm A with SC(A, ε,D, π(0,0)) < s = 1

144ε . Then define Hε ={
(12iε, 12(i+ 1)ε) : i ∈

{
0, 1, . . . ,

⌊
1−12ε

12ε

⌋}}
. Let ĥ(a,b) denote the classifier returned

by A(ε,D, ·) when queries are answered with h∗ = 1
±
(a,b), for 0 ≤ a ≤ b ≤ 1, and let

R(a,b) denote the set of examples (x, y) for which A(ε,D, ·) requests labels (including
their y = h∗(x) labels). The point of this construction is that, with such a small num-
ber of queries, for many of the (a, b) ∈ Hε, the algorithm must behave identically for
h∗ = 1

±
(a,b) as for h∗ = 1

±
(0,0) (i.e., R(a,b) = R(0,0), and hence ĥ(a,b) = ĥ(0,0)). These

π(a,b) priors will then witness the fact that A is not a correct self-verifying algorithm.
Formally,

max
(a,b)∈Hε

E
[
D(x : ĥ(a,b)(x) 6= 1

±
(a,b)(x))

]
≥ 1
|Hε|

∑
(a,b)∈Hε

E
[
D(x : ĥ(a,b)(x) 6= 1

±
(a,b)(x))

]

≥ 1
|Hε|

E

 ∑
(a,b)∈Hε:R(a,b)=R(0,0)

D(x : ĥ(a,b)(x) 6= 1
±
(a,b)(x))


≥ 1
|Hε|

E

 ∑
(a,b)∈Hε:R(a,b)=R(0,0)

(
12ε−min{D(x : ĥ(a,b)(x) 6= −1), 12ε}

) . (6)
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Since the summation in (6) is restricted to (a, b) with R(a,b) = R(0,0), these (a, b) must
also have ĥ(a,b) = ĥ(0,0), so that (6) equals

1
|Hε|

E

 ∑
(a,b)∈Hε:R(a,b)=R(0,0)

(
12ε−min{D(x : ĥ(0,0)(x) 6= −1), 12ε}

) . (7)

Furthermore, for a given Z sequence, the only (a, b) ∈ Hε with R(a,b) 6= R(0,0) are
those for which some (x,−1) ∈ R(0,0) has x ∈ (a, b); since the (a, b) ∈ Hε are
disjoint, the above summation has at least |Hε| − |R(0,0)| elements in it. Thus, (7) is at
least

E
[( |Hε| −min{|R(0,0)|, |Hε|}

|Hε|

)(
12ε−min{D(x : ĥ(0,0)(x) 6= −1), 12ε}

)]
≥ E

[
1
[
|R(0,0)| ≤ 3s

]
1

[
D(x : ĥ(0,0)(x) 6= −1) ≤ 6ε

]( |Hε| − 3s
|Hε|

)
(12ε− 6ε)

]
≥ 3εP

(
|R(0,0)| ≤ 3s,D(x : ĥ(0,0)(x) 6= −1) ≤ 6ε

)
. (8)

By Markov’s inequality,

P
(
|R(0,0)| > 3s

)
≤ E[|R(0,0)|]/(3s) = SC(A, ε,D, π(0,0))/(3s) < 1/3,

and P
(
D(x : ĥ(0,0)(x) 6= −1) > 6ε

)
≤ E

[
D(x : ĥ(0,0)(x) 6= −1)

]
/(6ε), and if A is

a correct self-verifying algorithm, then E
[
D(x : ĥ(0,0)(x) 6= −1)

]
/(6ε) ≤ 1/6. Thus,

by a union bound, (8) is at least 3ε(1− 1/3− 1/6) = (3/2)ε > ε. Therefore,A cannot
be a correct self-verifying learning algorithm.

5.3 Prior-Dependent Learning: An Example

We begin our exploration of π-dependent active learning with a concrete example,
namely interval classifiers under a uniform data density but arbitrary prior, to illus-
trate how access to the prior can make a difference in the sample complexity. Specif-
ically, consider X = [0, 1], D uniform on [0, 1], and the concept space C of inter-
val classifiers specified in the previous subsection. For each classifier h ∈ C, define
w(h) = D(x : h(x) = +1) (the width of the interval h). Note that because we allow
a = b in the definition of C, there is a classifier h− ∈ C with w(h−) = 0.

For simplicity, in this example (only) we will suppose the algorithm may request
the label of any point in X , not just those in the sequence {Xi}; the same ideas can
easily be adapted to the setting where queries are restricted to {Xi}. Consider an active
learning algorithm that sequentially requests the labels h∗(x) for points x at 1/2, 1/4,
3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, etc., until (case 1) it encounters an example x with
h∗(x) = +1 or until (case 2) the set of classifiers V ⊆ C consistent with all observed
labels so far satisfies E[w(h∗)|V ] ≤ ε (which ever comes first). In case 2, the algorithm
simply halts and returns the constant classifier that always predicts −1: call it h−; note
that ρ(h−, h∗) = w(h∗). In case 1, the algorithm enters a second phase, in which it
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performs a binary search (repeatedly querying the midpoint between the closest two
−1 and +1 points, taking 0 and 1 as known negative points) to the left and right of the
observed positive point, halting after log2(4/ε) label requests on each side; this results
in estimates of the target’s endpoints up to ±ε/4, so that returning any classifier among
the set V ⊆ C consistent with these labels results in error rate at most ε; in particular,
if h̃ is the classifier in V returned, then E[ρ(h̃, h∗)|V ] ≤ ε.

Denoting this algorithm by A[], and ĥ the classifier it returns, we have

E
[
ρ
(
ĥ, h∗

)]
= E

[
E
[
ρ
(
ĥ, h∗

) ∣∣∣V ]] ≤ ε,
so that the algorithm is definitely correct.

Note that case 2 will definitely be satisfied after at most 2
ε label requests, and if

w(h∗) > ε, then case 1 will definitely be satisfied after at most 2
w(h∗) label requests, so

that the algorithm never makes more than 2
max{w(h∗),ε} label requests before satisfying

one of the two cases. Abbreviating N(h∗) = N(A[], h
∗, ε,D, π), we have

E [N(h∗)]

= E
[
N(h∗)

∣∣∣w(h∗) = 0
]

P (w(h∗) = 0)

+ E
[
N(h∗)

∣∣∣0 < w(h∗) ≤
√
ε
]

P
(
0 < w(h∗) ≤

√
ε
)

+ E
[
N(h∗)

∣∣∣w(h∗) >
√
ε
]

P
(
w(h∗) >

√
ε
)

≤ E
[
N(h∗)

∣∣∣w(h∗) = 0
]
P (w(h∗) = 0) +

2
ε

P
(
0 < w(h∗) ≤

√
ε
)

+
2√
ε

+ 2 log2

4
ε
.

(9)

The third and fourth terms in (9) are o(1/ε). Since P(0 < w(h∗) ≤
√
ε)→ 0 as ε→ 0,

the second term in (9) is o(1/ε) as well. If P(w(h∗) = 0) = 0, this completes the proof.
We focus the rest of the proof on the first term in (9), in the case that P(w(h∗) = 0) > 0:
i.e., there is nonzero probability that the target h∗ labels the space all negative. Letting
V denote the subset of C consistent with all requested labels, note that on the event
w(h∗) = 0, after n label requests (for n + 1 a power of 2) we have maxh∈V w(h) ≤
1/n. Thus, for any value γ ∈ (0, 1), after at most 2

γ label requests, on the event that
w(h∗) = 0,

E
[
w(h∗)

∣∣∣V ] ≤ E [w(h∗)1 [w(h∗) ≤ γ]]
π(V )

≤ E [w(h∗)1 [w(h∗) ≤ γ]]
P(w(h∗) = 0)

. (10)

Now note that, by the dominated convergence theorem,

lim
γ→0

E
[
w(h∗)1 [w(h∗) ≤ γ]

γ

]
= E

[
lim
γ→0

w(h∗)1 [w(h∗) ≤ γ]
γ

]
= 0.

Therefore, E [w(h∗)1 [w(h∗) ≤ γ]] = o(γ). If we define γε as the largest value of γ
for which E [w(h∗)1 [w(h∗) ≤ γ]] ≤ εP(w(h∗) = 0) (or, say, half the supremum if the



Transfer Learning 25

maximum is not achieved), then we have γε � ε. Combined with (10), this implies

E
[
N(h∗)

∣∣∣w(h∗) = 0
]
≤ 2
γε

= o(1/ε).

Thus, all of the terms in (9) are o(1/ε), so that in total E[N(h∗)] = o(1/ε).
In conclusion, for this concept space C and data distribution D, we have a correct

active learning algorithm A achieving a sample complexity SC(A, ε,D, π) = o(1/ε)
for all priors π on C.

5.4 A General Result for Self-Verifying Bayesian Active Learning

In this subsection, we present our main result for improvements achievable by prior-
dependent self-verifying active learning: a general result stating that o(1/ε) expected
sample complexity is always achievable for some appropriate prior-dependent active
learning algorithm, for any (X ,C,D, π) for which C has finite VC dimension. Since the
known results for the sample complexity of passive learning with access to the prior are
typically Θ(1/ε) [HKS92], and since there are known learning problems (X ,C,D, π)
for which every passive learning algorithm requires Ω(1/ε) samples, this o(1/ε) result
for active learning represents an improvement over passive learning.

The proof is simple and accessible, yet represents an important step in understand-
ing the problem of self-termination in active learning algorithms, and the general issue
of the complexity of verification. Also, since there are problems (X ,C,D) where C
has finite VC dimension but for which no (single-task) prior-independent correct ac-
tive learning algorithm (of the self-terminating type studied here) can achieve o(1/ε)
expected sample complexity for every π, this also represents a significant step toward
understanding the inherent value of having access to the prior in active learning. Ad-
ditionally, via Theorem 3, this result implies that active transfer learning (of the type
discussed above) can provide strictly superior sample complexities compared to the
known results for passive learning (even compared to passive learning algorithms hav-
ing direct access to the prior πθ? ), and often strictly superior to the sample complexities
achievable by (prior-independent) active learning without transfer.

First, we have a small lemma.

Lemma 5. For any sequence of functions φn : C → [0,∞) such that, ∀f ∈ C,
φn(f) = o(1/n) and ∀n ∈ N, φn(f) ≤ c/n (for an f -independent constant c ∈
(0,∞)), there exists a sequence φ̄n in [0,∞) such that

φ̄n = o(1/n) and lim
n→∞

P
(
φn(h∗) > φ̄n

)
= 0.

Proof. For any constant γ ∈ (0,∞), we have (by Markov’s inequality and the domi-
nated convergence theorem)

lim
n→∞

P (nφn(h∗) > γ) ≤ 1
γ

lim
n→∞

E [nφn(h∗)]

=
1
γ

E
[

lim
n→∞

nφn(h∗)
]

= 0.
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Therefore (by induction), there exists a diverging sequence ni in N such that

lim
i→∞

sup
n≥ni

P
(
nφn(h∗) > 2−i

)
= 0.

Inverting this, let in = max{i ∈ N : ni ≤ n}, and define φ̄n(h∗) = (1/n) · 2−in . By
construction, P

(
φn(h∗) > φ̄n

)
→ 0. Furthermore, ni →∞ =⇒ in →∞, so that we

have
lim
n→∞

nφ̄n = lim
n→∞

2−in = 0,

implying φ̄n = o(1/n). ut

Theorem 4. For any VC class C, there is a correct active learning algorithm Aa that,
for every data distribution D and prior π, achieves expected sample complexity

SC(Aa, ε,D, π) = o(1/ε).

Our approach to proving Theorem 4 is via a reduction to established results about
(prior-independent) active learning algorithms that are not self-verifying. Specifically,
consider a slightly different type of active learning algorithm than that defined above:
namely, an algorithm Ab that takes as input a budget n ∈ N on the number of label
requests it is allowed to make, and that after making at most n label requests returns as
output a classifier ĥn. Let us refer to any such algorithm as a budget-based active learn-
ing algorithm. Note that budget-based active learning algorithms are prior-independent
(have no direct access to the prior). The following result was proven by [Han09] (see
also the related earlier work of [BHV10]).

Lemma 6. [Han09] For any VC class C, there exists a constant c ∈ (0,∞), a function
E(n; f,D), and a budget-based active learning algorithm Ab such that

∀D,∀f ∈ C, E(n; f,D) ≤ c/n and E(n; f,D) = o(1/n),

and E
[
ρ (Ab(n), h∗)

∣∣∣h∗] ≤ E(n;h∗,D) (always).4

That is, equivalently, for any fixed value for the target function, the expected error
rate is o(1/n), where the random variable in the expectation is only the data sequence
X1, X2, . . .. Our task in the proof of Theorem 4 is to convert such a budget-based
algorithm into one that is correct, self-terminating, and prior-dependent, taking ε as
input.

Proof (Theorem 4). Consider Ab, E , and c as in Lemma 6, let ĥn denote the classifier
returned by Ab(n), and define

nπ,ε = min
{
n ∈ N : E

[
ρ
(
ĥn, h

∗
)]
≤ ε
}
.

4 Furthermore, it is not difficult to see that we can take this E to be measurable in the h∗ argu-
ment.
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This value is accessible based purely on access to π and D. Furthermore, we clearly
have (by construction) E

[
ρ
(
ĥnπ,ε , h

∗
)]
≤ ε. Thus, lettingAa denote the active learn-

ing algorithm taking (D, π, ε) as input, which runsAb(nπ,ε) and then returns ĥnπ,ε , we
have that Aa is a correct learning algorithm (i.e., its expected error rate is at most ε).

As for the expected sample complexity SC(Aa, ε,D, π) achieved by Aa, we have
SC(Aa, ε,D, π) ≤ nπ,ε, so that it remains only to bound nπ,ε. By Lemma 5, there is a
π-dependent function E(n;π,D) such that

π ({f ∈ C : E(n; f,D) > E(n;π,D)})→ 0
and E(n;π,D) = o(1/n).

Therefore, by the law of total expectation,

E
[
ρ
(
ĥn, h

∗
)]

= E
[
E
[
ρ
(
ĥn, h

∗
) ∣∣∣h∗]] ≤ E [E(n;h∗,D)]

≤ c

n
π ({f ∈ C : E(n; f,D) > E(n;π,D)}) + E(n;π,D)

= o(1/n).

If nπ,ε = O(1), then clearly nπ,ε = o(1/ε) as needed. Otherwise, since nπ,ε is mono-
tonic in ε, we must have nπ,ε ↑ ∞ as ε ↓ 0. In particular, in this latter case we have

lim
ε→0

ε · nπ,ε

≤ lim
ε→0

ε ·
(

1 + max
{
n ≥ nπ,ε − 1 : E

[
ρ
(
ĥn, h

∗
)]

> ε
})

= lim
ε→0

ε · max
n≥nπ,ε−1

n1
[
E
[
ρ
(
ĥn, h

∗
)]
/ε > 1

]
≤ lim
ε→0

ε · max
n≥nπ,ε−1

nE
[
ρ
(
ĥn, h

∗
)]
/ε

= lim
ε→0

max
n≥nπ,ε−1

nE
[
ρ
(
ĥn, h

∗
)]

= lim sup
n→∞

nE
[
ρ
(
ĥn, h

∗
)]

= 0,

so that nπ,ε = o(1/ε), as required. ut

Theorem 4 implies that, if we have direct access to the prior distribution of h∗,
regardless of what that prior distribution π is, we can always construct a self-verifying
active learning algorithmAa that has a guarantee of E [ρ (Aa(ε,D, π), h∗)] ≤ ε and its
expected number of label requests is o(1/ε). This guarantee is not possible for prior-
independent (single-task) self-verifying active learning algorithms.

Additionally, when combined with Theorem 3, Theorem 4 implies that Aτ , with
this particular algorithm Aa as its subroutine, has lim supT→∞ E[ST (ε)]/T = o(1/ε).
Again, since there are known cases where there is no prior-independent self-verifying
active learning algorithm with sample complexity o(1/ε), this sometimes represents a
significant improvement over the results provable for learning the tasks independently
(i.e., without transfer).
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5.5 Dependence on D in the Learning Algorithm

The dependence on D in the algorithm described in the proof of Theorem 4 is fairly
weak, and we can eliminate any direct dependence on D by replacing ρ

(
ĥn, h

∗
)

by a

1−ε/2 confidence upper bound based onMε = Ω
(

1
ε2 log 1

ε

)
i.i.d. unlabeled examples

X ′1, X
′
2, . . . , X

′
Mε

independent from the examples used by the algorithm (e.g., set aside
in a pre-processing step, where the bound is calculated via Hoeffding’s inequality and
a union bound over the values of n that we check, of which there are at most O(1/ε)).
Then we simply increase the value of n (starting at some constant, such as 1) until

1
Mε

Mε∑
i=1

π
({
f ∈ C : f (X ′i) 6= ĥn (X ′i)

})
≤ ε/2.

The expected value of the smallest value of n for which this occurs is o(1/ε). Note that
this only requires access to the prior π, not the data distribution D (the budget-based
algorithm Ab of [Han09] has no direct dependence on D); if desired for computational
efficiency, this dependence may also be estimated by a 1− ε/4 confidence upper bound
based on Ω

(
1
ε2 log 1

ε

)
independent samples of h∗ values with distribution π, where for

each sample we simulate the execution of Ab(n) for that (simulated) target function in
order to obtain the returned classifier. In particular, note that no actual label requests
to the oracle are required during this process of estimating the appropriate label budget
nπ,ε, as all executions of Ab are simulated.

5.6 Inherent Dependence on π in the Sample Complexity

We have shown that for every prior π, the sample complexity is bounded by a o(1/ε)
function. One might wonder whether it is possible that the asymptotic dependence on
ε in the sample complexity can be prior-independent, while still being o(1/ε). That is,
we can ask whether there exists a (π-independent) function s(ε) = o(1/ε) such that,
for every π, there is a correct π-dependent algorithm A achieving a sample complex-
ity SC(A, ε,D, π) = O(s(ε)), possibly involving π-dependent constants. Certainly
in some cases, such as threshold classifiers, this is true. However, it seems this is not
generally the case, and in particular it fails to hold for the space of interval classifiers.

For instance, consider a prior π on the space C of interval classifiers, constructed as
follows. We are given an arbitrary monotonic g(ε) = o(1/ε); since g(ε) = o(1/ε),
there must exist (nonzero) functions q1(i) and q2(i) such that limi→∞ q1(i) = 0,
limi→∞ q2(i) = 0, and ∀i ∈ N, g(q1(i)/2i+1) ≤ q2(i) · 2i; furthermore, letting q(i) =
max{q1(i), q2(i)}, by monotonicity of g we also have ∀i ∈ N, g(q(i)/2i+1) ≤ q(i) ·2i,
and limi→∞ q(i) = 0. Then define a function p(i) with

∑
i∈N p(i) = 1 such that

p(i) ≥ q(i) for infinitely many i ∈ N; for instance, this can be done inductively as fol-
lows. Let α0 = 1/2; for each i ∈ N, if q(i) > αi−1, set p(i) = 0 and αi = αi−1;
otherwise, set p(i) = αi−1 and αi = αi−1/2. Finally, for each i ∈ N, and each
j ∈ {0, 1, . . . , 2i − 1}, define π

({
1
±
(j·2−i,(j+1)·2−i)

})
= p(i)/2i.

We let D be uniform on X = [0, 1]. Then for each i ∈ N s.t. p(i) ≥ q(i), there is a
p(i) probability the target interval has width 2−i, and given this any algorithm requires
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∝ 2i expected number of requests to determine which of these 2i intervals is the target,
failing which the error rate is at least 2−i. In particular, letting εi = p(i)/2i+1, any
correct algorithm has sample complexity at least∝ p(i)·2i for ε = εi. Noting p(i)·2i ≥
q(i) · 2i ≥ g(q(i)/2i+1) ≥ g(εi), this implies there exist arbitrarily small values of
ε > 0 for which the optimal sample complexity is at least ∝ g(ε), so that the sample
complexity is not o(g(ε)).

For any s(ε) = o(1/ε), there exists a monotonic g(ε) = o(1/ε) such that s(ε) =
o(g(ε)). Thus, constructing π as above for this g, we have that the sample complexity
is not o(g(ε)), and therefore not O(s(ε)). So at least for the space of interval classi-
fiers, the specific o(1/ε) asymptotic dependence on ε is inherently π-dependent. This
argument also illustrates that the o(1/ε) result in Theorem 4 is essentially the strongest
possible at this level of generality (i.e., without saying more about C, D, or π).

6 Conclusions

We have shown that when learning a sequence of i.i.d. target concepts from a known
VC class, with an unknown distribution from a known totally bounded family, transfer
learning can lead to amortized average sample complexity close to that achievable by
an algorithm with direct knowledge of the the targets’ distribution. Furthermore, for
the problem of active learning (with self-verification), we have shown that this latter
quantity is always o(1/ε), where ε is the desired expected error rate. This represents
an improvement in the asymptotic dependence on ε compared to the general results
provable for active learning without transfer.
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