

# Verifying Confidentiality and Authentication in Kerberos 5

Joint work with Frederic Butler, Aaron Jaggard, and Andre Scedrov

(Adapted from original slides by Aaron Jaggard)

Iliano Cervesato

iliano@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC

http://theory.stanford.edu/~iliano



#### **Outline**

- MSR
- Kerberos 5
  - > Main exchange
  - > MSR 2.0 formalizations
- Proof method
  - > Rank / corank functions
  - > General approach
- Verification of Kerberos 5
  - > Authentication properties
  - > Anomalies



#### MSR Facts and States

Fix a first order signature for the protocol

- Types princ, msg, shK A B, ...
- Term

$$t := a \mid x \mid f(t_1, ..., t_n)$$

Fact

$$F ::= P(t_1, ..., t_n)$$

- Predicate describes network, intruder knowledge, internal states, or stored data
- State
  - > Multiset of facts



#### MSR Rules

Transition rule

$$\rho \colon C_1, ..., C_i; F_1, ..., F_j \to \exists x_1 ... \exists x_m. G_1, ..., G_k$$

- $\triangleright$  Check constraints  $C_1, \dots, C_i$
- $\triangleright$  Check that  $F_1, ..., F_j$  contained in state
- > Obtain next state by
  - deleting F<sub>1</sub>, ..., F<sub>j</sub>
  - adding  $G_1, ..., G_k$  with fresh symbols in place of the  $x_i$
- > Free variables in rule universally quantified
- Trace
  - > Sequence of states with  $M_{i+1}$  obtained from  $M_i$  via some rule  $\rho_i$



#### Verification and MSR

#### MSR is a specification framework

- > Open-ended
- > Method-independent
- Tested approaches
  - > CIL connectors
    - NPA, Maude, PVS, ...
  - > Model checking
    - Bozzano & Delzanno
      - Affine version of MSR 1.0
  - > Theorem proving
    - This work (no automation)



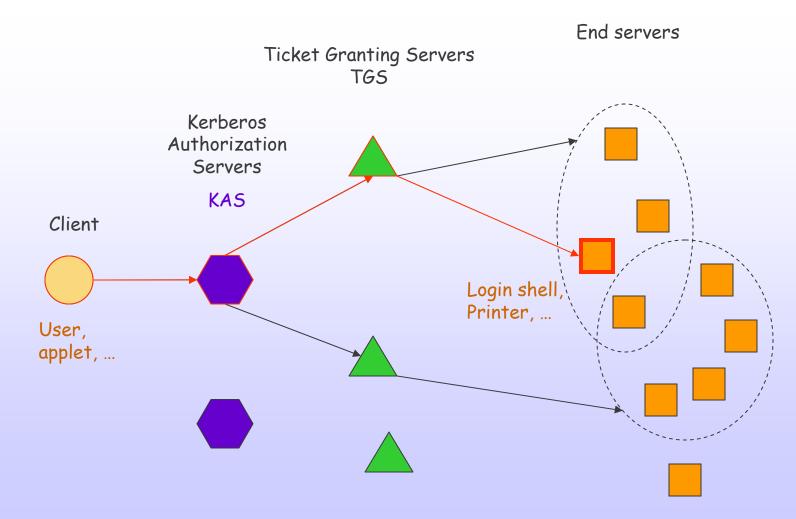
### The Kerberos Project

- Try MSR on a real world protocol
  - > Kerberos 5
    - Will MSR scale up?
- Experiment with specification techniques
  - > Multi-level specification
- Attempt verification on MSR specification
  - > Variant of Paulson's inductive technique
- Formalize Kerberos 5
  - > Precise statement of protocol
  - > Identify and formalize protocol goals
  - > Prove whether goals achieved by protocol
    - Note any anomalous behavior



#### Previous Work on Kerberos

- Kerberos 4
  - >Analyzed using "inductive approach"
    - Bella & Paulson
       Use Isabelle/HOL theorem prover
- Kerberos 5
  - > Simplified version analyzed
    - Mitchell, Mitchell & Stern
       Use Murø model checker




#### **Achievements**

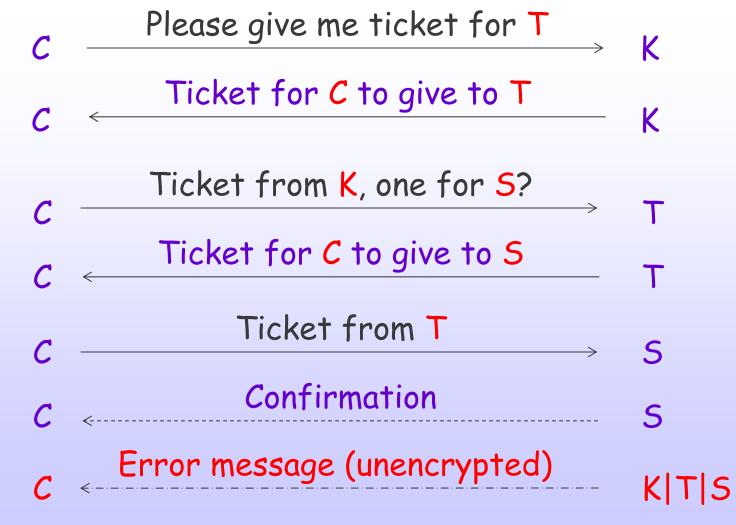
- Formalizations of fragments of Kerberos 5
  - > Three levels of formalizations (2 shown here)
  - > Minimal adjustments to MSR 2.0's definition
    - Robust formalism
- Formal analysis of protocol
  - > Proofs of protocol properties
    - Rank and corank functions
    - Properties and proofs show parallels between abstract and detailed formalizations
  - > Curious behaviors observed
  - > MSR 2.0 supports verification
    - Flexible formalism
- Interactions with Kerberos designers



### Kerberos Principals






#### Kerberos 5

Repeatedly authenticate client C to server S

- 1. C obtains long term (eg, 1 day) ticket from KAS
  - Makes use of C's long term key
  - > Ticket encrypted unreadable by C
- 2. C obtains short-term (eg 5 min) ticket from TGT
  - Based on long term ticket from KAS
  - > C sends this ticket to S



### Main Kerberos Exchange





### Abstract and Detailed Messages

```
KOpts, C, T, n_1, e
      C,{Tflags,k_{CT},C}_{k_{T}},{k_{CT},n_{1},Tflags,T}^{e'}_{k_{C}}
 \{Tflags, k_{CT}, C\}_{k_T}, \{C, MD, t\}_{k_{CT}}, Topts, C, S, n_2, e
C, \{Sflags, k_{CS}, C\}_{k_S}, \{k_{CS}, n_2, Sflags, S\}_{k_{CT}}^{e'}
        SOpts, \{Sflags, k_{CS}, C\}_{k_S}, \{C, MD', t'\}_{k_{CS}}
                                 [\{t'\}^e_{k_{CS}}]
KRB_ERROR,[-|t|t'],terr,ErrCode,C,(K|T|S) KITIS
```



#### Formalizations in MSR 2.0

- Abstract formalization
  - > Core protocol
    - Enough detail to prove authentication and confidentiality
  - > Exhibits some curious behavior (structural)
- Detailed formalization
  - > Refines abstract formalization with
    - Options, encryption types, checksums
  - > Exhibits additional curious behavior
- Timestamp-intensive formalization



#### Example MSR Rule

```
\forall C:client
     \exists L : \mathsf{client} \times \mathsf{KOpt} \times \mathsf{TGS} \times \mathsf{nonce} \times \mathsf{etype}.
 \forall T : \mathsf{TGS}
                                                                                                                                           \exists n_1 : \mathsf{nonce}
 \forall K:\mathsf{KAS}
                                                                                                                \alpha \delta_{1.1}
                                                                                                                                           N(KOpts, C, T, n_1, e)
 \forall KOpts : KOpt.
                                                                                                                                           L(C, KOpts, T, n_1, e)
 \forall e: etype
 ∀...
\begin{array}{ll} \forall \kappa_C : \mathsf{dbK} \ C \\ \forall AKey : \mathsf{shK} \ C \ T. \\ \forall X : \mathsf{msg} \\ \forall n_1 : \mathsf{nonce} \end{array} \quad \begin{array}{ll} \mathsf{N}(C, X, \{AKey, \\ n_1, TFlags, T\}_{k_C}) \\ L(C, KOpts, T, n_1, e) \end{array}
 orall k_C:\operatorname{\mathsf{dbK}} C
                                                                                                                \alpha \delta_{1.2}
                                                                                                                                          Auth_{C}(X, TFlags,
                                                                                                                                               T, AKey
 \forall TFlags : TFlag.
  \begin{array}{lll} \forall \dots & & & \mathsf{N}(\mathtt{KRB\_ERROR}, t_{K,err}, \\ \forall ErrorCode : \mathsf{msg.} & & ErrorCode, C, K) \end{array} 
                                                                                                                    \delta_{1.2'} ASError<sub>C</sub>(KRB_ERROR,
                                                                                                                                             t_{K,err}, ErrorCode, K)
 \forall t_{K,err}: \mathsf{time} . L(C,KOpts,T,n_1,e)
```

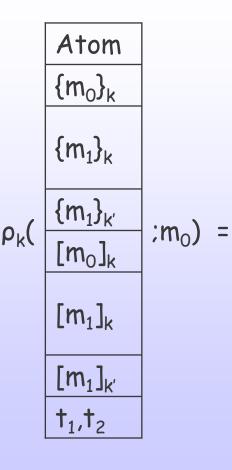
Figure 5. The client's role in the Authentication Service Exchange.



#### Formal Verification

- Define 2 classes of functions
  - > k-Rank
    - Data origin authentication
    - Work done to encrypt a specific message with key k
  - > E-Corank
    - Confidentiality
    - Work needed to extract information using keys from the set E

Well-orders on which to build induction proofs

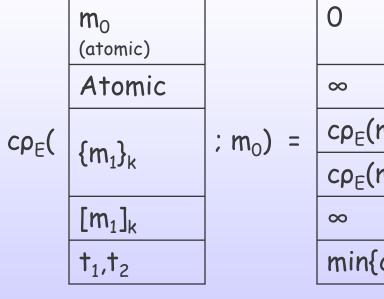

#### Inspired by work of Schneider

> Our corank functions parallel his rank functions



### The k-Rank of t Relative to m<sub>0</sub>

#### Work done to encrypt mo with key k




```
if \rho_k(m_1; m_0) = 0, m_1 \neq m_0
\rho_k(m_1; m_0) + 1 if \rho_k(m_1; m_0) > 0
\rho_k(m_1; m_0) if k' \neq k
                 if \rho_k(m_1; m_0) = 0, m_1 \neq m_0
\rho_k(m_1; m_0) + 1 if \rho_k(m_1; m_0) > 0
\rho_k(m_1; m_0) if k' \neq k
\max\{\rho_k(t_1; m_0), \rho_k(t_2; m_0)\}
```



### The E-Corank of t Relative to m<sub>0</sub>

#### Work needed to extract mo using keys in E



| 0                                       |                 |  |
|-----------------------------------------|-----------------|--|
| $\infty$                                | if $t \neq m_0$ |  |
| $c\rho_{E}(m_{1}; m_{0}) + 1$           | if $k \in E$    |  |
| $c\rho_E(m_1; m_0)$                     | if k ∉ E        |  |
| ∞                                       |                 |  |
| $min\{cp_E(t_1; m_0), cp_E(t_2; m_0)\}$ |                 |  |



#### (Co)Rank of Facts and States

- Rank of a j-ary predicate P:
  - $> \rho_k(P(t_1, ..., t_j); m_0) = \max\{\rho_k(t_1; m_0), ..., \rho_k(t_j; m_0)\}$
- Rank of a finite multiset M of facts
  - $> \rho_k(M; m_0) = \max_{F \in M} \{\rho_k(F; m_0)\}$
- Corank of a j-ary predicate P:
  - $ightharpoonup c\rho_k(P(t_1, ..., t_j); m_0) = min\{c\rho_k(t_{i1}; m_0), ..., c\rho_k(t_{in}; m_0)\},$
  - $\rightarrow$  where  $t_{i1}, ..., t_{in}$  are the 'public' terms
    - Look at terms that may be placed on the network later
    - In particular,  $c\rho_F(I(m_0); m_0) = 0$
- Corank of a finite multiset M of facts
  - $\triangleright$  cp<sub>k</sub>(M; m<sub>0</sub>) = min<sub>F∈M</sub> {cp<sub>k</sub>(F; m<sub>0</sub>)}



### Effect of Rules on (Co)Rank

For a transition rule R

$$\chi$$
;  $F_1, ..., F_j \to \exists x_1 ... \exists x_m. G_1, ..., G_k$ 

- > Compare possible values of
  - $\rho_k(\{F_1, ..., F_j\}; m_0)$  and  $\rho_k(\{G_1, ..., G_k\}; m_0)$
- > Compare possible values of
  - $cp_{E}(\{F_{1}, ..., F_{j}\}; m_{0})$  and  $cp_{E}(\{G_{1}, ..., G_{k}\}; m_{0})$
- > Determine whether or not R can
  - Increase rank
  - Decrease corank



### Dolev-Yao Intruder's Use of Keys

Apply this approach to intruder rules

- If intruder rule R increases  $\rho_k(\underline{\ }; m_0)$ , then lhs(R) contains I(k)
  - > Intruder knows the key k
- If intruder rule R decreases  $cp_E(\underline{\hspace{0.1cm}}; m_0)$ , then lhs(R) contains I(k) for some k in E
  - > Intruder decrypts his way to  $m_0$  or rhs(R) contains  $\exists m_0$ 
    - > Intruder creates mo



### General Approach

- Figure 1. If  $\rho_k(F; m_0) = 0$  for every fact in initial state and no intruder rule can increase  $\rho_k(\_; m_0)$ , then a fact F with  $\rho_k(F; m_0) > 0$  implies that some honest principal created  $\{m_0\}_k$ 
  - Show that it must have been a certain principal
- Fig. If  $cp_E(F; m_0) > 0$  for every fact in initial state, no intruder rule can decrease  $cp_E(\_; m_0)$ , and no honest principal creates a fact F with  $cp_E(F; m_0) = 0$ , then  $m_0$  is secret
  - $c\rho_{E}(I(m_{0}); m_{0}) = 0$

Analogs of Schneider's Rank Theorem



### Summary: Using Rank and Corank

- Construct (co)rank function applicable to the desired property
- Inspect protocol rules
  - > Determine which can
    - raise rank
    - lower corank
- Look at intruder rules
  - Find conditions ensuring that the intruder cannot raise rank/lower corank
    - Usually secrecy of certain key(s)



### **Properties Proved**

|                                | Confidentiality           | Authentication            |
|--------------------------------|---------------------------|---------------------------|
| Ticket<br>Granting<br>Exchange | Abstract<br>&<br>Detailed | Abstract<br>&<br>Detailed |
| Client<br>Server<br>Exchange   | Abstract                  | Abstract                  |



#### Abstract Authentication Theorem

If TGT T receives the message  $\{k_{CT},C\}_{kT},\{C\}_{kCT},C,S,n_2$  then some KAS K created  $k_{CT}$  and sent  $C,\{k_{CT},C\}_{kT},\{k_{CT},n_1,T\}_{kC}$  and client C sent some  $X,\{C\}_{kCT},C,S',n'_2$ 

- In Kerberos 4
  - > C must have sent the ticket and not generic X
- Similar result for Client/Server exchange
  - > Ticket came from T, authenticator from C



#### **Detailed Authentication Theorem**

- Add details to obtain theorem for detailed formalization
  - > Structure of abstract level proof remains
    - Just add details

```
If TGT T processes the message  \{ TFlags, k_{CT}, C \}_{kT}, \{ C, ck, t \}_{kCT}, TOpts, C, S, n_2, e \}_{kT}, \{ C, ck, t \}_{kCT}, TOpts, C, S, n_2, e \}_{kT}  then some KAS K created k_{CT} and sent k_{CT} and sent k_{CT} and sent k_{CT} and client C sent some  k_{CT} = k_{CT} + k_
```



### **Proving Authentication**

#### Authenticate data origin using rank

- ightharpoonup Show ticket {TFlags,k<sub>CT</sub>,C}<sub>kT</sub> originates with some K
- $\triangleright$  Show authenticator  $\{C, ck, t\}_{kCT}$  originates with C
  - Relies on the confidentiality of k<sub>CT</sub>
- $\triangleright$  Prove confidentiality of  $k_{CT}$  using  $\{k_C, k_T\}$ -corank
  - No proper subset of  $\{k_C, k_T\}$  protects  $k_{CT}$
- > Abstract level proofs follow same outline



#### **Anomalies**

## Interesting curiosities, but don't appear dangerous

- We've just seen that authentication does hold
- > Encryption type anomaly
  - Difficult to recover from lost long term key
- > Ticket switch anomaly
  - Client has incorrect beliefs about data in her possession
    - Application to anonymous tickets
    - Anonymous option under review by Working Group
- > Ticket option anomaly
  - Effects similar to ticket switch anomaly



### **Encryption Type Anomaly**

 Kerberos 5 allows C to specify encryption types that she wants used in K's response

```
C Ticket for C to give to T + other info (encrypted using etype) K
```

- C's key of etype ebad is kbad
  - > Intruder learns k<sub>bad</sub>
  - C knows this and attempts to avoid ebad/kbad
  - > I can still force k<sub>bad</sub> to be used



### Ticket Anomaly

 $C \leftarrow Ticket for C to give to T$ 

- Kerberos 4:
  - > Ticket is enclosed in another encryption

{Ticket, Other data}<sub>kc</sub>

- Kerberos 5:
  - > Ticket is separate from other encryption

Ticket, {Other data}<sub>kc</sub>



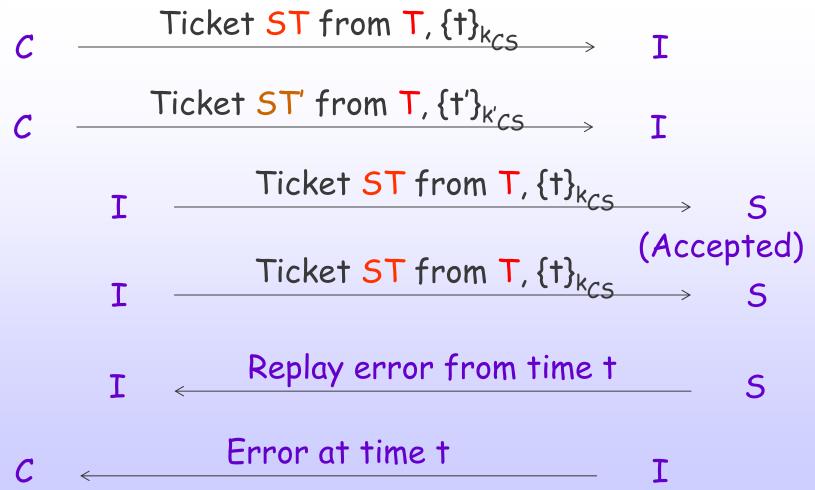
#### Ticket Anomaly

```
Please give me a ticket for T
    Ticket for T, {Other data}_{k_C}
X, {Other data}<sub>kc</sub>
 X, Ticket for 5?
    Ticket from K, ticket for S?
         Ticket for S.
```



#### Ticket Anomaly

- T grants C a ticket for S
- But
  - > C never has the ticket for T
  - > C thinks she has sent a proper request
  - > C's view of the world is inaccurate
  - > Some properties of Kerberos 4 don't hold here
- Seen in both formalizations
  - > Variations possible using added detail
    - Anonymous tickets




### **Ticket Option Anomaly**

- C obtains tickets ST and ST' with different options for use with same server
   S
- C does not request mutual authentication from 5
  - ➤ No response expected
- Assume that 5 can detect replays
  - > Saves authenticators in a cache (following RFC 1510)



### **Ticket Option Anomaly**





### Ticket Option Anomaly

- C's request at time t is accepted, but her request at time t' is never seen by 5
- C sees an error message with the timestamp t
  - Might assume request at t not accepted, request at t' accepted
  - > I uses the replay to unpack the encrypted timestamp t
  - > 5's use of a replay cache allows this to occur
- Effects are similar to those of ticket switch found before but for more ticket options
  - > Replay cache not yet formalized



### Possible Future Developments

- Systematize definition and use of (co)rank functions
  - > Need to determine 'public terms' for corank
- Analysis
  - > Investigate temporal checks
  - > Properties in more detailed formalizations
  - > Anomalies what can we still prove? Fix? Accept?
- Extend formalizations
  - > Add structure and functionality
- Continue interaction with Kerberos designers