

Solution Count for Multiset Unification with Trailing Multiset Variables

Iliano Cervesato iliano@itd.nrl.navy.mil

ITT Industries, Inc @ NRL - Washington DC

http://www.cs.stanford.edu/~iliano/

Outline

- Background
 - > Notation
 - > The problem
 - Motivations
- Solution Count
 - > Simple-Simple
 - > Simple-General
 - > General-General
- Further work

Background

Multisets

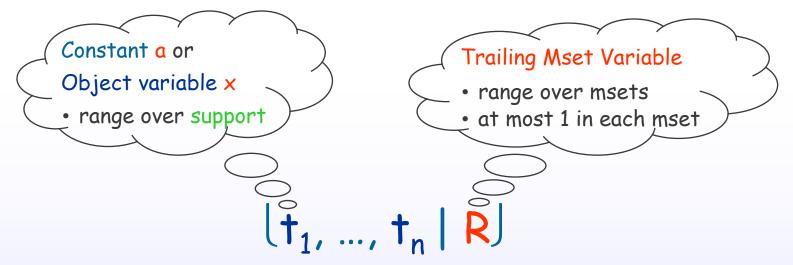
Set with repeated elements

$$M:S_{\circ} \rightarrow \mathbb{N}$$

- M(a): # occurrences

 of a in M
- > |M|: total # of elements in M
- Extensional notation: $[a_1, ..., a_n]$

Multisets with Variables



(Cf. Prolog's lists)

- Substitutions θ
 - > Map object variables to objects
 - > Map trailing variables to msets
 - > E.g.:

The Problem

- Equation: $[t_1, ..., t_n | R] = ?= [t'_1, ..., t'_{n'} | R']$
- Solution count

How many solutions are there, at most?

Motivations

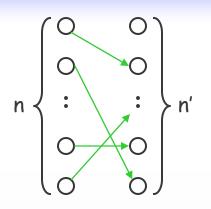
Verification of Security Protocols [Meadows, '01]

- Group Diffie-Hellman protocol
- > System of equations of the form
 - $(a^{x_1 x_2 \dots x_n \alpha}) \mod p = ?= (a^{y_1 y_2 \dots y_n \beta}) \mod p$
 - Base a, prime p are fixed
 - x_i, y_i are either
 - known values in N_p or
 - known to exist (occur in other equations)
 - α , β are an unknown product
- Essential aspects
 - Commutativity / associativity of ×
 - x_i, y_i are "atomic"
 - Only α , β range over products of unknown size
- \triangleright Represent as $\{x_1, x_2, ..., x_n \mid \alpha \} = \{y_1, y_2, ..., y_n \mid \beta \}$

Solution Count

Simple-Simple

$$[t_1, ..., t_n] = = [t_1, ..., t_n']$$

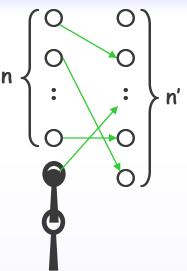


Map each node on the left with a node on the right

> 0 solutions

Simple-General

$$\lfloor t_1, ..., t_n \mid R \rfloor = = \lfloor t'_1, ..., t'_{n'} \rfloor$$



- Use R as an object var. factory till n=n'
- n > n'
 - > 0 solutions

> n! solutions

Example:
$$|c|R| = |a,b,c|$$

- Sol: [(a, b | R')/R]
- Computation:

$$\triangleright$$
 [a/X, b/Y] \approx [b/X, a/Y]

General-Simple

$$[t_1, ..., t_n] = [t_1, ..., t_n' | R']$$

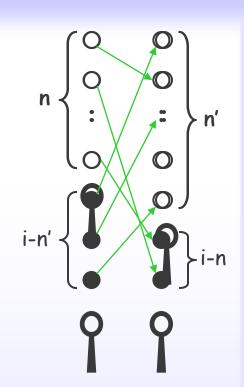
Dual

General-General

$$[t_1, ..., t_n \mid R] = [t'_1, ..., t'_{n'} \mid R']$$

- Pull new object var. out of R and R' to get same size msets
- What size?
 - > At least max(n,n')
 - > At most n+n'

$$\sum_{i=\max(n,n')}^{n+n'} \binom{i-n'}{n} \times \binom{i-n}{n'} \times (n+n'+i)! \quad \text{solutions}$$



Further Work

Conclusions

- Solution generation cost
 - $> O(2^n)$ [n = size of equation]
 - Possible solutions
 - Attempts in any case
 - > Generally done at each computation step
- This is a worst case scenario
- Comparison
 - \triangleright Free algebra: $O(n + \varepsilon)$
 - > λ-calculus: undecidable

Can we do better?

- In many cases, probably yes
 - > Indexing
 - > Smart data structures
 - > Lazy unification