
1 “All Can Win” Theorems – Why Biased Scheduling is Fair

The problem: The SYNC (Scheduling Your Network Connections) project is largely motivated
by a single question:

Is it possible to reduce the expected response time ofevery job/request in a Web server,
simply by changing the order in which we schedule the requests?

In this section we focus onstaticrequests, of the form “Get me a file,” while Section 3 deals with
requests involvingdynamiccontent.

Our idea Our idea is simple: Traditionally, requests at a Web server are scheduled independently
of their size. The requests are time-shared (processor-sharing, PS), with each request receiving a
fair shareof the web server resources. We propose to modify existing Web servers to implement
biased scheduling, in which priority is given toshortrequests, or those requests which haveshort
remaining time, in accordance with the well-known algorithm Shortest-Remaining-Processing-
Time-first (SRPT).

The controversy It has long been known thatSRPT has the lowest mean response time of any
scheduling policy, for any arrival sequence and job sizes [38, 40]. Despite this fact, applications
have shied away from using this policy for fear thatSRPT “starves” big jobs [7, 41, 42, 39].
It is often stated that the huge average performance improvements of SRPT over other policies
stem from the fact that SRPTunfairly penalizesthe large jobs in order to help the small jobs.
Conservation laws are often quoted in arguments that the performance of small jobscannotbe
improved without hurting the large jobs.

The truth – analysis In [5] we show that this fear thatSRPT penalizes large jobs as compared
with PS is unfounded in many common situations, particularly heavier-tailed workloads. Consider
for example an M/G/1 queue, where jobs sizes (service requirements) are distributed like Web
requests, according to a Bounded-Pareto job size distribution with α-parameter near 1, exhibiting
very high variability [6]. In this case, we find thatevery single job, including a job of the maximum
possible size, prefersSRPT to PS in expectation (unless the load,ρ, is very close to 1), see
Figure 1. This surprising result provably extends toall job size distributions whenρ < 0.5 [5],
and, in the case of unbounded Pareto job size distributions,it extends to all values of loadρ [9, 24].
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Figure 1:All-can-win theorem. Jobs of all sizes preferSRPT to PS.

Furthermore,SRPT is not the only scheduling policy with good fairness properties. In [44] (award
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paper) we develop the first theoretical framework for studying the fairness of all scheduling poli-
cies, and classify all common scheduling policies with respect to their fairness properties when
compared withPS.

The truth – implementation Motivated by our theoretical results, in [23] we implement an ap-
proximation ofSRPT scheduling of HTTP requests at an Apache web server. We modify the Linux
kernel to change the order that the server’s socket buffers are drained onto the server’s access link
(uplink); a priority is associated with each socket and thispriority is increased dynamically as the
remaining size (number of bytes left) in the file being retrieved goes down. We show that our
SRPT server implementation significantly outperforms the unmodified (PS) server, under both a
LAN setting and a WAN setting (network loss and delay), and under both open and partly open sys-
tem configurations, using trace-based workloads. Figure 2(a) shows the significant improvement
overSRPT over the unmodified server with respect to mean response time, as a function of load,
whereload is the ratio of the bandwidth needed by files requested to the total bandwidth available
on the uplink. To evaluate unfairness, Figure 2(b) shows themean response time as a function of
request size.SRPT scheduling improves the mean response times of most requests by a factor of
close to10, while the mean response time for the largest size file only increases negligibly under
SRPT scheduling (due to overhead in the socket switching implementation). These performance
benefits come at no loss in byte throughput or job throughput.Practically, this says that a web
server employing SRPT scheduling should be able to retrievetext files (smaller requests) 10 times
faster underSRPT than under the unmodified,PS scheduling, while images (large requests) will
not take longer than in the unmodified server because of the heavy-tailed property of web work-
loads.
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Figure 2:(Left) Mean response time as a function of load for a web server in a LAN environment.
Shown under SRPT modification, and under the unmodified, PS, server. (Right) Mean response
time as a function of the size of the file requested, for load0.8.

Extensions/GeneralizationsIn implementingSRPT scheduling, it became apparent that any real-
world implementation is only anapproximationof the idealizedSRPT scheduling policy studied
in queueing theory books. Real implementations sometimes only allow for coarse differentiation
between jobs, or need to work without always knowing the remaining size. This discrepancy be-
tween theoreticalSRPT and practical implementations motivated us to invent the notion of aclass
of policies, which we call theSMART policies, which is broad enough to include any policy fol-
lowing the general heuristic of biasing towards short jobs,and particularly, encompasses approx-
imations implemented in practice. In [46] we prove that allSMART policies are2-competitive,
and in [47], we show that the tail of response time ofSMART policies matches that ofSRPT. Our
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implementation work has also shown us thatunpredictability in response timesis as important to
users asunfairness in response times. To address this point, we extend our classification of fairness
in scheduling policies [44] to a classification of predictability in response times, [45].

Impact – followup of others Until a few years ago, there were almost no scheduling papersat
conferences like Sigmetrics. Stochastic scheduling analysis was considered by many to be “fin-
ished” around the time of the Conway, Maxwell, Miller book [11]. Our counterintuitivetheo-
retical results in 2001 on fairness ([5]), which were quoted by many as “defying all conserva-
tion laws,” backed by our kernel-levelimplementationof connection scheduling in web servers
([21, 23, 12, 22]), launched an entire industry of new theoretical and applied investigations into the
power of scheduling, with a focus on fairness. By 2003 Sigmetrics devoted an entire session to the
analysis of scheduling algorithms. In 2004 Sigmetrics devoted a whole session to “Scheduling and
Unfairness,” and there has been an entire session devoted toscheduling at Sigmetrics every year
since. Recently, I was asked to put together a special issue for Performance Evaluation Review
overviewing the new trends in this explosion in scheduling research, see [20].

Our SRPT-based scheduling for Web servers has been extended in many papers including, [10,
15, 18, 28, 27, 29, 30, 48], as well as in the SWIFT project [36]. Ernst Biersack’s group has
done considerable work on porting ideas from our SYNC project to routers, where he employs the
LAS algorithm (Least-Attained-Service) which favors “young” flows (those which have sent few
bytes thus far) [35, 34, 33]. Similar ideas involving favoring short or young flows are employed
in [13, 49, 4, 16]. There have also been many papers studying the idea of multi-level age-based
scheduling to favor short jobs, including papers by Aalto etal. [3, 1, 2] and Misra et al. [14].

Our definition of fairness has been applied to many new policies and in various computer systems
designs, e.g., Rai, Biersack, et al. [35, 34], Gong and Williamson [18, 19], Misra and Rubenstein
[15], Kherani and Nunez-Queija [25], and Friedman and Henderson [17]. Expanded definitions
of fairness have also been developed, e.g., Levy and Raz [26]and Sandmann [37]. There have
also been a great many new theoretical papers investigatingSRPT and otherSMART scheduling
policies, e.g., [8, 32, 31, 43].
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