

The Logical Meeting Point of Multiset Rewriting and Process Algebra

Iliano Cervesato

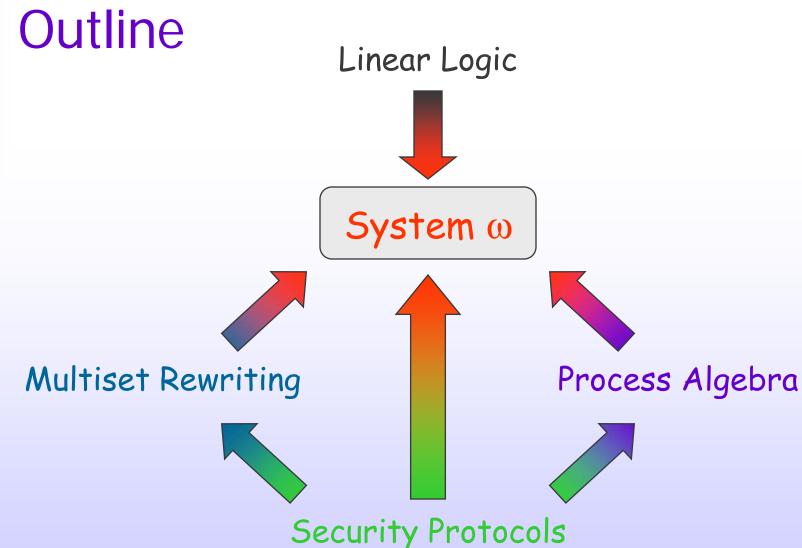
iliano@math.tulane.edu

ITT Industries, Inc -> Tulane University

http://theory.stanford.edu/~iliano

Motivations

- Security protocol specifications
 - Transition-based
 - Process-based
 - > Different languages and techniques
 - > Ad-hoc translations
- Attempt at a unified approach
 - > Rewriting re-interpretation of logic
 - Open derivations
 - Left rule semantics
 - > Foundation of multiset rewriting
 - > Bridge to process algebra
 - > Effective protocol specification language



http://theory.stanford.edu/~iliano/forthcoming.html

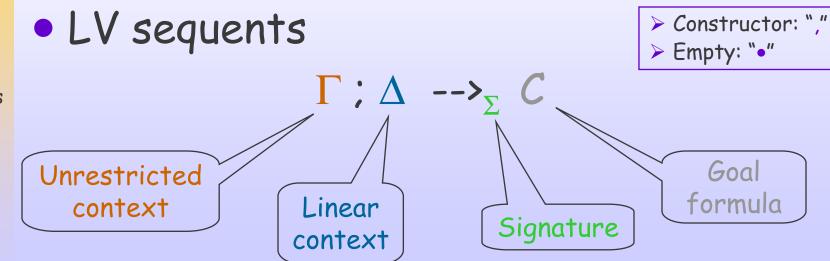
Linear Logic

Formulas

$$A, B ::= a \mid 1 \mid A \otimes B \mid A \longrightarrow o B \mid ! A$$

 $\mid T \mid A \& B \mid \forall x. A \mid \exists x. A$

- logic
- system ω
- rewriting
- processes
- security



- logic

system ωrewriting

processessecurity

Some LV Rules

Left rules Γ ; Δ , A, $B \longrightarrow_{\Sigma} C$ Γ ; Δ , $A \otimes B \longrightarrow_{\Sigma} C$ Γ ; $\Delta' \longrightarrow_{\Sigma} A$ Γ ; Δ , $B \longrightarrow_{\Sigma} C$ Γ ; Δ , Δ' , A—oB --> $_{\Sigma}$ C $\Sigma \mid - \uparrow \Gamma; \Delta, \lceil \uparrow / \times \rceil A \longrightarrow_{\Sigma} C$ Γ ; Δ , $\forall x.A \longrightarrow_{\Sigma} C$ Γ ; Δ , $A \longrightarrow_{\Sigma \times} C$ Γ ; Δ , $\exists x.A \longrightarrow_{\Sigma} C$ Γ , A; $\Delta -- \rightarrow_{\Sigma} C$ Γ ; Δ , $|A -->_{\Sigma} C$

Structural rules $\Gamma; A \longrightarrow_{\Sigma} A$ $\Gamma, A; \Delta, A \longrightarrow_{\Sigma} C$ $\Gamma, A; \Delta \longrightarrow_{\Sigma} C$

Cut rules

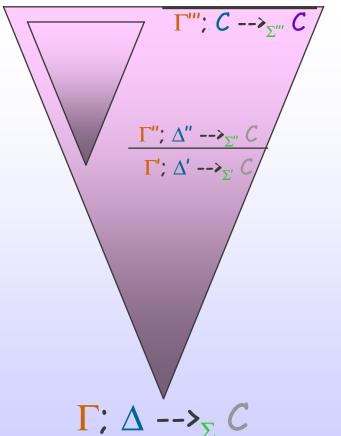
$$\begin{array}{c|cccc}
\Gamma; \Delta' & -- & \Gamma; \Delta, A & -- & C \\
\hline
\Gamma; \Delta, \Delta' & -- & C \\
\hline
\Gamma; \Delta, \Delta' & -- & C \\
\hline
\Gamma; \bullet & -- & C
\end{array}$$

$$\begin{array}{c|cccc}
\Gamma; \Delta & -- & C
\end{array}$$

$$\begin{array}{c|cccc}
\Gamma; \Delta & -- & C
\end{array}$$

Right rules ...

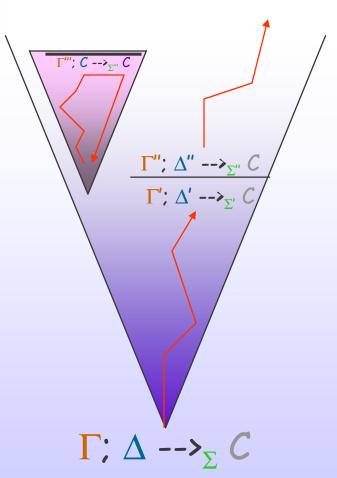
Logical Derivations



- Proof of C from Δ and Γ
 - > Emphasis on C
 - C is input
- Finite
 - > Closed
- Rules shown
 - > Major premise
 - Preserves C
 - > Minor premise
 - Starts subderivation

- logic
- system ω
- rewriting
- processes
- processes
- security

A Rewriting Re-Interpretation



- Transition
 - From conclusion
 - To major premise
 - \triangleright Emphasis on Γ , Δ and Σ
 - > C is output, at best
 - Does not change
- Possibly infinite
 - > Open
- Minor premise
 - > Auxiliary rewrite chain
 - Finite
 - > Topped with axiom

- system ω
- rewriting
- processes
- security

State and Transitions

States

$$\Sigma$$
 ; Γ ; Δ

- $\triangleright \Sigma$ is a list
- $\triangleright \Gamma$ and \triangle are commutative monoids
- > No C
 - Does not change

- system ω

- logic

- rewriting
- processes
- security
- Transitions

$$\Sigma$$
; Γ ; $\Delta \rightarrow \Sigma'$; Γ' ; Δ'

 \rightarrow * for reflexive and transitive closure

- > Constructor: ","
- ➤ Empty: "•"

Interpreting Unary Rules

$$\frac{\Gamma; \Delta, A, B \longrightarrow_{\Sigma} C}{\Gamma; \Delta, A \otimes B \longrightarrow_{\Sigma} C}$$

$$\Sigma$$
; Γ ; $(\Delta, A \otimes B) \rightarrow \Sigma$; Γ ; (Δ, A, B)

$$\frac{\left(\sum \left[-+\right] \Gamma; \Delta, \left[+/\times\right] A -\rightarrow_{\Sigma} C\right)}{\Gamma; \Delta, \forall \times. A -\rightarrow_{\Sigma} C}$$

$$\Sigma$$
; Γ ; $(\Delta, \forall x. A) \rightarrow \Sigma$; Γ ; $(\Delta, [t/x]A)$ (if $\Sigma | - t$)

- logic
- system
$$\omega$$
 Γ ; Δ , $A \longrightarrow_{\Sigma, \times} C$ Γ ; Δ , $\exists \times .A \longrightarrow_{\Sigma} C$

$$\Sigma$$
; Γ ; $(\Delta, \exists x. A) \rightarrow (\Sigma, x)$; Γ ; (Δ, A)

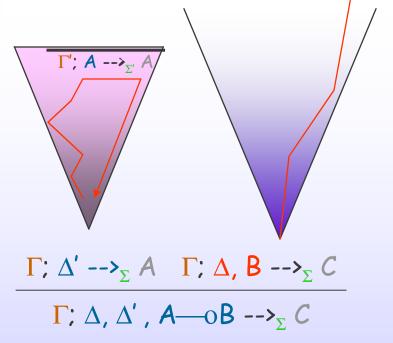
- security

$$\Gamma$$
, **A**; $\Delta \longrightarrow_{\Sigma} C$

$$\frac{\Gamma, A; \Delta \longrightarrow_{\Sigma} C}{\Gamma; \Delta, !A \longrightarrow_{\Sigma} C}$$

$$\Sigma$$
; Γ ; $(\Delta, !A) \rightarrow \Sigma$; (Γ, A) ; Δ

Binary Rules and Axiom



- Minor premise
 - > Auxiliary rewrite chain
- Top of tree
 - > Focus shifts to RHS
 - Axiom rule
 - > Observation

- logic
- system ω
- rewriting
- processes
- security

Observations

Observation states

$$\Sigma$$
 ; Δ

- \triangleright In \triangle , we identify
 - , with ⊗
 - with 1

Categorical semantics

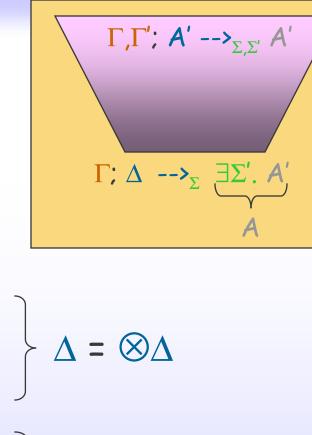
ightharpoonup Identified with $\exists x_1....\exists x_n. \Delta$

• For
$$\Sigma = X_1, ..., X_n$$

- system ω

- rewriting

- logic



• For
$$\Sigma = x_1, ..., x_n$$

De Bruijn's telescopes
$$\sum_{i=1}^{n} \Delta = \exists \Sigma_i \otimes \Delta$$

Observation transitions

$$\Sigma$$
; Γ ; $\Delta \rightarrow^* \Sigma'$; Δ'

Structural Equivalences

Monoidal laws

$$\triangleright A \otimes B = B \otimes A$$

$$\triangleright A \otimes 1 = A$$

$$ightharpoonup (A \otimes B) \otimes C = A \otimes (B \otimes C) \qquad
ightharpoonup \exists x. (\Delta, \Delta') = \Delta, \exists x. \Delta'$$

Mobility laws

$$ightharpoonup \exists x. \exists y. \Delta = \exists y. \exists x. \Delta$$

$$\Rightarrow \exists x. (\Delta, \Delta') = \Delta, \exists x. \Delta'$$

if $x \notin FV(\Delta)$

- logic
- system ω
- rewriting
- processes
- security
- Logical bi-equivalences
 - > Require limited right rules
- Express structure of context / binders
- Expand rewrite opportunities

Interpreting Binary Rules

$$\Gamma$$
; $A \longrightarrow_{\Sigma} A$

$$\Sigma$$
; Γ ; $\Delta \Rightarrow^* \Sigma$; Δ
 Σ ; Γ ; $\Delta \Rightarrow^* \Sigma''$; Δ''
if Σ ; Γ ; $\Delta \Rightarrow \Sigma'$; Γ' ; Δ'
and Σ' ; Γ' ; $\Delta' \Rightarrow^* \Sigma''$; Δ''

```
- logic
```

- system ω
- rewriting
- processes
- security

```
\frac{(\Gamma; \Delta' - \rightarrow_{\Sigma} A) \quad \Gamma; \Delta, B - \rightarrow_{\Sigma} C}{\Gamma; \Delta, \Delta', A - oB - \rightarrow_{\Sigma} C} \quad \Sigma; \Gamma; (\Delta, \Delta', A - oB) \rightarrow \Sigma; \Gamma; (\Delta, B)
(\text{if } \Sigma; \Gamma; \Delta' \rightarrow^* \Sigma; A)
```

$$\frac{\left[\Gamma; \Delta' -\rightarrow_{\Sigma} A\right] \; \Gamma; \Delta, A -\rightarrow_{\Sigma} C}{\Gamma; \Delta, \Delta' -\rightarrow_{\Sigma} C} \quad \Sigma; \; \Gamma; \Delta, \Delta' \rightarrow \Sigma; \; \Gamma; \left(A, \Delta\right)}{\left[\text{if } \Sigma; \; \Gamma; \Delta' \rightarrow^{*} \Sigma; \; A\right]}$$

Formal Correspondence

Soundness

```
If \Sigma : \Gamma : \Delta \rightarrow \Sigma, \Sigma' : \Delta'
then \Gamma : \Delta \longrightarrow_{\Sigma} \exists \Sigma' : \otimes \Delta'
```

- logic
- system ω
- rewriting
- processes
- security

- Completeness?
 - >No! We have only crippled right rules
 - •;•;a—ob,b—oc •;a—oc

System ω

- With cut, rule for —o can be simplified to Σ ; Γ ; (Δ , A, A —o B) $\rightarrow \Sigma$; Γ ; (Δ , B)
- Cut elimination holds
 - = in-lining of auxiliary rewrite chains
 - > But ...
 - Careful with extra signature symbols
 - Careful with extra persistent objects
- No rule for → needs a premise
 - > \rightarrow does not depend on \rightarrow *

- logic
- system ω
- rewriting
- processes
- security

Discussion

- Other connectives?
 - **>**⊕, 0, *⊗*, ⊥
 - Odd rewrite properties
 - >?, (_)¹
 - Not yet explored
- Other presentations?
- Other logics?
- Other forms of proof-as-computation?
 - > Dual of logic programming
 - > Similar to ACL [Kobayashi & Yonezawa, 93]
- Can logic benefit?

- logic
- system ω
- rewriting
- processes
- security

Type Theoretic Side

- Very close to CLF
 Concurrent Logical Framework
 - > Linear type theory with
 - Dependent function types: Π (LF)
 - Asynchronous connectives: —o, &, T
 (LLF)
 - Synchronous connectives: ⊗, 1, !, ∃
 - Monadic sandboxing
 - Concurrency equations
 - > Faithful encoding of true concurrency
 - Petri nets, MSR 2 specs, π -calculus, concurrent ML
- Details of relation still unclear

- logic
- system ω
- rewriting
- processes
- security

Multiset Rewriting

- Multiset: set with repetitions allowed
 - $\underline{a} ::= \bullet \mid a, \underline{a}$
 - > Commutative monoid
- Multiset rewriting (a.k.a. Petri nets)
 - > Rewriting within the monoid
 - > Fundamental model of distributed computing
 - Competitor: Process Algebras
 - > Basis for security protocol spec. languages
 - MSR family
 - ... several others
 - > Many extensions, more or less ad hoc

- logic
- system ω
- rewriting
- processes
- security

First-Order Multiset Rewriting

- Multiset elements are FO atomic formulas
- Rules have the form

$$\forall x_1...x_n. \underline{a}(x) \rightarrow \exists y_1...y_k. \underline{b}(x,y)$$

Semantics

$$\Sigma$$
; $\underline{a}(t)$, $\underline{s} \rightarrow_{R, (\underline{a}(x) \rightarrow \exists y. \underline{b}(x,y))} \Sigma,y$; $\underline{b}(t,y)$, \underline{s} if $\Sigma \mid -t$

- Several encodings into linear logic
 - > [Martí-Oliet, Meseguer, 91]

- logic
- system ω
- rewriting
- processes
- security

ω-Multisets vs. Multiset Rewriting

- MSR 1 is an instance of ω -multisets
 - Uses only \otimes , 1, \forall , \exists , and \longrightarrow o
 - o never nested, always persistent

$$\Sigma ; \underline{s} \rightarrow_{R} \Sigma' ; \underline{s}'$$
iff $\Sigma ; "R" ; "\underline{s}" \rightarrow^{*} \Sigma' ; "\underline{s}' "$

- logic
- system ω
- rewriting
- processes
- security
- Interpretation of MSR <u>as</u> linear logic
 - >Logical explanation of multiset rewriting
 - MSR is logic
 - > Guideline to design rewrite systems

ω-Rewriting

- logic
- system ω
- rewriting
- processes
- security

A, B	::=	a	atomic object
		1	empty
		$A \otimes B$	formation
		А — о В	rewrite
		T	no-op
		A & B	choice
		∀x. A	instantiation
		∃x. A	generation
		! A	replication

The Asynchronous π -Calculus

Another fundamental model of distributed computing

Language

$$P ::= 0 | P||Q | v x. P | !P | x(y).P | x$$

- Semantics
 - > Structural equivalence
 - Comm. monoidal congruence of || and 0
 - Binder mobility congruence of v
 - $v \times v \cdot v \cdot P \equiv v \cdot v \cdot v \cdot x \cdot P$ $0 \equiv v \times v \cdot 0$

 - $P \mid \mid v \times Q \equiv v \times (P \mid \mid Q)$ if $x \notin FN(P)$
 - ib ≡ ib || b
 - > Reaction law
 - \underline{x} <y> || x(z). P || Q => [y/z]P || Q

- logic
- system ω
- rewriting
- processes
- security

π -calculus in ω -Multisets

0 ⇔ 1

• ! ⇔!

 \bullet $|| \Leftrightarrow \otimes$

• x(y). $P \Leftrightarrow \forall y$. ch(x,y)—o "P"

v ⇔ ∃

• $x < y > \Leftrightarrow ch(x,y)$

- Reaction law
 - $\triangleright \Sigma$; Γ ; ch(x,y), $\forall z$. ch(x,z)—o P, $\Delta \rightarrow^2 \Sigma$; Γ ; [y/z]P, Δ
- Structural equivalence
 - \blacktriangleright Monoidal congr. of || and $0 \Leftrightarrow$ monoidal laws of \otimes and 1
 - \triangleright Mobility congr. of $v \Leftrightarrow$ mobility laws of \exists
 - \rightarrow $!P \equiv !P || P$
 - Only \Rightarrow in ω -multisets
 - Oversight in the π -calculus?

- logic
- system ω
- rewriting
- processes
- security

Properties

- If P = > * Qthen •; •; "P" $\rightarrow * \Sigma$; Γ ; Δ where "Q" = $\exists \Sigma$. $|\Gamma \otimes \Delta| \mod |A| = |A \otimes A|$
 - \triangleright Note: with $|P||P \rightarrow |P|$ as a transition
 - If P = > * Qthen •; •; "P" $\rightarrow * \Sigma$; Γ ; Δ where "Q" = $\exists \Sigma$. $!\Gamma \otimes \Delta$

- logic
- system ω
- rewriting
- processes
- security

ω-Multisets vs. Process Algebra

- Simple encoding of asynchronous π -calculus into ω -multisets
 - \triangleright Doesn't show that π -calculus is logic
 - \triangleright Uses only a fraction of ω -multiset syntax
 - > Inverse encoding?
 - As hard as going from multiset rewriting to π -calculus
- Other languages
 - > Join calculus
 - > Strand spaces
 - \triangleright To do: Synchronous π -calculus

- logic
- system ω
- rewriting
- processes
- security

I. Cervesato: The Logical Meeting Point of MSR and PA

MSR 3

- Instance of ω -multisets for cryptographic protocol specification
 - > Security-relevant signature
 - > Typing infrastructure
 - > Modules, equations, ...
- 3rd generation
 - > MSR 1: First-order multiset rewriting with 3
 - Undecidability of protocol analysis
 - ➤ MSR 2: MSR 1 + typing
 - Actual specification language
 - More theoretical results
 - Implementation underway

- logic
- system ω
- rewriting
- processes
- security

The Atomic Objects of MSR 3

Atomic terms

> Principals

> Keys

> Nonces

- > Other
 - Raw data, timestamp, ...

- processes

- system ω - rewriting

- security

- logic

Fully definable

Constructors

> Encryption

{_}_

> Pairing

(_,_)

- > Other
 - Signature, hash, MAC, ...

Predicates

> Network

net

> Memory

 M_A

> Intruder

> ...

Types

- Simple types
 - > A: princ
 - >n: nonce
 - > m : msg, ...

- Dependent types
 - >k:shK A B
 - ➤ K: pubK A

- logic

- system ω
- rewriting
- processes
- security

Fully definable

- Powerful abstraction mechanism
 - > At various user-definable level
 - Finely tagged messages
 - Untyped: msg only
- Simplify specification and reasoning
- Automated type checking

ubsortino

Example

Needham-Schroeder public-key protocol

- 1. $A \rightarrow B: \{n_A, A\}_{kB}$
- 2. $B \rightarrow A: \{n_A, n_B\}_{kA}$
- 3. $A \rightarrow B: \{n_B\}_{kB}$
- Can be expressed in several ways
 - > State-based
 - Explicit local state
 - As in MSR 2
 - ➤ Process-based: embedded →
 - Continuation-passing style
 - As in process algebra
 - > (Intermediate approaches)

- logic
- system ω
- rewriting
- processes
- security

State-Based

 $A \rightarrow B: \{n_A, A\}_{kB}$ $B \rightarrow A: \{n_A, n_B\}_{kA}$ $A \rightarrow B: \{n_R\}_{kR}$

MSR 2 spec.

 $\forall A$: princ.

 $\{\exists L: princ \times \Sigma B: princ.pubK B \times nonce \rightarrow mset.\}$

```
\forall B: princ. \forall k_B: pubK B.
```

 $\rightarrow \exists n_A$: nonce.

net ($\{n_A, A\}_{kB}$), L (A, B, k_B, n_A)

```
\forall B: princ. \forall k_B: pubK B.
```

 $\forall k_a$: pubK A. $\forall k_a$ ': prvK k_a .

 $\forall n_A$: nonce. $\forall n_B$: nonce.

net $(\{n_A, n_B\}_{kA}), L(A, B, k_B, n_A)$

 \rightarrow net ($\{n_R\}_{kR}$)

Interpretation of L

- > Rule invocation
 - Implementation detail
 - Control flow
- > Local state of role
 - Explicit view
 - Important for DOS

- logic

- system w

- rewriting

- processes

- security

Process-Based

 $A \rightarrow B: \{n_A, A\}_{kB}$ $B \rightarrow A: \{n_A, n_B\}_{kA}$ $A \rightarrow B: \{n_B\}_{kB}$

 $\forall A$:princ.

 $\forall B$: princ. $\forall k_B$: pubK B.

• $\rightarrow \exists n_A$: nonce.

net $(\{n_A, A\}_{kB}),$

 $(\forall k_A: pubK A. \forall k_A': prvK k_A. \forall n_B: nonce.$

net $({n_A, n_B}_{kA}) \rightarrow \text{net } ({n_B}_{kB}))$

- logic
- system ω
- rewriting
- processes
- security
- Succinct
- Continuation-passing style
 - > Rule asserts what to do next
 - > Lexical control flow

- State is implicit
 - > Abstract

NSPK in Process Algebra

```
A \rightarrow B: \{n_A, A\}_{kB}

B \rightarrow A: \{n_A, n_B\}_{kA}

A \rightarrow B: \{n_B\}_{kB}
```

∀A:princ.

 $\forall B$: princ. $\forall k_B$: pubK B.

 $\forall k_A$: pubK A. $\forall k_A$ ': prvK k_A . $\forall n_B$: nonce.

 vn_A : nonce.

net $(\{n_A, A\}_{kB})$.

 $\frac{\text{net}}{\text{net}} < \{n_A, n_B\}_{kA} > .$ $\text{net} (\{n_B\}_{kB}) . 0$

Same structure!

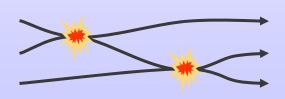
- > Not a coincidence
- MSR 3 very close to Process Algebra
 - ω -multiset encodings of π -calculus and Join Calculus
- MSR 3 is promising middle-ground for relating
 - > State-based
 - Process-based
 representations of a problem

- logic
- system ω
- rewriting
- processes
- security

State-Based vs. Process-Based

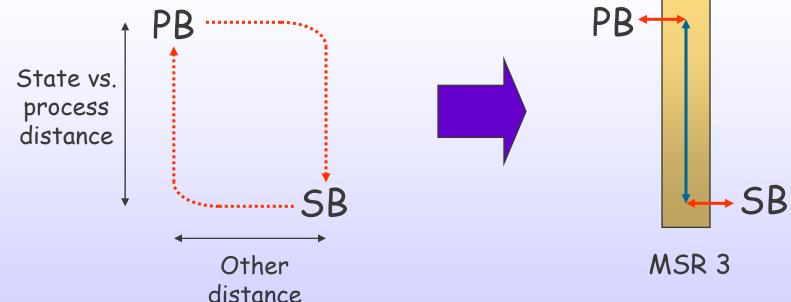
- State-based languages
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson's approach, ...
 - State transition semantics

- logic
- system ω
- rewriting
- processes
- security
- Process-based languages
 - Process Algebra
 - Strand spaces, spi-calculus, ...
 - Independent communicating threads



MSR 3 Bridges the Gap

- Difficult to go from one to the other
 - Different paradigms



State \leftrightarrow Process translation done once and for all in MSR 3

- logic
- system ω
- rewriting
- processes
- processe
- security

Conclusions

ω-multisets

- > Logical foundation of multiset rewriting
- > Relationship with process algebras
- > Unified logical view
 - Better understanding of where we are
 - Hint about where to go next

MSR 3.0

- > Language for security protocol specification
- > Succinct representations
 - Simpler specifications
 - Economy of reasoning
- > Bridge between
 - State-based representation
 - Process-based representation