

Logical Foundations of Multiset Rewriting

Iliano Cervesato

iliano@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC

http://www.cs.stanford.edu/~iliano

Outline

- Motivations
- Propositional multiset rewriting
 - > Interpretation in linear logic
 - > Interpretation as linear logic
- Logical extension
 - > First-order multiset rewriting
 - > ω-multisets
- Applications
 - > Specification of security protocols
 - > A bridge to process algebra

Motivations

Multiset rewriting (a.k.a. Petri nets)

- > Fundamental model of distributed computing
 - Competitor: Process Algebras
- > Basis for security protocol spec. languages
 - MSR family
 - ... several others
- > Many extensions, more or less ad hoc
- Shallow relations to logic
 - > Simple encodings
 - > No deep insight

This Work

- Show that multiset rewriting has deeper relations to logic
 - >Interpretation as logic, rather than
 - >Interpretation in logic
- Explain and rationalize extensions
- Better specification languages
- Bridge to process algebra

Multiset Rewriting

Multiset: set with repetitions allowed

$$\underline{a} ::= \bullet \mid a, \underline{a}$$

- > Commutative monoid
 - "," is operation
 - "•" is identity("," is commutative, associative, with "•" as unit)

• Rewrite rule:

$$\underline{a} \rightarrow \underline{b}$$

> Monoidal rewriting

Semantics of Multiset Rewriting

Base step:

$$\underline{s} \rightarrow_{\mathsf{R}} \underline{s}'$$

$$\underline{a}, \underline{s} \rightarrow_{R, (\underline{a} \rightarrow \underline{b})} \underline{b}, \underline{s}$$

Reachability

$$\underline{s_0} \rightarrow^*_{R} \underline{s_n}$$

- ➤ Iteration of →
- > R&T closure of →

Infinity

$$\underline{s}_{\underline{0}} \rightarrow^*_{\mathsf{R}}$$

➤ Limit of _ →*R _

Linear Logic

Logic with formulas as resources

Formulas

$$A ::= a \mid A \otimes A \mid 1 \mid A \longrightarrow o A \mid ...$$

Judgment

(DILL / LV sequent)

$$\Gamma$$
; $\Delta \longrightarrow A$

Unrestricted context

- subject to exchange,
 weakening and contraction
- behaves like context in traditional logic

Linear context

 subject to exchange only

Some Rules

$$\Gamma$$
; Δ , $A \otimes B \longrightarrow C$

$$\Gamma$$
; Δ , $A \otimes B \longrightarrow C$

$$\Gamma; \Delta \longrightarrow C$$

$$\Gamma; \Delta, 1 \longrightarrow C$$

$$\Gamma$$
; $\Delta_1 \dashrightarrow A$ Γ ; $\Delta_2 \dashrightarrow B$ Γ ; Δ_1 , $\Delta_2 \dashrightarrow A \otimes B$

$$\Gamma$$
; $\Delta_1 \dashrightarrow A$ Γ ; Δ_2 , $B \dashrightarrow C$

$$\Gamma$$
; Δ_1 , Δ_2 , $A \longrightarrow OB \longrightarrow C$

$$\Gamma; \Delta, A \longrightarrow B$$

$$\Gamma; \Delta \longrightarrow A \longrightarrow OB$$

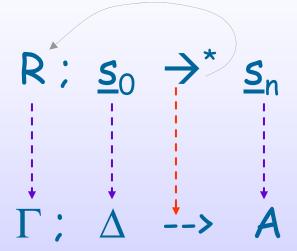
$$\Gamma, A; \Delta, A \longrightarrow C$$

$$\Gamma, A; \Delta \longrightarrow C$$

$$\Gamma: A \longrightarrow A$$

LL Interpretation of MSR

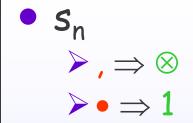
- Several possibilities
 - > "Conjunctive" encoding
- Objective



> Reachability mapped to derivability

Encoding

$$\rightarrow \Rightarrow \longrightarrow 0$$



$$\triangleright$$
 , \Rightarrow ,

$$\triangleright \bullet \Rightarrow \bullet$$

... or like s_n

Encoding

$$\triangleright$$
 [a \rightarrow b] = [a]—o [b]

- - \triangleright [[a]] = a
 - > [[•]]
 - > [[a, b]] = [[a]], [[b]] or [a, b]

Well defined because

- $(\Delta s, ","," \bullet")$ is a commutative monoid
- $(As, \otimes, 1)_{/\rightarrow}$ is a commutative monoid

or [•]

- > [a]
- **≻**[•] = 1
- $\triangleright [\underline{a}, \underline{b}] = [\underline{a}] \otimes [\underline{b}]$

Property

$$s_0 \rightarrow^*_R s_n$$
 iff $[R] : [[s_0]] \longrightarrow [s_n]$

> For appropriate inverse encodings

$$\Gamma$$
; $A \longrightarrow B$ iff $[A] \rightarrow^*_{[\Gamma]}$ $[B]$

Encoding of MSR in LL

End of the Story?

Yes- NO!

- From interpretation of MSR <u>in</u> logic to interpretation of MSR <u>as</u> logic
- Multiset rewriting semantics = left sequent rules
- First, a few rough edges to smooth

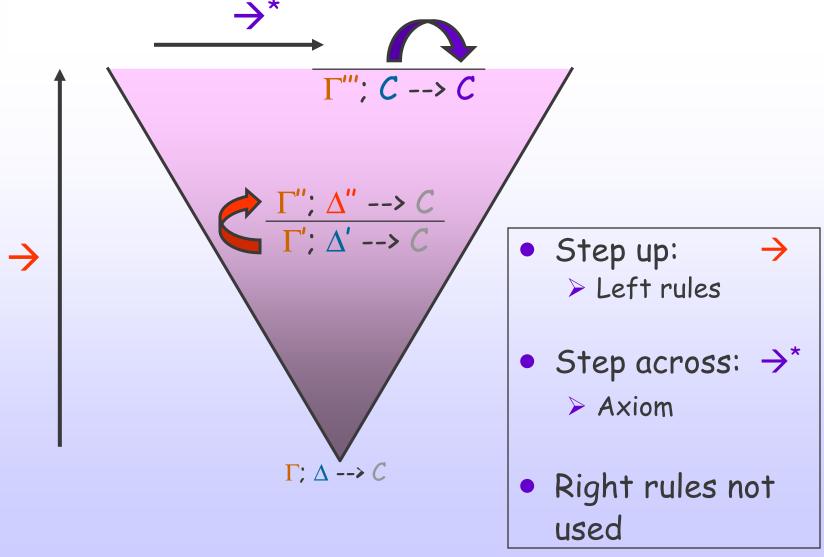
Context vs. Formulas (1)

- Either go against tradition of logic
 - $(As, \otimes, 1)$ is a congruence w.r.t. derivability
 - > Identify contexts and formulas
 - Whenever formula is expected
 - Turn , into ⊗
 - Turn into 1
 - Consistent with categorical semantics of logic
 - Has to be done with extreme care

Context vs. Formulas (2)

- ... or go against tradition of rewriting
 - > Distinguish states and multisets
 - state constructors: , and •
 - mset constructors: \otimes and 1
 - > Additional transition rules
 - \underline{s} , $a \otimes b \rightarrow_R \underline{s}$, a, b
 - \underline{s} , $1 \rightarrow_{R} \underline{s}$
- This research is compatible with both
 - > We will lean towards (2)

Rewriting View of Derivations



Rewriting Semantics as Left Rules

$\underline{s} \rightarrow^*_{R} \underline{s}$	Γ; A> A
\underline{s} , $a \otimes b \rightarrow_{R} \underline{s}$, a , b	$\frac{\Gamma; \Delta, A, B \longrightarrow C}{\Gamma; \Delta, A \otimes B \longrightarrow C}$
\underline{s} , $1 \rightarrow_{R} \underline{s}$	$\frac{\Gamma; \Delta \dashrightarrow C}{\Gamma; \Delta, 1 \dashrightarrow C}$
\underline{s} , $a \rightarrow_{R, (a \rightarrow b)} \underline{s}$, b	$\frac{\Gamma, A \longrightarrow oB; \Delta, B \longrightarrow C}{\Gamma, A \longrightarrow oB; A, \Delta \longrightarrow C}$
Not quite, but not too far off	

 Γ ; $\Delta_1 \longrightarrow A$ Γ ; Δ_2 , $B \longrightarrow C$

 Γ ; Δ_1 , Δ_2 , A—oB --> C

·Admissible rule

 Γ , A; Δ , $A \longrightarrow C$

 Γ , A; $\Delta \longrightarrow C$

Questions

- Can we make the correspondence precise?
 - > Yes
- Does it extend to other connectives?
 - > Yes ... to a large extent
- What are the implications?
 - > Logical explanation of multiset rewriting
 - Not just interpretation
 - Now MSR is logic
 - > Guideline to design rewrite systems
 - Can we do this with other logics?
 - > Derivations do not need to be finite
 - Goal is important only for reachability

First Proof of Concept

- First-Order Multiset Rewriting (MSR 1.0)
 - > Multiset elements are FO atomic formulas
 - > Rules have the form

$$\forall x_1...x_n. \underline{a}(x) \rightarrow \exists y_1...y_k. \underline{b}(x,y)$$

➤ Semantics (→*)

$$\Sigma$$
; $\underline{a}(t)$, $\underline{s} \rightarrow_{R, (\underline{a}(x) \rightarrow \exists y. \ \underline{b}(x,y))} \Sigma,y$; $\underline{b}(t,y)$, \underline{s} if $\Sigma \mid -t$

> Encoding is simple extension of prop. case

Semantics from Left Rules

Updated judgment forms

$$\triangleright \Sigma ; \underline{s} \rightarrow_{\mathsf{R}} \Sigma ; \underline{s}$$

 $\triangleright \Gamma ; \Delta \longrightarrow_{\Sigma} C$

• Semantics (\rightarrow^{**})

• • •	•••
Σ ; \underline{s} , $\forall x.a \rightarrow_R \Sigma$; \underline{s} , $[t/x]a$ if $\Sigma -t$	$\frac{\Gamma; \Delta, [t/x]A \rightarrow_{\Sigma} C \Sigma \mid -t}{\Gamma; \Delta, \forall x.A \rightarrow_{\Sigma} C}$
Σ ; \underline{s} , $\exists x.a \rightarrow_R \Sigma, x$; \underline{s} , a	$\frac{\Gamma; \Delta, A \dashrightarrow_{\Sigma, \times} C}{\Gamma; \Delta, \exists x. A \dashrightarrow_{\Sigma} C}$

Comparing Semantics

Lemma

- If $\underline{a} \rightarrow^*_R (\underline{b})$, then $\underline{a} \rightarrow^{**}_R (\underline{b})$
- And viceversa
 - > Careful with non-observable steps

Second Proof of Concept

- Minimal ω-multiset rewriting
 - > Language

$$\omega ::= \alpha \mid \bullet \mid \omega, \omega \mid \omega \rightarrow \omega$$

- No distinction between atoms and formulas
- > Semantics (v.1)

•
$$\underline{s}$$
, $(a \rightarrow b)$, $a \rightarrow \underline{s}$, b

> Check against left rule for —o

$$\Delta_1 \longrightarrow A \quad \Delta_2, B \longrightarrow C$$

$$\Delta_1, \Delta_2, A \longrightarrow OB \longrightarrow C$$

> Semantics (v.2)

•
$$\underline{s}_1, \underline{s}_2, (a \rightarrow b) \rightarrow \underline{s}_2, b$$
 if $\underline{s}_1 \rightarrow^* a$

Step depends on reachability!

Comparing Semantics

Lemma

$$\underline{a} \rightarrow^*_{v,1} (\underline{b}) \text{ iff } \underline{a} \rightarrow^*_{v,2} (\underline{b})$$

- (⇒) Trivial by reflexivity
- (⇐) Recursively turn every step
 - \underline{s}_1 , \underline{s}_2 , $(a \rightarrow b) \rightarrow_{v.2} \underline{s}_2$, b if $\underline{s}_1 \rightarrow^*_{v.2} a$ into
 - \underline{s}_1 , \underline{s}_2 , $(a \rightarrow b) \rightarrow^*_{v,1} a$, \underline{s}_2 , $(a \rightarrow b) \rightarrow_{v,1} \underline{s}_2$, b

However

- > Do all extensions support transformation?
 - Use v.1 when adequate, v.2 other times
- > Seems to be an instance of cut elimination
 - (see later)

Adding Persistent Multisets

Language

$$\omega ::= \alpha \mid \bullet \mid \omega, \omega \mid \omega \rightarrow \omega \mid \forall x. \omega \mid \exists x. \omega \mid ! \omega$$

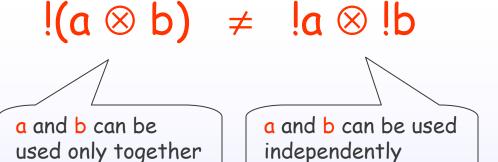
Judgment

$$\triangleright \Sigma$$
; p; $\underline{s} \rightarrow \Sigma$; p; \underline{s}

Semantics from left rules

• • •	•••
Σ ; p; \underline{s} , !a $\rightarrow \Sigma$; p, a; \underline{s}	$\frac{\Gamma, A; \Delta>_{\Sigma} C}{\Gamma; \Delta, !A>_{\Sigma} C}$
Σ ; p, a; $\underline{s} \rightarrow \Sigma$; p, a; \underline{s} , a	$\frac{\Gamma, A; \Delta, A \longrightarrow_{\Sigma} C}{\Gamma, A; \Delta \longrightarrow_{\Sigma} C}$

A Word of Caution



- ullet \otimes corresponds to "," in Δ , but not in Γ
 - > Distinguish ⊗ and "," in ωMSR
 - > Consider only sublanguages
 - >Use different symbol ",," in p
 - p is multiset of multisets, not multiset

Additive Conjunction and Unit

Language

$$\omega ::= ... \mid \omega \& \omega \mid \mathsf{T}$$

Semantics from left rules

•••	•••
Σ ; p; \underline{s} , a_1 & $a_2 \rightarrow \Sigma$; p; \underline{s} , a_i Non-deterministic choice • Usually written +	$\frac{\Gamma; \Delta, A_{i} \sum_{\Sigma} C}{\Gamma; \Delta, A_{1} \& A_{2} \sum_{\Sigma} C}$
(no T-transition)	(no left rule)
Absence of any choice	

Additive Disjunction and Unit

Language

$$\omega ::= ... \mid \omega \oplus \omega \mid 0$$

Semantics from left rules

$$\Sigma$$
; p; \underline{s} , $0 \rightarrow * \underline{s}_n$

- >Inconsistency?
- > Forced reachability?

 Γ ; Δ , $0 \longrightarrow_{\Sigma} C$

The case of ⊕

$$\Gamma$$
; Δ , $A \longrightarrow_{\Sigma} C$ Γ ; Δ , $B \longrightarrow_{\Sigma} C$

$$\Gamma$$
; Δ , $A \oplus B \longrightarrow_{\Sigma} C$

$$\Sigma; p; \underline{s}, \alpha \oplus b \rightarrow \begin{cases} \Sigma; p; \underline{s}, \alpha \rightarrow^* (c) \\ & \downarrow \downarrow \downarrow \\ \Sigma; p; \underline{s}, b \rightarrow^* (c) \end{cases}$$

- The 2 computations shall be synchronized
 - > If one "ends", the other "ends" in the same way
 - Breakpoint, or final state
 - > If one diverges, the other shall diverge
- Flavor of
 - > Confluence
 - > Bisimulation?

Multiplicative Disjunction and Unit

Language:

$$\omega ::= ... \quad \omega \otimes \omega \mid \bot$$

Semantics from left rules

$$\Sigma ; p ; \bot \rightarrow^* \bullet$$

$$\Gamma ; \bot \dashrightarrow_{\Sigma} \bullet$$

- >Abort?
- > Deadlock?

The Case of &

$$\Gamma$$
; Δ_1 , $A \longrightarrow_{\Sigma} \Psi_1$ Γ ; Δ_2 , $B \longrightarrow_{\Sigma} \Psi_2$

$$\Gamma$$
; Δ_1 , Δ_2 , $A \otimes B \longrightarrow_{\Sigma} \Psi_1$, Ψ_2

$$\Sigma$$
; p; \underline{s}_1 , \underline{s}_2 , a $\&$ b \Rightarrow $\left\{ \begin{array}{c} \Sigma$; p; \underline{s}_1 , a $\\ \Sigma$; p; \underline{s}_2 , b

 Start of completely independent computations involving a and b

The Axiom Rule

 Γ ; $A \longrightarrow_{\Sigma} A$

$$\Sigma$$
; p; a \rightarrow^* a

- > Makes a reachability statement
- \rightarrow Turns \rightarrow into \rightarrow * a

The Cut Rules

$$\Gamma; \Delta_{1} \dashrightarrow_{\Sigma} A \qquad \Gamma; \Delta_{2}, A \dashrightarrow_{\Sigma} C$$

$$\Gamma; \Delta_{1}, \Delta_{2} \dashrightarrow_{\Sigma} C$$

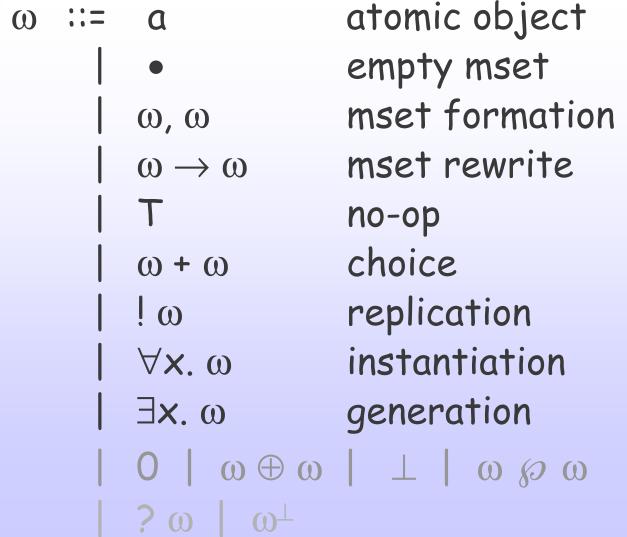
$$\Gamma; \bullet \dashrightarrow_{\Sigma} A \qquad \Gamma, A; \Delta \dashrightarrow_{\Sigma} C$$

$$\Gamma; \Delta \dashrightarrow_{\Sigma} C$$

$$\Sigma$$
; p; \underline{s}_1 , $\underline{s}_2 \rightarrow \Sigma$; p; a, \underline{s}_2 if Σ ; p; $\underline{s}_2 \rightarrow^*$ a Σ ; p; $\underline{s} \rightarrow \Sigma$; p, a; \underline{s} if Σ ; p; $\underline{s} \rightarrow^*$ a

- > Compositionality laws
- Does cut elimination hold?
- Note
 - > Not as deep as in Logic
 - No right rules

Summary: ω-Multisets



Summary: ω-Multisets Semantics

```
\Sigma; p; (s, 1)
                                                           \rightarrow \Sigma; p; s
         \Sigma : \underline{p} : (\underline{s}, a \otimes b) \rightarrow \Sigma : \underline{p} : (\underline{s}, a, b)
\rightarrow \Sigma; \underline{p}; (\underline{s}, a, a \rightarrow b) \rightarrow \Sigma; \underline{p}; (\underline{s}, b)
                                                         (no rule)
&
            \Sigma; \underline{p}; (\underline{s}, \underline{a}_1 & \underline{a}_2)
                                                                \rightarrow \Sigma; p; (s, a<sub>i</sub>)
            \Sigma; p; (s, !a)
                                                               \rightarrow \Sigma; (p, a); \underline{s}
           \Sigma; \underline{p}; (\underline{s}, \forall x. \alpha)
\forall
                                                               \rightarrow \Sigma; p; (s, [t/x]a)
\exists \Sigma ; \underline{p} ; (\underline{s}, \exists x. a)
                                                               \rightarrow (\Sigma, x); p; (\underline{s}, a)
                                                                \rightarrow \Sigma; (p, a); (s, a)
            \Sigma; (p, a); \underline{s}
```


Applications to Security

- MSR: family of security protocol specification languages
 - >MSR 1: first-order multiset rewriting
 - >MSR 2: MSR 1 + dependent types
 - >MSR 3: ω-multiset (+ dependent types)
- Unified logical view
 - > Better understanding of where we are
 - >Hint about where to go next

NSPK in MSR 2.0

```
A \rightarrow B: \{N_A, A\}_{KB}
B \rightarrow A: \{N_A, N_B\}_{KA}
A \rightarrow B: \{N_B\}_{KB}
```

```
\forall A: princ.
\{\exists L: princ \times \Sigma B: princ.pubK B \times nonce \rightarrow mset.\}
  \forall B: princ. \forall K_B: pubK B.
  \rightarrow \exists N_A: nonce.
      net (\{N_A, A\}_{KR}), L (A, B, K<sub>R</sub>, N<sub>A</sub>)
  \forall B: princ. \forall K_B: pubK B.
  \forall K_A: pubK A. \forall K_A': prvK K_A.
  \forall N_A: nonce. \forall N_B: nonce.
      net (\{N_A, N_B\}_{KA}), L (A, B, KB, NA)
  \rightarrow net (\{N_R\}_{KR})
```


NSPK in MSR 3

```
A \rightarrow B: \{N_A, A\}_{KB}
B \rightarrow A: \{N_A, N_B\}_{KA}
A \rightarrow B: \{N_B\}_{KB}
```

```
\forall A:princ.

\forall B: princ. \forall K<sub>B</sub>: pubK B.

\rightarrow \exists N<sub>A</sub>: nonce.

net ({N<sub>A</sub>, A}<sub>KB</sub>),

(\forall K<sub>A</sub>: pubK A. \forall K<sub>A</sub>': prvK K<sub>A</sub>. \forall N<sub>B</sub>: nonce.

net ({N<sub>A</sub>, N<sub>B</sub>}<sub>KA</sub>)

\rightarrow net ({N<sub>B</sub>}<sub>KR</sub>))
```


MSR 3.0

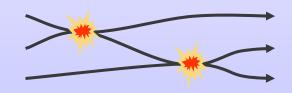
- Succinct representations
 - > Simpler specifications
 - > Economy of reasoning
- Logical foundations
- Bridge between
 - > State-based representation
 - > Process-based representations
 - Logical foundation of process algebra?

MSR vs. Process Algebra

MSR

- > NRL Prot. Analyzer, CAPSL/CIL, Paulson's approach, ... and Process Algebra
- > Strand spaces, spi-calculus, other process-based lang. operate in very different ways:
- State transitions

Contact evolution

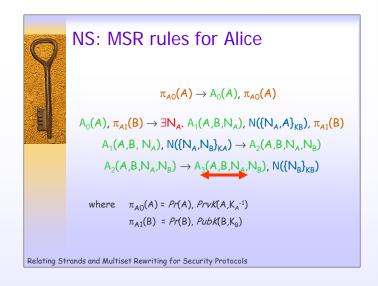


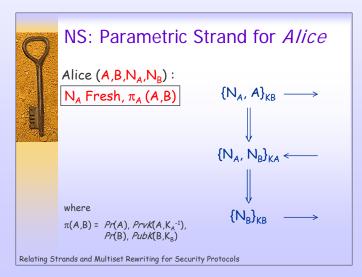
Representing Protocols

• MSR 2
$$\begin{bmatrix} n \rightarrow a_1, n' \\ n'' a_1 \rightarrow a_2, n''' \\ \dots \end{bmatrix}$$

a_i pass control/data to the next rule

- PA n.n'.n".n".0
 - Control is implicit





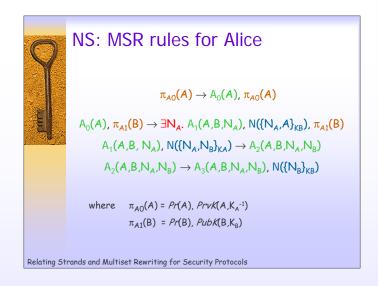
Representing Protocols

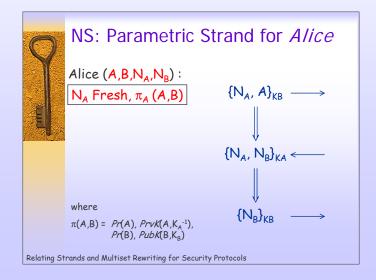
• MSR 2
$$\begin{bmatrix} n \rightarrow \alpha_1, n' \\ n'' \alpha_1 \rightarrow \alpha_2, n''' \\ \dots \end{bmatrix}$$

a_i pass control/data to the next rule

• MSR 3 $n \rightarrow n'$,

Control is implicit

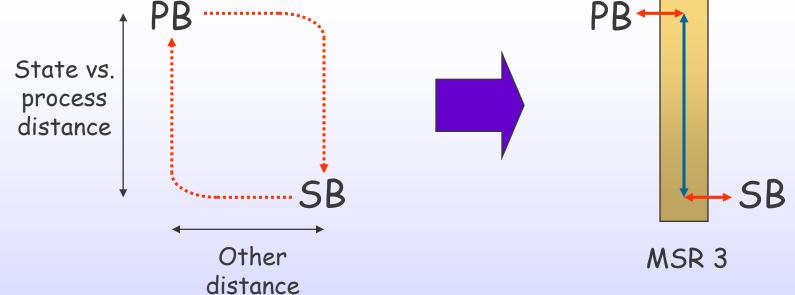




ω-Multisets and Process Algebra

- Similarities
 - \triangleright ω -Multisets behave like very general process algebra
 - π-calculus
 - Join calculus
- Differences
 - > PA's structural equivalences
- Towards a logical foundation of Process Algebra?

Encoding Distributed Algorithms



State ↔ Process translation done once and forall

Conclusions

- Interpretation of multiset rewriting guided by left rules of linear logic
- Definition of ω-multisets
- Hint at application in security protocol specification
 - > MSR 3.0
- Possible relationship with process algebras