Proof-Theoretic Foundations of Indexing in Logic Programming

Iliano Cervesato iliano@cmu.edu

Carnegie Mellon University

Supported by grant NPRP 4-341-1-059, Usable automated data inference for end-users

Vienna, Austria, July 2014

The Two Worlds of Computational Logic

- Logical world
 - Universal language
 - Abstract specifications
 - Simple and natural reasoning
- Computational world
 - Return answers fast!
 - Pragmatics
 - Logical status?

- Forward/Backward proof search focusing
- Goal/Clause selection ordered logic
- Unification (contextual) reasoning about equality
- WAM-style compilation currying

- Forward/Backward proof search focusing
- Goal/Clause selection ordered logic
- Unification (contextual) reasoning about equality
- WAM-style compilation currying

What about indexing?

- Forward/Backward proof search focusing
- Goal/Clause selection ordered logic
- Unification (contextual) reasoning about equality
- WAM-style compilation currying

What about indexing?

Cuts context lookup from O(n) to O(1) — exponential savings!

- Forward/Backward proof search focusing
- Goal/Clause selection ordered logic
- Unification (contextual) reasoning about equality
- WAM-style compilation currying

What about indexing?

Cuts context lookup from O(n) to O(1) — exponential savings!

- Backward logic programming: select relevant clauses
- Forward logic programming: identify rules affected by new facts
- Theorem proving: retrieve relevant lemmas

This Work

Provide a logical justification for indexing

...in the context of backward logic programming

Punch line: Polarization + Linearity

Roadmap:

- Indexing over predicate symbols
- Indexing over first-order terms
- Beyond Horn clauses

Horn clauses

Backward Proof Search for Horn Clauses

```
Atoms: a^- ::= p^-(\overline{t}) — negative Goals: G ::= a^- \mid \top \mid G_1 \wedge G_2 Clauses: D ::= G \supset a^- \mid \forall x. D Programs: \Gamma ::= \cdot \mid \Gamma, D
```

Case study: the usual append program

```
\forall I. \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \forall x, I_1, I_2, I_3. \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3)))
```

In Prolog:

Backward Proof Search for Horn Clauses

$$\frac{\Gamma \longrightarrow G}{\Gamma, G \supset a^{-} \longrightarrow a^{-}} \xrightarrow{\supset_{L}} \frac{\vdash t \quad \Gamma, [t/x]D \longrightarrow a^{-}}{\Gamma, \forall x. D \longrightarrow a^{-}} \forall_{L}}{\Gamma, \forall x. D \longrightarrow a^{-}}$$

Outline

- Indexing over Predicates
- 2 Indexing over Terms
- Beyond Horn Clauses
- 4 Conclusions

$$rac{\Gamma,D,\overline{D}\longrightarrow p^-(ec{t}\,)}{\Gamma,D\longrightarrow oxedsymbol{p}^-(ec{t}\,)}$$
 atm_R

$$\frac{\Gamma, D, D \longrightarrow \rho^{-}(\vec{t})}{\Gamma, D \longrightarrow \boxed{\rho^{-}(\vec{t})}} \text{ atm}_{\mathbb{R}} \qquad \frac{\vdash \ t \ \Gamma, \boxed{[t/x]D} \longrightarrow \rho^{-}(\vec{t})}{\Gamma, \boxed{\forall x. D} \longrightarrow \rho^{-}(\vec{t})}$$

$$\frac{\Gamma, D, D \longrightarrow p^{-}(\vec{t})}{\Gamma, D \longrightarrow p^{-}(\vec{t})} \text{ atm}_{R} \qquad \frac{\vdash t \quad \Gamma, [t/x]D \longrightarrow p^{-}(\vec{t})}{\Gamma, \forall x. D \longrightarrow p^{-}(\vec{t})} \qquad \frac{\Gamma \longrightarrow G}{\Gamma, G \supset p^{-}(\vec{t}) \longrightarrow p^{-}(\vec{t})}$$

Clause D is selected long before a match is established

$$\frac{\Gamma, D, D \longrightarrow p^{-}(\vec{t})}{\Gamma, D \longrightarrow p^{-}(\vec{t})} \text{ atm}_{R} \qquad \frac{\vdash t \quad \Gamma, [t/x]D \longrightarrow p^{-}(\vec{t})}{\Gamma, \forall x. D \longrightarrow p^{-}(\vec{t})} \forall_{L} \qquad \frac{\Gamma \longrightarrow G}{\Gamma, G \supset p^{-}(\vec{t}) \longrightarrow p^{-}(\vec{t})}$$

Clause D is selected long before a match is established

What we want:

$$rac{\Gamma, D_{m p}, oxedsymbol{D_{m p}} \longrightarrow m{p}^{ ext{-}}(ec{t}\,)}{\Gamma, D_{m p} \longrightarrow oxedsymbol{p}^{ ext{-}}(ec{t}\,)}$$
 atm $_{
m R}'$

$$\frac{\Gamma, D, D \longrightarrow p^{-}(\vec{t})}{\Gamma, D \longrightarrow p^{-}(\vec{t})} \text{ atm}_{R} \qquad \frac{\vdash t \quad \Gamma, [t/x]D \longrightarrow p^{-}(\vec{t})}{\Gamma, \forall x. D \longrightarrow p^{-}(\vec{t})} \forall_{L} \qquad \frac{\Gamma \longrightarrow G}{\Gamma, G \supset p^{-}(\vec{t}) \longrightarrow p^{-}(\vec{t})}$$

Clause D is selected long before a match is established

What we want:

$$rac{\Gamma, D_p, D_p}{\Gamma, D_p \longrightarrow p^-(ec{t}\,)}$$
 atm'_R

What is the logical status of D_p ?

Internalizing Indexing

An old idea:

- Associate an index atom i_p with each predicate p^-
- Guard each clause D for p^- with i_p : $i_p \supset D$
- Release i_p to start search for $p^-(\vec{t})$: $i_p \supset p^-(\vec{t})$

But ...

Internalizing Indexing

An old idea:

- Associate an index atom i_p with each predicate p^-
- Guard each clause D for p^- with i_p : $i_p \supset D$
- Release i_p to start search for $p^-(\vec{t})$: $i_p \supset p^-(\vec{t})$

But ...

Checking a guard must succeed immediately

- Make i_p into a positive atom p^+
 - (convenient separation of name spaces)

$$\frac{}{\Gamma;\,p^+\longrightarrow \boxed{p^+}} \mathsf{Init}_{\mathsf{R}}$$

Internalizing Indexing

An old idea:

- Associate an index atom i_p with each predicate p^-
- Guard each clause D for p^- with i_p : $i_p \supset D$
- Release i_p to start search for $p^-(\vec{t})$: $i_p \supset p^-(\vec{t})$

But ...

Checking a guard must succeed immediately

- Make i_p into a positive atom p^+
 - (convenient separation of name spaces)

$$\frac{}{\Gamma;\,p^+\longrightarrow \boxed{p^+}}\mathsf{Init}_\mathsf{R}$$

Used guards must not linger

Make p⁺ linear

Indexing append

Clauses

$$\forall I.$$
 $\top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I)$ $\forall x, I_1, I_2, I_3. \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3))$

Goals

```
app^{-}(c(m, nil), c(n, c(o, nil)), c(m, c(n, c(o, nil))))
(?- append([m],[n,o],[m,n,o]) in Prolog)
```

```
app^+ \rightarrow app^-(c(m, nil), c(n, c(o, nil)), c(m, c(n, c(o, nil))))
```

Approach

Transform programs into a focused linear program with negative and positive atoms

• Goals: $\lceil G \rceil$ Clauses: $\lceil D \rceil$

Programs: $\Gamma\Gamma$

Target logic:

Head formulas: $H := p^+ - a^-$

Goal formulas: $\underline{G} ::= H \mid \mathbf{1} \mid G_1 \otimes G_2$

Program formulas: $\underline{D} ::= \underline{G} \supset a^- \mid \forall x. \underline{D}$

Programs: $\underline{\Gamma} ::= \cdot | \underline{\Gamma}, p^+ \longrightarrow \underline{D}$

Active indices: $\Delta ::= \cdot \mid p^+$

Backward Proof Search for Indexed Horn Clauses

$$\frac{ \underline{\Gamma}; \cdot \longrightarrow \underline{G_1} \quad \underline{\Gamma}; \cdot \longrightarrow \underline{G_2} }{ \underline{\Gamma}; \cdot \longrightarrow \underline{G_1} \otimes \underline{G_2} } \otimes_{\mathsf{R}}$$

$$\frac{ \underline{\Gamma}; \cdot \longrightarrow \underline{G_1} \otimes \underline{G_2} }{ \underline{\Gamma}; \cdot \longrightarrow \underline{G_1} \otimes \underline{G_2} }$$

$$\frac{ \underline{\Gamma}, p^+ \multimap \underline{D}; q^+, p^+ \multimap \underline{D} \longrightarrow a^-}{\underline{\Gamma}, p^+ \multimap \underline{D}; q^+ \longrightarrow \underline{a^-}}$$
 atm_R

$$\frac{\underline{\Gamma}; \cdot \longrightarrow \underline{G}}{\underline{\Gamma}; \cdot, \underline{G} \supset a^{-} \longrightarrow a^{-}} \xrightarrow{\Box_{L}} \frac{\vdash t \quad \underline{\Gamma}; \cdot, \underline{[t/x]}\underline{D} \longrightarrow a^{-}}{\underline{\Gamma}; \cdot, \underline{V}x. \,\underline{D} \longrightarrow a^{-}} \xrightarrow{\forall_{L}} \begin{cases} \widehat{\Box}; \cdot, \underline{G} \supset a^{-} \longrightarrow a^{-} \end{cases}$$

Backward Proof Search for Indexed Horn Clauses

$$\frac{\underline{\Gamma}; p^{+} \longrightarrow a^{-}}{\underline{\Gamma}; \cdot \longrightarrow p^{+} \multimap a^{-}} \multimap_{R}$$

$$\frac{\underline{\Gamma};\, p^+ \longrightarrow \boxed{p^+}}{\underline{\Gamma};\, p^+ \longrightarrow \boxed{p^+}} \frac{\underline{\Gamma};\, \underline{D} \longrightarrow a^-}{\underline{\Gamma};\, q^+,\, p^+ \multimap \underline{D} \longrightarrow a^-} \longrightarrow_{\mathbb{Q}}$$

Does it Work?

Does it Work?

Lemma (Completeness)

- If $\Gamma \longrightarrow G$, then $\Gamma \Gamma \gamma$; $\cdot \longrightarrow \Gamma G \gamma$
- If Γ , $D \longrightarrow a^-$, then $\Gamma \Gamma^-$; \cdot , $\Gamma D^- \longrightarrow a^-$

Lemma (Soundness)

- If $\Gamma \Gamma : \cdot \longrightarrow \Gamma G$, then $\Gamma \longrightarrow G$
- If $\lceil \Gamma \rceil$; \cdot , $\lceil D \rceil \rceil \longrightarrow a^-$, then Γ , $D \longrightarrow a^-$

Does it Work?

Lemma (Completeness)

- If $\Gamma \longrightarrow G$, then $\Gamma \Gamma \gamma$; $\cdot \longrightarrow \Gamma G \gamma$
- If Γ , $D \longrightarrow a^-$, then $\Gamma \Gamma^{\neg}$; \cdot , $\Gamma D^{\neg \neg} \longrightarrow a^-$

Lemma (Soundness)

- If $\lceil \Gamma \rceil$; $\cdot \longrightarrow \lceil G \rceil$, then $\Gamma \longrightarrow \lceil G \rceil$
- If $\lceil \Gamma \rceil$; \cdot , $\lceil D \rceil \rceil \longrightarrow a^-$, then Γ , $D \longrightarrow a^-$

Proof.

By simultaneous induction

$$\underbrace{\Gamma', p^+ \multimap \underline{D}}_{\Gamma}; \cdot \longrightarrow
\underbrace{p^+ \multimap p^-(\overrightarrow{t})}_{\Gamma}$$

$$\frac{\underline{\Gamma}; p^{+} \longrightarrow \boxed{p^{-}(\vec{t})}}{\underline{\underline{\Gamma}', p^{+} \multimap \underline{D}}; \cdot \longrightarrow \boxed{p^{+} \multimap p^{-}(\vec{t})}} \multimap_{R}$$

$$\frac{\underline{\Gamma}; p^{+}, \underline{p^{+}} - \circ \underline{D}}{\underline{\Gamma}; p^{+} \longrightarrow p^{-}(\overrightarrow{t})} \xrightarrow{\operatorname{atm}_{R}} \underline{\Gamma}; p^{+} \longrightarrow p^{-}(\overrightarrow{t})}{\underline{\Gamma}; p^{+} - \circ \underline{D}; \cdot \longrightarrow p^{+} - \circ p^{-}(\overrightarrow{t})} \xrightarrow{-\circ_{R}}$$

$$\frac{\underline{\Gamma}; \rho^{+} \longrightarrow \rho^{+}}{\underline{\Gamma}; \rho^{+} \longrightarrow \underline{D}} \xrightarrow{\Gamma}; \cdot, \underline{D} \longrightarrow \rho^{-}(\overrightarrow{t}) \xrightarrow{-\circ_{L}}$$

$$\underline{\underline{\Gamma}; \rho^{+}, \rho^{+} \longrightarrow \underline{D}} \longrightarrow \rho^{-}(\overrightarrow{t})$$

$$\underline{\Gamma}; \rho^{+} \longrightarrow \rho^{-}(\overrightarrow{t})$$

$$\underline{\Gamma}; \rho^{+} \longrightarrow \rho^{-}(\overrightarrow{t})$$

$$\underline{\Gamma}; \rho^{+} \longrightarrow \underline{D}; \cdot \longrightarrow \rho^{-}(\overrightarrow{t})$$

$$\underline{\Gamma}; \rho^{+} \longrightarrow \underline{D}; \cdot \longrightarrow \rho^{-}(\overrightarrow{t})$$

A Macro-Rule for Indexed Clause Selection

$$\underline{\underline{\Gamma}; \cdot, \underline{D} \longrightarrow p^{-}(\vec{t})}$$

$$\underline{\underline{\Gamma}', p^{+} \multimap \underline{D}; \cdot \longrightarrow p^{+} \multimap p^{-}(\vec{t})}$$

A Macro-Rule for Indexed Clause Selection

Outline

- Indexing over Predicates
- 2 Indexing over Terms
- Beyond Horn Clauses
- 4 Conclusions

First-Order Indexing

Take information about predicate arguments into account

$$\forall I. \qquad \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \\ \forall x, I_1, I_2, I_3. \, \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3))$$

For each predicate, fix

- position
 - l_1 , l_2 or l_3
 - ...or maybe a combination
- depth

(somebody else makes the decision)

(Prolog indexes l_1 , always)

(1 in Prolog)

First-Order Indexing

- Associate an indexing constant to each function symbol
 - $IC(p^-)$: the set of indexing constants in indexing position of p^-
- Parametrize p⁺ with indexing constant of term in the head

$$\bullet \ldots \supset p^{\scriptscriptstyle -}(\ldots, {\color{red} c(\vec{t}\,)}, \ldots) \quad \leadsto \quad p^{\scriptscriptstyle +}(c) \multimap \ldots \supset p^{\scriptscriptstyle -}(\ldots, {\color{red} c(\vec{t}\,)}, \ldots)$$

Use quantifier when term in head contains variable

• ...
$$\supset p^{-}(\ldots, x, \ldots) \longrightarrow \forall i. p^{+}(i) \multimap \ldots \supset p^{-}(\ldots, x, \ldots)$$

Indexing app (I_1, I_2, I_3)

```
\forall I. \qquad \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \\ \forall x, I_1, I_2, I_3. \, \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3)) \end{aligned} \qquad \mathrm{IC}(\mathsf{app}^{-}) = \{\mathsf{nil}, \mathsf{c}\}
```

Each clause head starts with a function symbol in indexing position

Indexing app (l_1, l_2, l_3)

Each clause head starts with a function symbol in indexing position

$$\begin{array}{cccc} \mathsf{app}^+(\mathsf{nil}) & & \forall I. & \mathbf{1} \supset \mathsf{app}^-(\mathsf{nil}, I, I) \\ \mathsf{app}^+(\mathsf{c}) & \multimap & \forall x, I_1, I_2, I_3. \, \lceil \mathsf{app}^-(I_1, I_2, I_3) \rceil \supset \\ & & \mathsf{app}^-(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3)) \end{array}$$

$$\forall I. \qquad \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \\ \forall x, I_1, I_2, I_3. \, \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3)) \end{aligned} \qquad \mathrm{IC}(\mathsf{app}^{-}) = \{\mathsf{nil}, \mathsf{c}\}$$

Each clause head starts with a function symbol in indexing position

The body has a variable in indexing position: we must be prepared for any constant in $IC(app^-)$:

$$\forall I. \qquad \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \\ \forall x, I_1, I_2, I_3. \, \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3)) \end{aligned} \qquad \mathrm{IC}(\mathsf{app}^{-}) = \{\mathsf{nil}, \mathsf{c}\}$$

Each clause head starts with a function symbol in indexing position

$$\begin{array}{cccc} \mathsf{app^+(nil)} & & \forall I. & \mathbf{1} \supset \mathsf{app^-(nil}, I, I) \\ \mathsf{app^+(c)} & & \forall x, I_1, I_2, I_3. \, \lceil \mathsf{app^-(I_1, I_2, I_3)} \rceil \supset \\ & & \mathsf{app^-(c(x, I_1), I_2, c(x, I_3))} \end{array}$$

The body has a variable in indexing position: we must be prepared for any constant in $IC(app^-)$: $\lceil app^-(I_1, I_2, I_3) \rceil =$

$$(l_1 = nil \otimes (app^+(nil) \multimap app^-(l_1, l_2, l_3))$$

 $\oplus (\exists y, z. \ l_1 = c(y, z) \otimes (app^+(c) \multimap app^-(l_1, l_2, l_3)))$

There are no function symbols to index on!

We cannot do better than indexing on the predicate symbol

We get our first encoding

```
\forall I. \qquad \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \\ \forall x, I_1, I_2, I_3. \, \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3))  IC(app<sup>-</sup>) = {c}
```

First clause has a variable in indexing position

$$\forall I. \qquad \top \supset \mathsf{app}^{-}(\mathsf{nil}, I, I) \\ \forall x, I_1, I_2, I_3. \, \mathsf{app}^{-}(I_1, I_2, I_3) \supset \mathsf{app}^{-}(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3))$$
 IC(app⁻) = {c}

First clause has a variable in indexing position

$$\forall i. \ \mathsf{app}^+(i) \multimap \ \forall I. \ \mathsf{1} \supset \mathsf{app}^-(\mathsf{nil}, I, I)$$

 $\mathsf{app}^+(\mathsf{c}) \multimap \forall x, I_1, I_2, I_3. \lceil \mathsf{app}^-(I_1, I_2, I_3) \rceil \supset$
 $\mathsf{app}^-(\mathsf{c}(x, I_1), I_2, \mathsf{c}(x, I_3))$

Does it Work?

- Sound and complete
- Yields indexing macro-rule

Outline

- Indexing over Predicates
- 2 Indexing over Terms
- Beyond Horn Clauses
- 4 Conclusions

Hereditary Harrop Formulas

Minimal presentation

Formulas:
$$A ::= a^- \mid A_1 \supset A_2 \mid \forall x. A$$

Programs:
$$\Gamma ::= \cdot \mid \Gamma, A$$

Direct adaptation of technique for Horn clauses

Conjunctive presentation

Formulas:
$$A ::= a^- \mid A_1 \supset A_2 \mid \forall x. A$$

 $\mid \top \mid A_1 \land A_2$

Programs:
$$\Gamma ::= \cdot \mid \Gamma, A$$

Significantly more complex

These presentations are equivalent, but not in the linear case

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head
- Clause A can be triggered by either b^- or d^- .

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head
- Clause A can be triggered by either b^- or d^- . Accept both:

$$(b^+ \oplus d^+) \multimap < rest \ of \ A >$$

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head
- Clause A can be triggered by either b^- or d^- . Accept both:

$$(b^+ \oplus d^+) \multimap < rest \ of \ A >$$

Doing so consumes the trigger!

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head
- Clause A can be triggered by either b^- or d^- . Accept both:

$$(b^+ \oplus d^+) \multimap < rest \ of \ A >$$

• Doing so consumes the trigger! We need to reassert it

$$\forall i. idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \multimap idx^{\downarrow}(i) \otimes < rest \ of \ A >$$

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head
- Clause A can be triggered by either b^- or d^- . Accept both:

$$(b^+ \oplus d^+) \multimap < rest \ of \ A >$$

Doing so consumes the trigger! We need to reassert it

$$\forall i. idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \multimap idx^{\downarrow}(i) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(d)) \otimes < rest \ of \ A > idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \oplus idx^{\downarrow}(i) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \otimes (idx^{\downarrow}(b) \otimes$$

• Use of ⊗ breaks focus!

- Clauses can have multiple heads
 - $A = a^- \supset (b^- \land (c^- \supset d^-))$ has two heads, b^- and d^-
 - $B = a^- \supset \top$ has no head
- Clause A can be triggered by either b^- or d^- . Accept both:

$$(b^+ \oplus d^+) \multimap < rest \ of \ A >$$

Doing so consumes the trigger! We need to reassert it

$$\forall i. idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \multimap idx^{+}(i) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus idx^{+}(d)) \otimes < rest \ of \ A > idx^{+}(i) \otimes (idx^{+}(b) \oplus id$$

Use of ⊗ breaks focus! Use nested implication instead

The encoding of our two examples:

$$\forall i. idx^{\dagger}(i) \& (idx^{\dagger}(b) \oplus idx^{\dagger}(d)) \multimap$$

$$(idx^{\dagger}(a) \multimap a^{-}) \supset \qquad \qquad a^{-} \supset$$

$$((idx^{\dagger}(i) \multimap idx^{\dagger}(b)) \multimap b^{-} \qquad \qquad (b^{-})$$

$$\& (idx^{\dagger}(i) \multimap idx^{\dagger}(d)) \multimap (idx^{\dagger}(c) \multimap c^{-}) \qquad \land (c^{-})$$

$$\supset d^{-})) \qquad \qquad \supset d^{-}))$$

•
$$\mathbf{0} \multimap (idx^{+}(a) \multimap a^{-}) \supset \top \qquad a^{-} \supset \top$$

Outline

- Indexing over Predicates
- 2 Indexing over Terms
- Beyond Horn Clauses
- 4 Conclusions

Conclusions

A logical foundation of indexing for backward logic programming

Indexing on:

- predicate symbol
- terms, in any position and at any depth

for

- Horn clauses (Prolog)
- Hereditary Harrop formulas ($\lambda Prolog$)

and their linear variants

Future Work

- Two-stage indexing
 - First, on predicate symbol
 - Then, on terms
- Beyond backward logic programming
 - Forward logic programming
 - Theorem proving