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Abstract. Approximating general distributions by phase-type (PH) dis-
tributions is a popular technique in queueing analysis, since the Marko-
vian property of PH distributions often allows analytical tractability.
This paper proposes an algorithm for mapping a general distribution G
to a PH distribution where the goal is to find a PH distribution which
matches the first three moments of G. Since efficiency of the algorithm
is of primary importance, we first define a particular subset of the PH
distributions; which we refer to as EC distributions. The class of EC dis-
tributions has very few free parameters, which narrows down the search
space, making the algorithm efficient In fact we provide a closed-form
solution for the parameters of the EC distribution. Our solution is gen-
eral in that it applies to any distribution whose first three moments
can be matched by a PH distribution. Also, our resulting EC distribu-
tion requires a nearly minimal number of phases, always within one of
the minimal number of phases required by any acyclic PH distribution.
Lastly, we discuss numerical stability of our solution.

1 Introduction

Motivation There is a very large body of literature on the topic of approxi-
mating general distributions by phase-type (PH) distributions, whose Markovian
properties make them far more analytically tractable. Much of this research has
focused on the specific problem of finding an algorithm which maps any general
distribution, GG, to a PH distribution, P, where P and G agree on the first three
moments. Throughout this paper we say that G is well-represented by P if P
and G agree on their first three moments. We choose to limit our discussion in
this paper to three-moment matching, because matching the first three moments
of an input distribution has been shown to be effective in predicting mean per-
formance for variety of many computer system models [4,5,19,23,27]. Clearly,
however, three moments might not always suffice for every problem, and we leave
the problem of matching more moments to future work.

Moment-matching algorithms are evaluated along four different measures:
The number of moments matched — In general matching more moments is

more desirable.



The computational efficiency of the algorithm It is desirable that the
algorithm have short running time. Ideally, one would like a closed-form so-
lution for the parameters of the matching PH distribution.

The generality of the solution — Ideally the algorithm should work for as
broad a class of distributions as possible.

The minimality of the number of phases — It is desirable that the matching
PH distribution, P, have very few phases. Recall that the goal is to find P
which can replace the input distribution G in some queueing model, allowing
a Markov chain representation of the problem. Since it is desirable that the
state space of this resulting Markov chain be kept small, we want to keep the
number of phases in P low.

This paper proposes a moment-matching algorithm which performs very well
along all four of these measures. Our solution matches three moments, provides
a closed form representation of the parameters of the matching PH distribution,
applies to all distributions which can be well-represented by a PH distribution,
and is nearly minimal in the number of phases required.

The general approach in designing moment-matching algorithms in the liter-
ature is to start by defining a subset S of the PH distributions, and then match
each input distribution G to a distribution in S. The reason for limiting the
solution to a distribution in S is that this narrows the search space and thus
improves the computational efficiency of the algorithm. Observe that n-phase
PH distributions have ©(n?) free parameters [16] (see Figure 1), while S can
be defined to have far fewer free parameters. For all computationally efficient
algorithms in the literature, S was chosen to be some subset of the acyclic PH
distributions, where an acyclic PH distribution is a PH distribution whose under-
lying continuous time Markov chain has no transition from state i to state j for
all i > j. One has to be careful in how one defines the subset S, however. If S is
too small it may limit the space of distributions which can be well-represented.’
Also, if S is too small it may exclude solutions with minimal number of phases.

In this paper we define a subset of the PH distributions, which we call EC
distributions. EC distributions have only six free parameters which allows us to
derive a closed-form solution for these parameters in terms of the input distri-
bution G. The set of EC distributions is general enough, however, that for all
distributions GG that can be well-represented by a PH distribution, there exists
an EC distribution, E, such that G is well-represented by E. Furthermore, the
class of EC distributions is broad enough such that for any distribution G, that
is well-represented by an n-phase acyclic PH distribution, there exists an EC
distribution E with at most n+ 1 phases, such that G is well-represented by E.?

! For example, let G be a distribution whose first three moments are 1, 2, and 12.
The system of equations for matching G to a 2-phase Coxian™ distribution (see
Figure 2) with three parameters (A1, A2, p) results in either A1 or A2 being negative.
As another example, it can be shown that the generalized Erlang distribution is not
general enough to well-represent all the distributions with low variability (see [17]).

2 Ideally, one would like to evaluate the number of phases with respect to the minimal
(possibly-cyclic) PH distribution, i.e., the PH distribution is not restricted to be



Fig.1. A PH distribution is the distribution of the absorption time in finite state
continuous time Markov chain. The figure shows a 4-phase PH distribution. There are
n = 4 states, where the ith state has exponentially-distributed sojourn time with rate
Ai. With probability po; we start in the i¢th state, and the next state is state j with
probability p;;. Each state ¢ has probability p;5 that the next state will be the absorbing
state. The absorption time is the sum of the times spent in each of the states.

Preliminary Definitions Formally, we will use the following definitions:

Definition 1. A distribution G is well-represented by a distribution F if F
and G agree on their first three moments.

The normalized moments, introduced in [18], help provide a simple representa-

tion and analysis of our closed-form solution. These are defined as follows:

Definition 2. Let u} be the k-th moment of a distribution F for k =1,2,3. The

F
normalized k-th moment m! of F for k = 2,3 is defined to be ms = (:F"’)Q
1
F
F _ U3
and ms = PinE

Notice the correspondence to the coefficient of variability Cp and skewness vp
’ F
of F:ml = C% + 1 and m¥ = vp\/ml where vp = (Nﬁﬁ (vr and vp and
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closely related, since vp = %: where ﬂf is the centralized k-th moment of
2

F for k=2,3.)

Definition 3. PHs refers to the set of distributions that are well-represented
by a PH distribution.

It is known that a distribution G is in PHjz iff its normalized moments satisfy
m§ > mS > 1[10]. Since any nonnegative distribution G satisfies m$’ > m$ > 1
[13], almost all the nonnegative distributions are in PHs.

acyclic. However, the necessary and sufficient number of phases required to well-
represent a given distribution by a (possibly-cyclic) PH distribution is unknown.



Fig. 2. An n-phase Coxian distribution is a particular n-phase PH distribution whose
underlying Markov chain is of the form in the figure, where 0 < p; < 1 and A\; > 0
for all 0 < i < n. An n-phase Coxian™ distribution is a particular n-phase Coxian
distribution with p; = 1.

Definition 4. OPT(G) is defined to be the minimum number of necessary phases
for a distribution G to be well-represented by an acyclic PH distribution.

Previous Work Prior work has contributed a very large number of moment
matching algorithms. While all of these algorithms excel with respect to some
of the four measures mentioned earlier (number of moments matched; generality
of the solution; computational efficiency of the algorithm; and minimality of the
number of phases), they all are deficient in at least one of these measures as
explained below.

In cases where matching only two moments suffices, it is possible to achieve
solutions which perform very well along all the other three measures. Sauer and
Chandy [21] provide a closed-form solution for matching two moments of a gen-
eral distribution in PH3. They use a two-branch hyper-exponential distribution
for matching distributions with squared coefficient of variability C? > 1 and a
generalized Erlang distribution for matching distributions with C2 < 1. Marie
[15] provides a closed-form solution for matching two moments of a general dis-
tribution in P#Hz. He uses a two-phase Coxian™ distribution* for distributions
with C? > 1 and a generalized Erlang distribution for distributions with C? < 1.

If one is willing to match only a subset of distributions, then again it is
possible to achieve solutions which perform very well along the remaining three
measures. Whitt [26] and Altiok [2] focus on the set of distributions with C? >
1 and sufficiently high third moment. They obtain a closed-form solution for
matching three moments of any distribution in this set. Whitt matches to a
two-branch hyper-exponential distribution and Altiok matches to a two-phase
Coxian™ distribution. Telek and Heindl [25] focus on the set of distributions with
c? > % and various constraints on the third moment. They obtain a closed-form
solution for matching three moments of any distribution in this set, by using a
two-phase Coxian™ distribution.

Johnson and Taaffe [10,9] come closest to achieving all four measures. They
provide a closed-form solution for matching the first three moments of any dis-
tribution G € PHs. They use a mixed Erlang distribution with common order.

3 The number of necessary phases in general PH distributions is not known. As shown
in the next section, all the previous work on computationally efficient algorithms for
mapping general distributions concentrates on a subset of acyclic PH distributions.

* Coxian™ and Coxian distributions are particular PH distributions shown in Figure 2.



Unfortunately, this mixed Erlang distribution does not produce a minimal solu-
tion. Their solution requires 20 PT(G) + 2 phases in the worst case.

In complementary work, Johnson and Taaffe [12,11] again look at the prob-
lem of matching the first three moments of any distribution G € PHs, this time
using three types of PH distributions: a mixture of two Erlang distributions, a
Coxian™ distribution, and a general PH distribution. Their solution is nearly
minimal in that it requires at most OPT(G) + 2 phases. Unfortunately, their
algorithm requires solving a nonlinear programing problem and hence is very
computationally inefficient.

Above we have described the prior work focusing on moment-matching algo-
rithms (three moments), which is the focus of this paper. There is also a large
body of work focusing on fitting the shape of an input distribution using a PH
distribution. Of particular recent interest has been work on fitting heavy-tailed
distributions to PH distributions, see for example the work of [3,6,7, 14, 20, 24].
There is also work which combines the goals of moment matching with the goal
of fitting the shape of the distribution, see for example the work of [8,22]. The
work above is clearly broader in its goals than simply matching three moments.
Unfortunately there’s a tradeoff: obtaining a more precise fit requires many more
phases. Additionally it can sometimes be very computationally inefficient [8, 22].

The Idea Behind the EC Distribution In all the prior work on compu-
tationally efficient moment-matching algorithms, the approach was to match a
general input distribution G to some subset S of the PH distributions. In this
paper, we show that by using the set of EC distributions as our subset S, we
achieve a solution which excels in all four desirable measures mentioned earlier.
We define the EC distributions as follows:

Definition 5. An n-phase EC (Erlang-Cozxian) distribution is a particular PH
distribution whose underlying Markov chain is of the form in Figure 3.

Fig. 3. The Markov chain underlying an EC distribution, where the first box above de-
picts the underlying continuous time Markov chain in an N-phase Erlang distribution,
where N = n — 2, and the second box depicts the underlying continuous time Markov
chain in a two-phase Coxian™ distribution. Notice that the rates in the first box are
the same for all states.

We now provide some intuition behind the creation of the EC distribution.
Recall that a Coxian distribution is very good for approximating any distribution
with high variability. In particular, a two-phase Coxian distribution is known to



well-represent any distribution that has high second and third moments (any
distribution G that satisfies m§ > 2 and m§ > 2m{) [18]. However a Coxian
distribution requires many more phases for approximating distributions with
lower second and third moments. (For example, a Coxian distribution requires at
least n phases to well-represent a distribution G' with m§ < ”TH for integers n >
1) [18]. The large number of phases needed implies that many free parameters
must be determined which implies that any algorithm that tries to well-represent
an arbitrary distribution using a minimal number of phases is likely to suffer from
computational inefficiency.

By contrast, an n-phase Erlang distribution has only two free parameters and
is also known to have the least normalized second moment among all the n-phase
PH distributions [1]. However the Erlang distribution is obviously limited in the
set of distributions which it can well-represent.

Our approach is therefore to combine the Erlang distribution with the two-
phase Coxian distribution, allowing us to represent distributions with all ranges
of variability, while using only a small number of phases. Furthermore the fact
that the EC distribution has very few free parameters allows us to obtain closed-
from expressions for the parameters (n, p, Ay, Ax1, Ax2, px) of the EC distri-
bution that well-represents any given distribution in PHs.

Outline of Paper We begin in Section 2 by characterizing the EC distribution
in terms of normalized moments. We find that for the purpose of moment match-
ing it suffices to narrow down the set of EC distributions further from six free
parameters to five free parameters, by optimally fixing one of the parameters.
We next present three variants for closed-form solutions for the remaining
free parameters of the EC distribution, each of which achieves slightly different
goals. The first closed-form solution provided, which we refer to as the simple
solution, (see Section 3) has the advantage of simplicity and readability; however
it does not work for all distributions in PH3 (although it works for almost all).
This solution requires at most OPT(G) + 2 phases. The second closed-form
solution provided, which we refer to as the improved solution, (see Section 4.1)
is defined for all the input distributions in PH3 and uses at most OPT(G) + 1
phases. This solution is only lacking in numerical stability. The third closed-
form solution provided, which we refer to as the numerically stable solution, (see
Section 4.2) again is defined for all input distributions in PH3. It uses at most
OPT(G) + 2 phases and is numerically stable in that the moments of the EC
distribution are insensitive to a small perturbation in its parameters.

2 EC Distribution: Motivation and Properties

The purpose of this section is twofold: to provide a detailed characterization of
the EC distribution, and to discuss a narrowed-down subset of the EC distri-
butions with only five free parameters (\y is fixed) which we will use in our
moment-matching method. Both of these results are summarized in Theorem 1.

To motivate the theorem in this section, consider the following story. Suppose
one is trying to match the first three moments of a given distribution G to a



distribution P which consists of a generalized Erlang distribution (in a general-
ized Erlang distribution the rates of the exponential phases may differ) followed
by a two-phase Coxian™ distribution. If the distribution G has sufficiently high
second and third moments, then a two-phase Coxian® distribution alone suffices
and we need zero phases of the generalized Erlang distribution. If the variability
of GG is lower, however, we might try appending a single-phase generalized Er-
lang distribution to the two-phase Coxian™ distribution. If that doesn’t suffice,
we might append a two-phase generalized Erlang distribution to the two-phase
Coxian™ distribution. If our distribution G has very low variability we might
be forced to use many phases of the generalized Erlang distribution to get the
variability of P to be low enough. Therefore, to minimize the number of phases
in P, it seems desirable to choose the rates of the generalized Erlang distribution
so that the overall variability of P is minimized.

Continuing with our story, one could express the appending of each additional
phase of the generalized Erlang distribution as a “function” whose goal is to
reduce the variability of P yet further. We call this “function ¢.”

Definition 6. Let X be an arbitrary distribution. Function ¢ maps X to ¢(X)
such that ¢(X) =Y % X, where Y is an exponential distribution with rate Ay
independent of X, Y %X is the convolution of Y and X, and Ay is chosen so that
the normalized second moment of ¢(X) is minimized. Also, ¢'(X) = ¢(¢' (X))
refers to the distribution obtained by applying function ¢ to ¢! ' (X) for integers
1 >1, where ¢°(X) = X.

Observe that, when X is a k-phase PH distribution, ¢(X) is a (k + 1)-phase
PH distribution whose underlying Markov chain can be obtained by appending
a state with rate Ay to the Markov chain underlying X, where Ay is chosen so
that mg(x) is minimized. In theory, function ¢ allows each successive exponential
distribution which is appended to have a different first moment. The following
theorem shows that if the exponential distribution Y being appended by function
¢ is chosen so as to minimize the normalized second moment of ¢(X) (as specified
by the definition), then the first moment of each successive Y is always the same
and is defined by the simple formula shown in (1). The theorem below further
characterizes the normalized moments of ¢!(X).

Theorem 1. Let ¢'(X) =Y, ¢! "' (X) and let \y, = - for 1 =1,...,N. Then,
Hq

1
M G .
forl=1,...,N.
The normalized moments of Zn = ¢™N (X) are:
Zy _ (M) —L(N+1)+1
In _ mg(mé(
mi N = 5
(mf —1D(N+1)+1)((mf —1)N+1)
+(m§‘ ~1)N (3m3" + (m3y" — 1)(m3 +2)(N +1) + (m3 — 1)*(N +1)%) @)

(m¥ —1)(N+1)+1) ((m¥ —1)N +1)°



Observe that, when X is a k-phase PH distribution, ¢*¥ (X) is a (k+ N)-phase
PH distribution whose underlying Markov chain can be obtained by appending
N states with rate Ay to the Markov chain underlying X, where Ay is chosen
so that mg(x) is minimized. The remainder of this section will prove the above
theorem and a corollary.

Proof (Theorem 1).
We first characterize Z = ¢(X) =Y % X, where X is an arbitrary distribu-
tion with a finite third moment and Y is an exponential distribution. The nor-

X 2 Y
malized second moment of Z is mf = %7 where y = Z—‘X Observe that
° 1
m% is minimized when y = ms — 1, namely,
Y X b'e
py = (my —ug . (4)

Observe that when equation (4) is satisfied, the normalized second moment of
Z satisfies:

7 1
my, =2 — —m;( , (5)
and the normalized third moment of Z satisfies:
P 1 x  3(m3 —1)
L s oy S VK B ©

We next characterize Z; = ¢! (X) = Y; * ¢! "1 (X) for 2 < 1 < N: By (5) and
(6), (2) and (3) follow from solving the following recursive formulas (where we

use b; to denote mfl(X) and B, to denote mg,’l(X)):
1
b1 =2——; 7
I+1 o (7)
B 3(b—1
By l (b ) (8)

BT
The solution for (7) is given by

_ by — 1)1 +1
O 9)
for all I > 1, and the solution for (8) is given by
biBi + (b1 — 1)(I = 1) (3b1 + (b1 — 1) (b1 + 2)I + (b1 — 1)°1%) (10)
l =

(b =D+ 1) (b — )T — 1) + 1)
for all I > 1. Equations (9) and (10) can be easily verified by substitution into
(7) and (8), respectively. This completes the proof of (2) and (3).

The proof of (1) proceeds by induction. When I = 1, (1) follows from (4).
Assume that (1) holds when I =1, ..., t. Let Z; = ¢!(X). By (2), which is proved

above, mft — (ma DD+ Thus, by (4)

(m¥ —1)t+1
Yit Z 1 Z X 1 X
Mlt ! (”lzt )Mlt (7”2 )/”1 .



Corollary 1. Let Zy = ¢ (X). If X € {F | 2<mi}, then
Zn e {F| N8 <mi < M.

Corollary 1 suggests the number N of times that function ¢ must be applied to
X to bring m2ZN into the desired range, given the value of mj . Observe that
any Coxian* distribution is in {F | 2 < ml'}

Proof (Corollary 1). By (2), mZ™ is a continuous and monotonically increasing
function of mz. Thus, the infimum and the supremum of mQZN are given by

evaluating mf” at the infimum and the supremum, respectively, of mz. When
m?—)?,mQZN—)%—ﬁ.Whenm?—)oo,mQZN—)%. |

3 A Simple Closed-Form Solution

Theorem 1 implies that the parameter Ay of the EC distribution can be fixed
without excluding the distributions of lowest variability from the set of EC dis-
tributions. In the rest of the paper, we constrain Ay as follows:

1

Ay = ——
(m3" — 1)y

(11)
and derive closed-form representations of the remaining free parameters (n,
P, Ax1, Ax2, Px), where these free parameters will determine ms and pf in
(11). Obviously, at least three degrees of freedom are necessary to match three
moments. As we will see, the additional degrees of freedom allow us to accept
all input distributions in PHsz, use a smaller number of phases, and achieve
numerical stability.
We introduce the following sets of distributions to describe the closed-form
solutions compactly:

Definition 7. Let U;, M;, and L be the sets of distributions defined as follows:

U[J:{Fm§>2 andm§>2m§fl},
) + 2 p+ 1

Lliz{FZ,+ <m§<z+ andm§>2m§—1},
i+ 1

Moz{Fm§>2 andm§=2m§—1},
i+ 2 i+ 1

./\/h:{Fi m§<i{mdm§:2m§fl},
1+ 1 i

Ez{Fm§>1andm§<m§<2m§—1},

for nonnegative integers i. Also, let Ut = U U;, MT = UR M, U = UgUUT,
and M = MouU M™.

These sets are illustrated in Figure 4. The next theorem provides the intuition
behind the sets U, M, and L£; namely, for all distributions X, the distributions
X and A(X) are in the same classification region (Figure 4).
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Fig. 4. A classification of distributions. The dotted lines delineate the set of all non-
negative distributions G (m§ > m§ > 1).

Lemma 1. Let Zn = AN(X) for integers N > 1. If X € U (respectively,
XeM,XeL) then Zy €U (respectively, Zy € M, Zny € L) for all N > 1.

Proof. We prove the case when N = 1. The theorem then follows by induction.
Let Z = A(X). By (2), mj = an’ and

2

o2my —1 X _1
xm2 x +372 x
my (2my — 1) m;

mi = (respectively, <, and >)

= (respectively, <, and >) 2mZ —1,

where the last equality follows from my = 27lmz . O
2

By Corollary 1 and Lemma 1, it follows that:

Corollary 2. Let Zn = AN(X) for N > 0. If X € Uy (respectively, X € My),
then Zn € Un (respectively, Zn € My ).

The corollary implies that for all G € Uy U My, G can be well-represented
by an (NN 4 2)-phase EC distribution with no mass probability at zero (p = 1),
since, for all F' € Uy U My, F can be well-represented by two-phase Coxian™
distribution, and Zy = A™(X) can be well-represented by (2 + N)-phase EC
distribution. It can also be easily shown that for all G € Ly, G can be well-
represented by an (N + 2)-phase EC distribution with nonzero mass probability
at zero (p < 1).

From these properties of AN (X), it is relatively easy to provide a closed-
form solution for the parameters (n, p, Ax1, Ax2, px) of an EC distribution Z
so that a given distribution G is well-represented by Z. Essentially, one just needs
to find an appropriate N and solve Z = AN(X) for X in terms of normalized
moments, which is immediate since N is given by Corollary 1 and the normalized
moments of X can be obtained from Theorem 1. A little more effort is necessary
to minimize the number of phases and to guarantee numerical stability.

In this section, we give a simple solution, which assumes the following condi-
tion on A: A € PHy , where PH; =U U MU L. Observe PH; includes almost
all distributions in PH3. Only the borders between the U;’s are not included. We
also analyze the number of necessary phases and prove the following theorem:



Theorem 2. Under the simple solution, the number of phases needed to well-
represent any distribution G by an EC distribution is at most OPT(G) + 2.

The Closed-Form Solution: The solution differs according to the classifica-
tion of the input distribution G. When G € Uy U My, a two-phase Coxian™
distribution suffices to match the first three moments. When G € U+ U M+,
G is well-represented by an EC distribution with p = 1. When G € L, G is
well-represented by an EC distribution with p < 1. For all cases, the parameters
(n, p, Ax1, Ax2, px) are given by simple closed formulas.

(i) If G € Uy U My, then a two-phase Coxian™ distribution suffices to match
the first three moments, i.e., p =1 and n = 2 (N = 0). The parameters (Ax,
Ax2, px) of the two-phase Coxian™ distribution are chosen as follows [25, 18]:

u~+ Vu? —4v u—vVu? —4v Axapf Axipf —1)
Axi = Y T A= — Y2 T and px = L :
23 243 Ax 1
_ 6—2m§ N 12—6mS
where u = —=—%7 and v = T GmG )"

2 3
(i) If G e UT U M™, Corollary 1 specifies number, n, of phases needed:

G

n:min{km§>kk1}={m?21+lJ, (12)
— G _

el
my

(N = {mgil — 1J) Next, we find the two-phase Coxian™ distribution X €

Uy U My such that G is well-represented by Z, where Z(-) = Y(=2)*(.) x X(.)
and Y is an exponential distribution satisfying (1), Y(*~2* is the (n — 2)-th
convolution of Y, and Y("~2* %« X is the convolution of Y("~2* and X. To
shed light on this expression, consider i.i.d. random variables Vi, ... V} whose

distributions are Y and a random variable Vj1. Then random variable fill Vi
has distribution Z. By Theorem 1, this can be achieved by setting

X (n— 3)m§ —(n—2) X ﬁmg —Q X II?
= - = 2hs — @, = 13
Il ey e L s R O e e M
where

a=(n-2)(my —1) (n(n —1)(m3)” = n(2n - 5)my + (n—1)(n — 3)) ,
B=(n-1m) - (n-2) ((n—-2m —(n-3))".

Thus, we set p = 1, and the parameters (Ax1, Ax2, px) of X are given by case

(i), using the first moment and the normalized moments of X specified by (13).
(iii) If G € L, then let

1

G
p= ImlG —me’ mgv :pmg, mgv :pm?, and H¥V = H—l- (14)
my — My P

G is then well-represented by distribution Z, where Z(-) = W (-)p+1—p. To shed
light on this expression, consider a random variables V; whose distribution is W

3



where W is an EC distribution whose first moment and normalized moments are
specified by (14). Then,

Vo = V1 with probability p
>~ )0 with probability 1 — p.

has distribution Z, since Pr(V, < t) = pPr(V; < t) + (1 — p).

Observe that p satisfies 0 < p < 1 and W satisfies W € M. If W € My,
the parameters of W are provided by case (i), using the normalized moments
specified by (14). If W € M, the parameters of W are provided by case (ii),
using the normalized moments specified by (14).

Figure 5 shows a graphical representation of the simple solution.

mg mg

10

Fig. 5. A graphical representation of the simple solution. Let G be the input distribu-
tion. (i) If G € Uy UMy, G is well-represented by a two-phase Coxian™ distribution X.
(ii) If G € UTUM™, G is well-represented by AN (X), where X is a two-phase Coxian™
distribution. (iii) If G € £, G is well-represented by Z, where Z is W = A"V (X) with
probability p and 0 with probability 1 — p and X is a two-phase Coxian™ distribution.

Analyzing the Number of Phases Required The proof of Theorem 2 relies
on the following theorem:

Theorem 3. [18] Let S™ denote the set of distributions that are well-represented
by an n-phase acyclic PH distribution. Let Sy ™ and £M be the sets defined by:

1 3
Sy™ = {F‘mf > nt and mi > nt mf};
n n+ 2
S(n):{F‘mgzn-i-l andm§:n+2}
n n

for integers n > 2. Then S C Sy uygm for integers n > 2.

Proof (Theorem 2). We will show that (i) if a distribution G is in Sy, N (U U M),
then at most [ + 1 phases are used, and (ii) if a distribution G is in SV,
then at most I + 2 phases are used. Since SU) ¢ Sv(l) U &W by Theorem 3,



this completes the proof. Notice that the simple solution is not defined when
Geel.

(i) Suppose G € U UM. If G € Sy, then by (12) the EC distribution
provided by the simple solution has at most [ + 1 phases. (ii) Suppose G € L. If

G .
G e Sy, then m¥V = Zméniimg > 2. By (12), the EC distribution provided
by the simple solution has at most [ + 2 phases. O

4 Variants of Closed-Form Solutions

In this section, we present two refinements of the simple solution (Section 3),
which we refer to as the improved solution and the numerically stable solution.

4.1 An Improved Closed-Form Solution

We first describe the properties that the improved solution satisfies. We then
describe the high level ideas behind the construction of the improved solution.
Figure 6 is an implementation of the improved solution. See [17] for details on
how the high level ideas described above are realized in the improved solution.

Properties of the Improved Solution This solution is defined for all the
input distributions G € PH3 and uses a smaller number of phases than the
simple solution. Specifically, the number of phases required in the improved
solution is characterized by the following theorem:

Theorem 4. Under the improved solution, the number of phases needed to well-
represent any distribution G by an EC distribution is at most OPT(G) + 1.

For a proof of the theorem, see [17].

High Level Ideas Consider an arbitrary distribution G € PH3z. Our approach
consists of two steps, the first of which involves constructing a baseline EC
distribution, and the second of which involves reducing the number of phases
in this baseline solution. If G € PH; , then the baseline solution used is simply
given by the simple solution (Section 3). If G ¢ PH , then to obtain the baseline

EC distributing we first find a distribution W € PH; such that :%V: = :—32 and
2 2

my < m§ and then set p such that G is well-represented by distribution Z,

where Z(-) = W(:)p + 1 — p. (See Section 3 for an explanation of Z). The

parameters of the EC distribution that well-represents W are then obtained by

the simple solution (Section 3).

Next, we describe an idea to reduce the number of phases used in the baseline
EC distribution. The simple solution (Section 3) is based on the fact that a
distribution X is well-represented by a two-phase Coxian distribution when X €
Uy U M. In fact, a wider range of distributions are well-represented by the set
of two-phase Coxian distributions. In particular, if

3
XE{F‘§§m§§2andm§(:2m§fl},



then X is well-represented by a two-phase Coxian distribution. In fact, the
above solution can be improved upon yet further. However, for readability, we
postpone this to [17].

(n, p, Ay, Ax1, Ax2, px) = Improved(pf, py, pg)
Input: the first three moments of a distribution G: uf, pS, and u§.
Output: parameters of the EC distribution, (n, p, Ay, Ax1, Ax2, px)

£l G
G H el H
1.my = —25; m3g = .
27w 37 wFu§
(mG) +2m§ -1 . a a . .
23 ) if mg’ > 2my — 1, and w7 1 an integer,
— 1 e G €
2.p= T a3 if mg’ < 2my" — 1,
2 3
1 otherwise.
G
Wo_ B W G. wo_ el
3. m =5 My =pmy; M3z =pmg.
w
m .
[ P J ifmY =2m¥ —1, and m¥ <2
4. n= 2W
[ i B T+ 1J otherwise.
2

_ (- Sl 2y u
—ymW —(n_1)’ pu = o 2)m2X (n_3)

2
N

2

5

6. a=(n—2)(my —1) (n(n— 1)(my)? — n(2n — 5)77215( +(n—-1)(n- 3))
7.08= (('nfl)mg — (1172)) ((n72)m§ — (n73)) .
8

w

X _ Bmg —«a
.m3 = mE
1 if 3m3 = 2m3 0 if 3m3° = 2m3
9. u= 6—2m ;v = 12-6m -
—< 3+ otherwi i —x=—x 2% otherwi
5mX ¥ otherwise X EmE —omX) otherwise

10. Ax, = u+\/u2 dv u—y/u2—4v _ Axopf Ax1py —1) Ay = 1

P Ax2 = X = .
2Hf( P )\XULf( ) (mj‘fl)u{‘

Fig. 6. An implementation of the improved closed-form solution.

4.2 A Numerically Stable Closed-Form Solution

The improved solution (Section 4.1) is not numerically stable when G € U and
m$ is close to H'Tl for integers [ > 1, i.e., on the borders between U;’s. In this
section, we present a numerically stable solution. We first describe the properties
that the numerically stable solution satisfies. We then describe the high level
ideas behind the construction of the numerically stable solution. Figure 6 is an
implementation of the numerically stable solution. See [17] for details on how the

high level ideas described above are realized in the numerically stable solution.

Properties of the Numerically Stable Solution The numerically stable
solution uses at most one more phase than the improved solution and is defined

5 While this further improvement reduces the number of necessary phases by one for
many distributions, it does not improve the worst case performance.
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If m§ < 2m$ — 1, use Improved.
Otherwise, replace steps 2-4 of Improved as follows:

3m§ =24, /(m§)2—2m§ 42

2.n=

2(m§ —1)
_ 1 n—1 n
3 p= 2m§ (TL*Z +n71)
G
W _ b1, wo_ d. _ e}
4. —71, Mmy =pmy; Mz = pmg

Fig. 7. An implementation of the numerically stable closed-form solution.

for all the input distributions in PH3. Specifically, the number of phases required
in the numerically stable solution is characterized by the following theorem:

Theorem 5. Under the numerically stable solution, the number of phases needed
to well-represent any distribution G by an EC distribution is at most OPT(G)+2

A proof of Theorem 5 is given in [17].
The EC distribution, Z, that is provided by the numerically stable solution
is numerically stable in the following sense:

Proposition 1. Let Z be the EC distribution provided by the numerically stable
solution, where the input distribution G is well-represented by Z. Let (n, p, Ay,
Ax1, Ax2, px ) be the parameters of Z. Suppose that each parameter p, Ay, Ax1,
Ax2, and px has an error Ap, A/\y, Alx1, Adxs, and Apx, respectively, in

absolute value. Let Au? = |u? — u§’| be the error of the first moment of Z and let
Am?Z = |m? —m§| be the error of the i-th normalized moment of Z fori = 2,3.
If Ap, A>‘Y , A;;il , A)\);f, and 22X o e = 1077 (respectively, ¢ = 1072), then

ofG satzsﬁes the condztwn in Figure 8 (a) (respectively, (b)).

In Proposition 1, € was chosen to be 1075 and 109, respectively. These corre-
spond to the precisions of the float (six decimal digits) and double (ten decimal
digits) data type in C, respectively. In Figure 8 (b), it is impossible to distin-
guish the set of all non-negative distributions from the set of distributions for
which the stability guarantee of Proposition 1 holds. Closed form formulas for
the curves in Figure 8 and a proof of Proposition 1 are given in [17].

High Level Ideas Achieving the numerical stability is based on the same idea

as treating input distributions which are not in PH; . Namely, we first find an
G

EC distribution W such that m3 = % and m’ < m§ so that the solution

is numerically stable for W, and then set p such that G is well-represented by
Z()=W(E)p+1-—p. (See Section 3 for an explanation of 7).




Stability region (err:lO’S)

Stability region (err:10’9)

Fig. 8. If the normalized moments of G lie between the two solid lines, then the normal-
ized moments of the EC distribution Z, provided by the numerically stable solution,
are insensitive to the small change (e = 1075 for (a) and € = 10~° for (b)) in the
parameters of Z. The dotted lines delineate the set of all nonnegative distributions G
(ms' > m§ >1).

5 Conclusion

In this paper, we propose a closed-form solution for the parameters of a PH
distribution, P, that well-represents a given distribution G. Our solution is the
first that achieves all of the following goals: (i) the first three moments of G and P
agree, (ii) any distribution G that is well-represented by a PH distribution (i.e.,
G € PHs3) can be well-represented by P, (iii) the number of phases used in P is
at most OPT(G) + ¢, where ¢ is a small constant, (iv) the solution is expressed
in closed form. Also, the numerical stability of the solution is discussed.

The key idea is the definition and use of EC distributions, a subset of PH dis-
tributions. The set of EC distributions is defined so that it includes minimal PH
distributions, in the sense that for any distribution, G, that is well-represented
by n-phase acyclic PH distribution, there exists an EC distribution, E, with at
most n + 1 phases such that G is well-represented by E. This property of the
set of EC distributions is the key to achieving the above goals (i), (ii), and (iii).
Also, the EC distribution is defined so that it has a small number (six) of free
parameters. This property of the EC distribution is the key to achieving the
above goal (iv). The same ideas are applied to further reduce the degrees of
freedom of the EC distribution. That is, we constrain one of the six parameters
of the EC distribution without excluding minimal PH distributions from the set
of EC distributions.

We provide a complete characterization of the EC distribution with respect to
the normalized moments; the characterization is enabled by the simple definition
of the EC distribution. The analysis is an elegant induction based on the recursive
definition of the EC distribution; the inductive analysis is enabled by a solution



to a nontrivial recursive formula. Based on the characterization, we provide three
variants of closed-form solutions for the parameters of the EC distribution that
well-represents any input distribution, G, that can be well-represented by a PH
distribution (G € PHs).

One take-home lesson from this paper is that the moment-matching problem
is better solved with respect to the above four goals by sewing together two or
more types of distributions, so that one can gain the best properties of both.
The EC distribution sews the two-phase Coxian distribution and the Erlang
distribution. The point is that these two distributions provide several different,
and complementary desirable properties.

Future work includes assessing the minimality of our solution with respect
to general (cyclic) PH distributions. If our solution is not close to minimal, then
finding a minimal cyclic PH distribution that well-represents any given distribu-
tion G is also important. While acyclic PH distributions are well characterized
in [18], the minimum number of phases required for a general (cyclic) PH distri-
bution to well-represent a given distribution is not known.
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