
5 Routing for Server Farms with Highly-Variable Job Sizes

The popularity of the server farm architecture stems from its price advantage (many slow servers
are far cheaper than one fast one) and its flexibility (it is easy to scale capacity up and down).
A server farm typically consists of a collection of host machines (servers) and a front-end high-
speed router. Each incoming job is immediately dispatched via the router to one of the hosts. In
supercomputing and manufacturing settings, the queue at each host is commonly served in First-
Come-First-Served (FCFS) order, see Figure 1(a). The FCFS ordering stems from the fact that
it is not easy to preempt jobs in these settings. By contrast,in the case of a Web server farm,
the incoming HTTP requests are fully preemptible, and the scheduling of jobs at the hosts is best
modeled by Processor-Sharing (PS), see Figure 1(b).
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Figure 1:Two server farm models.

The problem The performance of any server farm depends critically on therouting policy, also
known as thetask assignment policy. This is the algorithm/rule for determining how to assign jobs
to hosts. In this section we ask:

What is a good routing policy for server farms for minimizingmean response time?

Workload characterization The decision of which routing policy is best often depends onthe
workload(job size distribution). For many computer science applications the workload is highly
variable with a heavy tail. In an award-winning paper [17, 18], we show that UNIX CPU lifetimes
exhibit a highly variable Pareto distribution, as do supercomputing jobs [25, 26]. This distribution
also holds for Web file sizes [3, 6] and IP flow durations [27].

Surprising results: FCFS server farms In [15, 16], we analyze different routing policies for
FCFS server farms in the setting of highly-variable job sizedistributions, characteristic of the above
computing workloads. We find several interesting results: First, common policies like Join-the-
Shortest-Queue (JSQ) are poor performers, and even greedy policies, like routing jobs to the host
with the Least-Work-Left (LWL), are not great performs. By contrast, a policy like ourSITA (Size-
Interval Task Assignment) policy [16], which segregates short jobs and long jobs into different
queues, can outperformLWL by orders of magnitude. Also we find that, counter to common
wisdom, it is preferable to purposelyunbalance loadrather than balance it, but the direction for
unbalancing load (whether to underload or overload the short job host), is far from trivial and
changes as a function of theα-parameter of the Pareto distribution [10]. In the case where job
sizes are unknown, we can achieve almost the same level of performance asSITA by using our
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TAGS (Task Assignment by Guessing Size) algorithm [13], which exploits statistical properties of
the job size distribution. This work now appears in a patent [14].

Surprising results: PS server farms In [12] we study PS server farms. These perform very
differently from FCFS farms. For PS farms, there isno advantageto isolating short jobs from
long jobs, andload balancingis desirable. Also,JSQ is now an extremely good routing policy.
We uncover a remarkable property of PS server farms: Unlike their FCFS counterparts, PS server
farms withJSQ routing arenearly insensitive to the variability of the job size distribution. This
property is unique toJSQ and does not hold for routing policies likeLWL. We also provide the
first analysis ofJSQ for PS server farms. All prior analysis ofJSQ, e.g. [2, 4, 5, 7, 8, 9, 11,
20, 22, 21, 19, 23, 24, 28, 29], assumes the FCFS server farm model, and even there very little
is known beyond 2 servers and exponential job sizes. The intractability of JSQ stems from the
fact that its analysis requires tracking the number of jobs at each server, which means that the
Markov chain representation is unbounded in multiple dimensions. In [12], we introduce new
analysis approach:Single Queue Approximation(SQA), whereby, we analyze a server farm with
any number of servers by looking at just one queue of the server farm, in isolation from all the
other queues, but where the arrival rate into that queue is conditional on the number of jobs at that
queue. We prove that SQA is actually exact, for any exponential or degenerate hyperexponential
job size distribution, with any variability.

Impact/Funding: I have given several keynote talks about my work on server farms. This work
has also inspired several workshops at CMU, co-chaired withAlan Scheller-Wolf, such as the
WORkshop on Multiserver Scheduling (WORMS04)[1], which was attended by famous researchers
from around the globe, including Ward Whitt, Ed Coffman, Daryl Daley, Ruth Williams, Peter
Glynn, Bill Massey, Ernst Biersack, R. Srikant, John Lehoczky, Sem Borst, Mark Squillante, Balaji
Prabhakar, etc. This work is funded by NSF SMA/PDOS grant CCR-0615262 (2006-2009).
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