

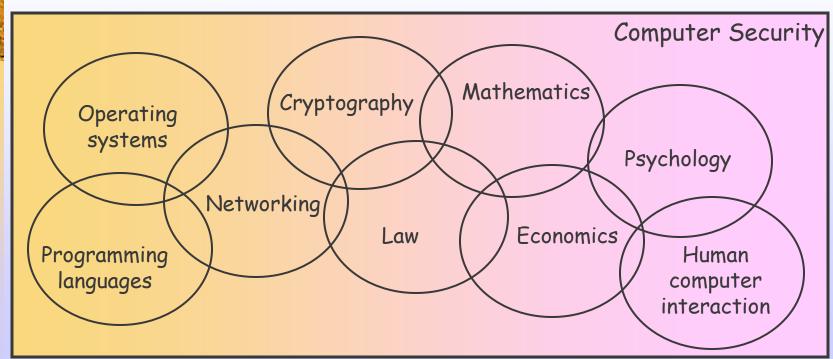
Hot Topics in Computer Security

Iliano Cervesato

http://www.gatar.cmu.edu/~iliano

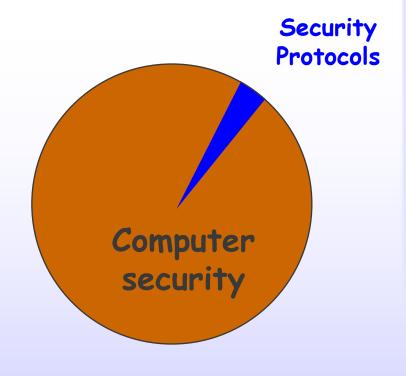
Computer Security

- Networked computer systems
 - > Provide fast access to lots of information
 - Information society
 - > Higher productivity
 - > Much higher convenience
- Substantial opportunity for abuse
- Computer security
 - > Mitigate risk
 - > Prevent disruption, fraud, ...



Is Cryptography the Solution?

Cryptography is not the same as security


- > No crypto today
- > 85% of all CERT advisories cannot be fixed by crypto
- > 30-50% of recent security holes from buffer overflow

Computer Security is a Big Field!

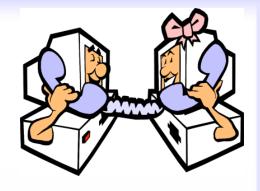
 We are going to look at a tiny speck

Security Protocols

Outline

- What are security protocols?
- What can go wrong?
- Where is protocol verification now?
- What are the open questions?

Protocols



Expected behaviors when engaging in communication

- > When 2 people want to talk
 - Buying something at the souq
 - Going on a date
 - Calling up your friend, ...
- > When interacting with an organization
 - Bureaucracy
 - Official visits by head of states, ...
- **>** ...
- > When computers want to talk

Computer Protocols

- What sets them apart?
 - > No human involved!
 - Automated
 - Inflexible
 - No common-sense
- What protocols are there in a computer?
 - > Hundreds!
 - > Communication protocols
 - Email, http, Ethernet, ...
 - > Security protocols

Security Protocols

- Communication protocols ensure that communication actually happens
- Security protocols ensure that communication is not abused
 - >Protect contents
 - >Protect communicating parties
 - >Protect intent of communication
 - >Protect possibility of communication

Common Security Goals

- Confidentiality
 - > Message cannot be observed in transit

>Achieved using some form of encryption

Authentication

- Ensure that we are talking with who we think
 - > Much more subtle than secrecy
 - > How to establish a secret channel in the first place
 - Negotiate parameters of channel
 - Ensure channel remains trusted
- Authentication protocols

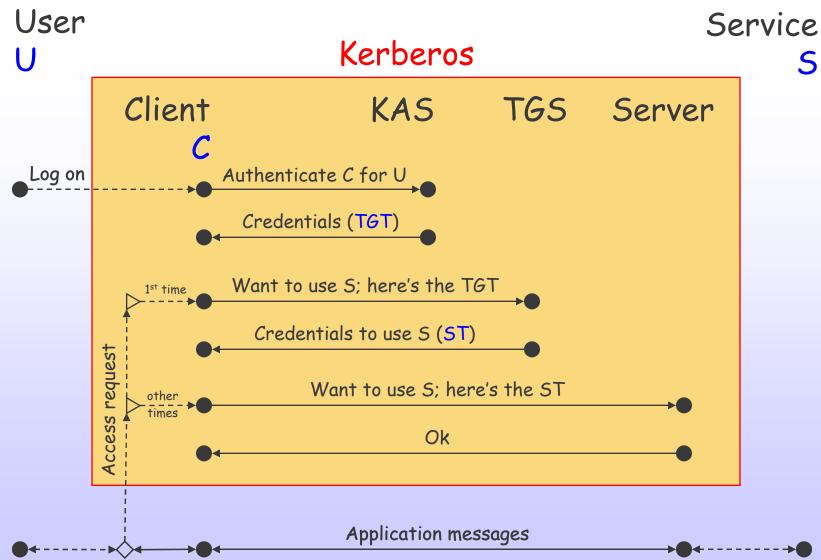
Other Security Goals

- Non-Repudiation
 - > Party cannot claim he didn't do it
 - > For auditing, electronic contract signing, ...
- Non-Malleability
 - > Message cannot be changed en route
 - > For electronic voting, ...
- Anonymity
 - > Hide who is communicating
- Availability
 - > User can always get through

• ...

Example: Kerberos

- Log in to your computer
- Access other computers without logging in again
 - > Email, "i-drive", printers, directory, ...
 - ... for 1 day



- > Repeatedly authenticate a client to multiple servers
- > Transparent to user
- Ubiquitous

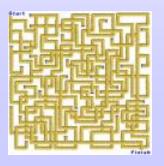
How Kerberos works

Other Popular Protocols


- SSL / TLS protocol
 - Authenticates client to server
 - Encrypts communication
 - > HTTPS (secures web page)
 - > Secure email download (POP35, IMAPS)
- SSH protocol
 - > PuTTY (Log to remote computer, copy files, ...)
- PGP
 - Send encrypted/authenticated email
 - > Enigmail

What is there to care about?

BRINGING CIVILIZATION TO ITS KNEES...

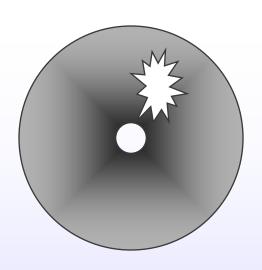


The Problem

- Security protocols are extremely hard to get right
 - > Minuscule programs
 - > Extremely complex interactions
 - Bugs can take years to discover
 - > Generally it's not the crypto
 - >It's the piping

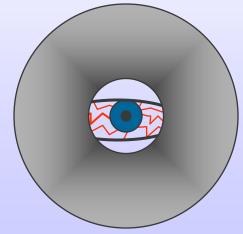
Correctness vs. Security

- Correctness: satisfy specifications
 - For reasonable inputs, get reasonable output


- Security: resist attacks
 - For unreasonable inputs, output not completely disastrous

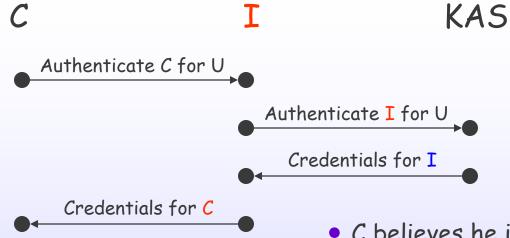
Difference:

> Random events vs. active attacker

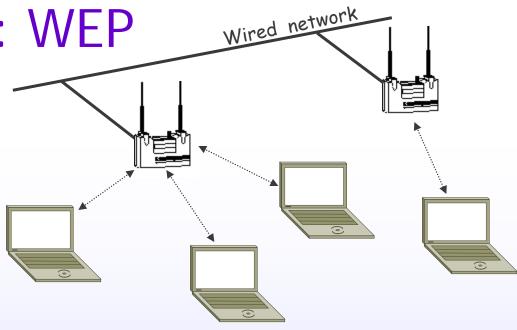


Attacks

 Attacker can break secrecy of the channel


- Attacker can break authentication
 - > Got the piping wrong

Example: Kerberos



- C believes he is talking to KAS
- KAS believes he is talking to I
 - I knows the key that C obtained from KAS
- Discovered 10 years after exchange was designed
- Immediately fixed in all implementations

Another one: WEP

Standard wireless network

- > Principally a communication mechanism
- > Has built-in security protocol: WEP
 - Confidentiality (prevent eavesdropping)
 - Access control (prevent unauthorized access)
 - Integrity (prevent tampering with messages)

Fails at all 3!

WEP Authentication

- Should you stop using WiFi? NO!!!
 - > Fine communication suite
 - >Use standard protocols on top of it
 - > (now replacements to WEP are available)

State of the Art in Protocol Verification

Protocol Analysis

- Ensure that protocol does not have flaws
 - > Formal verification
 - Mathematical scrutiny so that nothing bad can happen
 - > Secure-by-design
 - Securely compose secure building blocks
 - > Testing is not an option!
 - Assumes statistical distribution of errors
 - Security is about worst-case scenario

Formal Verification

- Model checking
 - > Show that no bad things can happen
 - > Try everything attacker can do to break security goals
 - Fast setup
 - Discovers attacks (but often only partial assurance)
- Theorem proving
 - > Show that only good things can happen
 - Mathematical proof that protocol meets security goals
 - Absolute assurance (but no attacks)
 - Extremely time consuming
- Hybrid approaches

Things to Be Made Precise

- What the protocol does
- Security goals
- Attacker capabilities

Framework to draw general conclusions

Protocol Specification Languages

- Initially, just English
- Till mid 90's: ad-hoc languages
- Since then, several well-understood languages with deep roots in theory
 MSR

To a large extent, problem solved

Security Goals

- 5 years to define "secrecy"
- 10 for "authentication"
 - > Standard notions now well-understood
 - > General understanding still shaky

- Usually expressed as logical statements
 - >Perfect language has not been found yet

What can an Attacker do?

- Dolev-Yao model
 - Controls the communication medium
 - Can decrypt/encrypt only with known keys
 - >Tractable, but idealizes crypto
- Computational model
 - Can apply computational methods to gain partial information
 - >More precise
 - > But no mathematical tools till recently

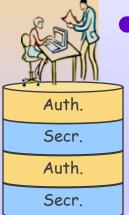
What we Know about Security

- Protocol verification is undecidable
 - > Apparently decidable for typical protocols
- Dolev-Yao intruder derivable from protocol
- Secrecy and authentication build on each other

What can we Verify?

- Lots of toy protocols
 - >Now very fast
- A couple in the computational model
- A few commercial protocols manually
 - > Kerberos

Extremely fast progress recently



Open Questions

Understanding Security

- What is protocol security?
 - > Much better understanding than 10 years ago in common cases
 - > Still pre-scientific stage
- What should the security goals be?
 - > General theory
 - > Interplay
- Come up with general and usable language for
 - > Security goals
 - > Security assumptions

Protocol Composition

- Putting 2 good protocols together is no guarantee to get a good protocol
 - > When is it the case?
- Modular approach to protocol analysis / construction
 - > Start with well-understood building blocks
 - > Combine them into desired protocol
- Recent progress in this direction
 - > Protocol derivation
 - > Still patchy
 - What do basic components do
 - Prove that only good things result from composition

Automation for Large Protocol

- 10 years ago, automated analysis was struggling with toy protocols
 - > Now, can verify them very fast
- What about commercial protocols?
 - > Threshold situation
 - Tools are almost good enough
 - > Manual techniques are there
 - Need to be automated
 - > Opportunity to have real-world impact
 - Have a say in protocol design

Qualitative Protocol Analysis

- Current approaches designed to answer yes/no
- Real-world does not work this way
 - Persistent/resourceful attacker can always break crypto
 - > Developer can fine-tune parameters to get system more secure
 - > Denial-of-Service has no yes/no answer
- Completely ignored by "traditional" protocol analysis research
 - > First initial steps

Thank you!