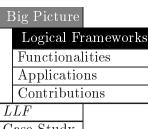
Reasoning about State in a Linear Logical Framework

Iliano Cervesato

Department of Computer Science Stanford University

Contents

- Logical frameworks
- \bullet LLF
- Case study
- Conclusions



Logical Frameworks

Case Study Conclusions

> A Logical Framework is a formalism designed to represent and reason about deductive systems

formal system

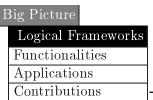
programming languages, logics, real-time systems, ...

meta-representation

represent language constructs, model their semantics, encode properties and their proofs

effectiveness

immediacy and executability



Examples

*LLF*Case Study

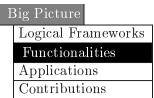
Conclusions

Logics

- Prolog
- $\lambda Prolog$ [Miller, Nadathur'88], Isabelle [Paulson'93]
- Forum [Miller'94]

Type theories

- *LF* [Harper, Honsell, Plotkin'93]
- Coq [Dowek&al'93], Lego [Pollack'94]
- ALF [Nordström'93], NuPrl [Constable&al'86]
- *LLF* [Cervesato, Pfenning'96]



Functionalities

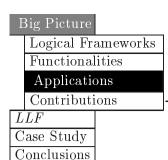
LLF
Case Study
Conclusions

- Specification

 Formalize (abstract) syntax, operational semantics, and meta-theory
- Analysis
 Support proof-checking, often theorem-proving
- Experimentation

 Permit (limited) execution

Identify and reify fundamental principles of classes of deductive systems



Applications

(LF biased) [Harper&al.'93]

• Past

- Formalization of declarative programming languages and simple logics
- Representation of simple properties

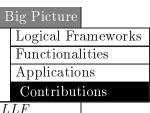
• Present

- State [Cervesato, Pfenning'96; Cervesato&al.'99]
- Program verification and certification [Necula'97; Paulson'96]

• Future

Assisted design of new and better logics, programming languages, ...

- Meta-theorem provers [Schürmann, Pfenning'98]
- Other recurring notions [Polakow,Pfenning'99]



LLF, a Logical Framework for State

 $\frac{LLF}{\text{Case Study}}$ Conclusions

• Design

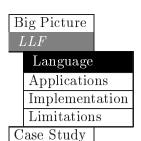
- Extend a logical framework with linear logic constructs
- Extend linear logic to reason about state

• Implementation

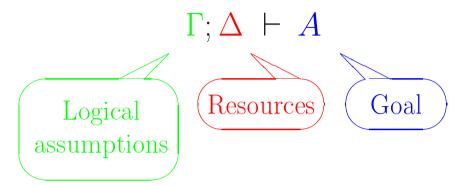
- Automated support for *LLF* specifications
- Higher-order linear logic programming language

• Applications

- Reasoning about state
- Specification of state-based problems
- Everything that could be done in LF



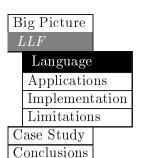
Linear Logic in Brief



Accessing a resource consumes it

Main resource operators

- $A \otimes B =$ "A and B simultaneously"
- A & B = "A and B alternatively"
- $\bullet \top$ = "resource sink"
- $A \multimap B = "B \text{ assuming } A \text{ as a resource}"$
- $A \rightarrow B$ = "B assuming A as a logical hypothesis"



Meta-Language

• Syntax

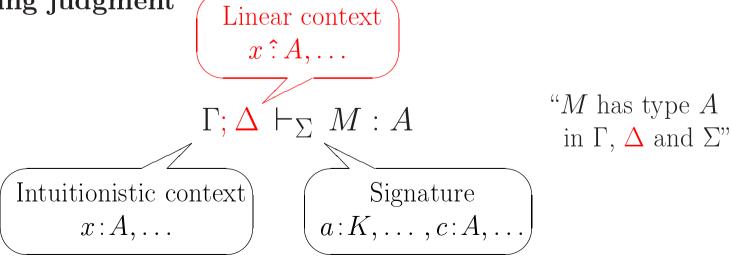
$$Kinds \qquad K ::= \mathsf{type} \mid \Pi x : A. \, K$$

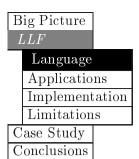
$$Type \ families \qquad P ::= a \mid P \, M$$

$$Types \qquad A ::= P \mid \Pi x : A. \, B \\ \mid A \multimap B \mid A \& B \mid \top$$

$$Objects \qquad M ::= x \mid c \mid \lambda x : A. \, M \mid M \, N \\ \mid \hat{\lambda} x : A. \, M \mid M \, \hat{N} \mid \langle M, N \rangle \mid \mathsf{FST} \, M \mid \mathsf{SND} \, M \mid \langle \rangle$$

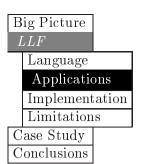
• Typing judgment





Main Properties

- Decidable type checking
 - \hookrightarrow Automated support
- Unique canonical forms
 - \hookrightarrow Easy proofs of adequacy
 - \hookrightarrow Logic programming
- Derivations represented by terms
 - \hookrightarrow Meta-reasoning
 - \hookrightarrow Program transformation
- Conservative over *LF* [Harper&al.'93]
 - \hookrightarrow Inherits work done on LF



Applications

Reasoning

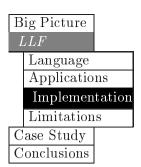
- Imperative programming languages
- Substructural logics
- Security protocols

Specification / Simulation

- Hardware architectures
- Real-time systems
- Planning
- Games

+ LF achievements

- Functional languages, logic programming languages
- Logics
- Category theory, ...



Implementation

Computer-aided specification

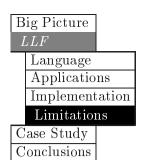
- Type-checking
- Type reconstruction
- Innovations: spine calculus, dependent explicit substitutions

Execution

- Higher-order linear constraint logic programming language
- Innovations: higher-order unification, context-management, compilation

Forthcoming ...

- Meta-theorem prover
- Innovations: reasoning about LLF specs, linear explicit substitutions



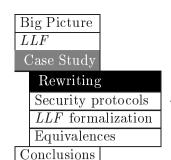
Limitations

With state

- Indirect representation of transition systems
- Resource modularity

Beyond state

- Extensionality (negation, extensional quantification)
- Ordering (priority, stacks, ...)



Multiset Rewriting

Multiset

$$\ddot{X} = X_1, \ldots, X_n$$

Multiset rewrite rule

$$\ddot{X} \longrightarrow \ddot{Y}$$

Computation

$$X, Z \xrightarrow{X \to Y} Y, Z$$

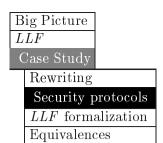
Parametric multisets

$$X_i(\vec{t})$$

 \hookrightarrow computation relies on unification

Generative multiset rule $\ddot{X}(\vec{t}) \longrightarrow \neg \vec{x}. \ddot{Y}(\vec{t}, \vec{x})$

$$\ddot{X}(\vec{t}) \longrightarrow \hookrightarrow \vec{x}. \ \ddot{Y}(\vec{t}, \vec{x})$$



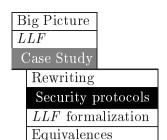
Message Exchange

$$A \longrightarrow B : M$$

- Local state transitions
- Interaction with the network

$$A_i(\vec{a}), \ldots \longrightarrow A_{i'}(\vec{a}), N^+(M)$$

$$B_j(\vec{b}), N^-(M) \longrightarrow B_{j'}(\vec{b}), \dots$$



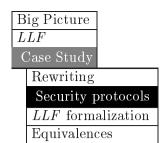
Brand-New Nonces

• Use counter

$$A_i, \operatorname{currNonce}(n) \longrightarrow A_j, \operatorname{currNonce}(n+1), N^+(\dots n\dots)$$

- \hookrightarrow simplicistic
- \hookrightarrow complicates reasoning
- Use abstraction

 \hookrightarrow not completely realistic



Cryptography

- Transcribe the encryption/decryption algorithms
 - \hookrightarrow painful (but feasible)
 - → complicates reasoning about protocol issues
 - \hookrightarrow does not allow reasoning about cryptographic issues
- Use abstraction
 - \hookrightarrow constructor: $\{M\}_k$
 - \hookrightarrow destructor: pattern matching
 - → unrealistic but often acceptable

Big Picture

LLF

Case Study

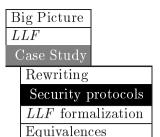
Rewriting

Security protocols LLF formalization

Network

Equivalences
Conclusions

$$N^+(M) \longrightarrow N^-(M)$$



Intruder

• Doley-Yao model

• More powerful models are possible

Equivalences
Conclusions

Example

Needham-Schroeder key exchange (simplified)

$$A \longrightarrow B : \{\langle n_a, A \rangle\}_{k_b}$$

$$B \longrightarrow A : \{\langle n_a, n_b, B \rangle\}_{k_a}$$

$$A \longrightarrow B : \{n_b\}_{k_b}$$

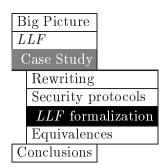
. . .

$$A_{0} \longrightarrow \oplus n_{a}. N^{+}(\{\langle n_{a}, A \rangle\}_{k_{b}}), A_{1}(B, n_{a})$$

$$B_{0}, N^{-}(\{\langle n_{a}, A \rangle\}_{k_{b}}) \longrightarrow \oplus n_{b}. N^{+}(\{\langle n_{a}, n_{b}, B \rangle\}_{k_{a}}), B_{1}(A, n, n_{b})$$

$$A_{1}(B, n_{a}), N^{-}(\{\langle n_{a}, n_{a}, B \rangle\}_{k_{a}}) \longrightarrow N^{+}(\{n\}_{k_{b}}), A_{2}(B, n_{a}, n)$$

$$B_{1}(A, n, n_{b}), N^{-}(\{n_{b}\}_{k_{b}}) \longrightarrow B_{2}(A, n, n_{b}), \dots$$



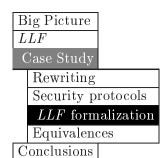
Linear Logic Strikes Back

Generative multiset rewriting is linear logic undercover

$$\ddot{X}(\vec{x}) \longrightarrow \varphi \vec{y}. \ddot{Y}(\vec{x}, \vec{y})$$

$$\forall \vec{x}. \bigotimes \ddot{X}(\vec{x}) \multimap \exists \vec{y}. \bigotimes \ddot{Y}(\vec{x}, \vec{y})$$

The translation preserves the semantics



Coding in *LLF*

No \otimes , no \exists !?

$$\forall \vec{x}. \ X_1(\vec{x}) \otimes \ldots \otimes X_m(\vec{x}) \multimap \exists \vec{y}. \ Y_1(\vec{x}, \vec{y}) \otimes \ldots \otimes Y_m(\vec{x}, \vec{y})$$

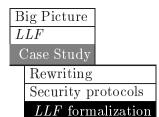
$$\forall \vec{x}. \log \circ - X_1(\vec{x})$$

$$\cdots$$

$$\circ - X_n(\vec{x})$$

$$\circ - \forall \vec{y}. (Y_1(\vec{x}, \vec{y}) \multimap$$

$$Y_m(\vec{x}, \vec{y}) \multimap \log$$

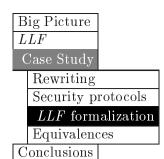


Equivalences
Conclusions

Needham-Schroeder

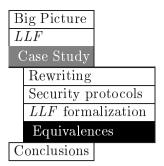
```
nsA1 : loop
        o- annKey B
        o-a0
        o- ({Na:atm}
                 a1 B (@ Na)
              -o toNet (crypt ((@ Na) * (@ (k2m A))) B)
              -o loop).
nsB1 : loop
        o - b0
        o-fromNet (crypt (X * (@ (k2m A))) B)
        o- annKey A
        o- ( {Nb:atm} b1 A X (@ Nb)
              -o toNet (crypt (X * (@ Nb) * (@ (k2m B)) A)
              -o loop).
```

Needham-Schroeder



Uses of LLF

- Simulation
 - \hookrightarrow trivial
- Attack detection
 - \hookrightarrow tricky
- Reasoning
 - \hookrightarrow feasible



No Net

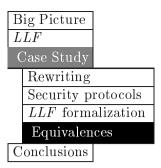
Theorem

For every run \mathcal{R} there is a run \mathcal{R}' that

- does not use the network rule
- exchanges the same messages in the same order
- has the same or bigger intruder knowledge

Proof: Replace network uses with interception + resend by the intruder

Yields huge savings during protocol analysis



LLF Formalization

- ullet This proof can been represented in LLF
- It is executable and implements the transformation
- Same technique has been applied to more involved problems

Summary

LLF,

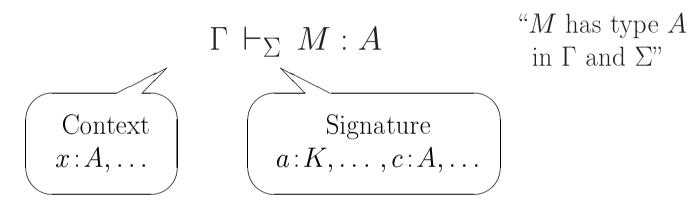
- combines the meta-reasoning power of logical frameworks with the ability of handling state of linear logic
- ullet conservative extension of the logical framework LF
- implemented as a linear logic programming language
- used for the representation of
 - imperative programming languages
 - substructural and modal logics
 - state transition systems, ...

Future Directions

- \bullet Experimentation with LLF: more state-based systems, new limitations
- Complete *LLF*: efficiency, environment
- Meta-theorem prover: get help proving things
- Beyond *LLF*: direct support for transition systems, modularity, negation, ...

An Example: LF (Meta-Language)

Typing judgment



An Example: *LF* (Representation Methodology—Cont'd)

$$x_i: au_i,\ldots$$
 T
 $\Omega \vdash e: au$
 M

$$\lceil \Omega \rceil \vdash_{\Sigma} M$$
 : has_type $\lceil e \rceil \lceil \tau \rceil$

where for each $x_i : \tau_i$ in Ω ,

$$\lceil x_i : \tau_i \rceil = x_i : exp, \ t_i : has_type \ x_i \lceil \tau_i \rceil$$

- context operations reduce to meta-level primitives
- meta-theoretic properties are inherited from the meta-language

Problem!

$$\begin{array}{cccc}
\hline
c_i = v_i, \dots \\
& \mathcal{E} \\
& S \triangleright K \vdash e \hookrightarrow a
\end{array} = M$$

$$\lceil S \rceil \vdash_{\Sigma} M : \operatorname{eval} \lceil K \rceil \lceil e \rceil \lceil a \rceil$$

This does not work!

- \bullet S is subject to destructive operations (e.g. assignment)
- traditional log. frameworks do not allow removing assumptions from the context

A way out ...

$$\cdot \vdash_{\Sigma} M : \mathtt{eval} \, \ulcorner S \urcorner \, \ulcorner K \urcorner \, \ulcorner e \urcorner \, \ulcorner a \urcorner$$

- ... but, we must encode explicitly
 - context operations (lookup, insertion, ...)
 - context-related properties (weakening, exchange, ...)