5 Routingfor Server Farmswith Highly-Variable Job Sizes

The popularity of the server farm architecture stems franprice advantage (many slow servers
are far cheaper than one fast one) and its flexibility (it isye@ scale capacity up and down).

A server farm typically consists of a collection of host miaels (servers) and a front-end high-
speed router. Each incoming job is immediately dispatchadhe router to one of the hosts. In

supercomputing and manufacturing settings, the queuechthezst is commonly served in First-

Come-First-Served (FCFS) order, see Figure 1(a). The FC#&ing stems from the fact that

it is not easy to preempt jobs in these settings. By contraghe case of a Web server farm,

the incoming HTTP requests are fully preemptible, and tiedualing of jobs at the hosts is best
modeled by Processor-Sharing (PS), see Figure 1(b).

FCFS

Incoming__. Router Q+ Incoping___

¢
&

(a) FCFS server farm (bPS server farm

Figure 1:Two server farm models.

The problem The performance of any server farm depends critically orrdliéing policy, also
known as theask assignment policyrhis is the algorithm/rule for determining how to assigbgo
to hosts. In this section we ask:

What is a good routing policy for server farms for minimizmgan response time?

Workload characterization The decision of which routing policy is best often dependghan
workload (job size distribution). For many computer science apfilices the workload is highly
variable with a heavy tail. In an award-winning paper [17], ¥& show that UNIX CPU lifetimes
exhibit a highly variable Pareto distribution, as do superputing jobs [25, 26]. This distribution
also holds for Web file sizes [3, 6] and IP flow durations [27].

Surprising results: FCFS server farms In [15, 16], we analyze different routing policies for
FCFS server farms in the setting of highly-variable job siatributions, characteristic of the above
computing workloads. We find several interesting resulisstFcommon policies like Join-the-
Shortest-QueuelSQ) are poor performers, and even greedy policies, like rgybbs to the host
with the Least-Work-Leftl(WL), are not great performs. By contrast, a policy like BUTA (Size-
Interval Task Assignment) policy [16], which segregatesrsfjobs and long jobs into different
gueues, can outperforidVL by orders of magnitude. Also we find that, counter to common
wisdom, it is preferable to purposelinbalance loadather than balance it, but the direction for
unbalancing load (whether to underload or overload thetghbrhost), is far from trivial and
changes as a function of theparameter of the Pareto distribution [10]. In the case el
sizes are unknowrwe can achieve almost the same level of performanc®l®s by using our
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TAGS (Task Assignment by Guessing Size) algorithm [13], whicpleits statistical properties of
the job size distribution. This work now appears in a pat&af.|

Surprising results: PS server farms In [12] we study PS server farms. These perform very
differently from FCFS farms. For PS farms, therens advantagdo isolating short jobs from
long jobs, andoad balancingis desirable. AlsoJSQ is now an extremely good routing policy.
We uncover a remarkable property of PS server farms: Untikea ECFS counterparts, PS server
farms withJSQ routing arenearly insensitive to the variability of the job size dibtriion This
property is unique tdSQ and does not hold for routing policies lik&V/L. We also provide the
first analysis 0ofJSQ for PS server farmsAll prior analysis 0fJSQ, e.g. [2,4,5,7, 8, 9, 11,
20, 22, 21, 19, 23, 24, 28, 29], assumes the FCFS server famelmand even there very little
is known beyond 2 servers and exponential job sizes. Thaditatility of JISQ stems from the
fact that its analysis requires tracking the number of jabsagh server, which means that the
Markov chain representation is unbounded in multiple disi@ms. In [12], we introduce new
analysis approactsingle Queue Approximatiq®QA), whereby, we analyze a server farm with
any number of servers by looking at just one queue of the séaw, in isolation from all the
other queues, but where the arrival rate into that queuendittonal on the number of jobs at that
queue. We prove that SQA is actually exact, for any expoakatidegenerate hyperexponential
job size distribution, with any variability.

I mpact/Funding: | have given several keynote talks about my work on servengarThis work
has also inspired several workshops at CMU, co-chaired aidm Scheller-Wolf, such as the
WORKkshop on Multiserver Scheduling ( WORMS$0W which was attended by famous researchers
from around the globe, including Ward Whitt, Ed Coffman, dbaley, Ruth Williams, Peter
Glynn, Bill Massey, Ernst Biersack, R. Srikant, John LelkycSem Borst, Mark Squillante, Balaji
Prabhakar, etc. This work is funded by NSF SMA/PDOS grant @6R5262 (2006-2009).
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