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ABSTRACT
We consider a pricing in a single observable queue, where
customers all have the same valuation, V , and the same
waiting cost, v. It is known that earning rate is maximized
in such a model when state-dependent pricing is used and an
admissions threshold is deployed whereby arriving customers
may not join the queue if the total number of customers ex-
ceeds this threshold. This paper is the first to explicitly
derive the optimal threshold. We use our explicit formula-
tion to obtain asymptotic results on how the threshold grows
with V .
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1. INTRODUCTION

We consider the classical setting of Naor (1969) and Chen
and Frank (2001), wherein a firm is selling a service to
stochastically arriving customers. The customers gain util-
ity from receiving the service, but this utility decreases as
the delay experienced by customers increases. The goal of
the firm is to price its service and choose an admission policy
so as to maximize its earning rate.

Customers are assumed to be identical in the value they
obtain from receiving service (their reservation value), V ,
and their waiting cost per unit time, v. They differ only
in their arrival times, which occur according to a Poisson
process with rate λ, and their service requirements, which
are assumed to be independent identically distributed expo-
nential random variables with rate µ = 1.

We assume that customers can see the current state of the
queue (a.k.a. observable queue) and can use this in deter-
mining whether they want to join the queue. Given that the
length of the queue is observable, and customers experience
a greater net value (before paying a price) when the queue is
shorter, it will be advantageous for a profit maximizing firm
to charge different prices at different queue states. That is,
the firm charges p(n) when there are n ≥ 0 customers in the
system (including the queue and the customer being served,
if any). When the queue is shorter, customers are willing
to pay more to join the queue, so p(n) is higher for small n
and lower for large n.
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When a customer arrives, she observes the state of the
system, n (total number of jobs in the system). It only pays
for the customer to join the queue if:

V − v · E[T |n] − p(n) ≥ 0 (1)

where E[T |n] is the expected response time given that there
are n customers in the system, not including the new ar-
rival. Since the average service time is 1 for all customers,
E[T |n] = n + 1. Setting v = 1, we can rewrite (1) to find
that the customer joins the system if and only if:

V − (n + 1) − p(n) ≥ 0 (2)

There is a long history of studying the question of how
the firm should set its prices, so as to maximize its earning
rate, R. This history can be summarized in the work of
Chen and Frank (2001), who find that the earning rate is
maximized by charging prices that are as high as possible
in each state (i.e., set p(n) = V − (n + 1)) while impos-
ing an appropriate threshold, k∗, such that arrivals may not
join the queue beyond this state. While this threshold can
be computed numerically, none of the prior work explicitly
derives a closed form for this threshold.

It may not be obvious why a threshold is a good idea,
since, by definition, it means that some customers are turned
away (a customer seeing k∗ jobs in the system is refused
service). However, imposing a threshold forces the queue
to stay short, which is exactly the region where prices are
highest; thus, if λ is high, a threshold can end up greatly
increasing the earning rate, despite forgoing some potential
revenue.

The purpose of our paper is to explicitly derive the opti-
mal threshold, k∗, which maximizes the earning rate:

R(k, λ, V ) = λ

k−1
X

n=0

p(n) · π(k)
n (3)

where π
(k)
n represents the limiting probability that the state

of the queue is n, given that the queue has a threshold of k,
and p(n) = V − (n + 1) is the price charged when the state
is n. While we consider the case where µ = 1 and v = 1,
our results easily generalize to other values of µ and v.

2. RESULTS SUMMARY

Our contributions are as follows:



• We find that optimal threshold is given by the formula

k∗ =

‰

(1 − λ)V +
1

1 − λ
− 1

ln(λ)
· X − 2

ı

where

X = W

 

ln(λ) · λ(1−λ)V + 1
1−λ

1 − λ

!

where W is the greater branch of the Lambert W func-
tion for λ < 1, and the lesser branch for λ > 1. In the
remaining case where λ = 1,

k∗ =

‰

1

2

“√
1 + 8V − 3

”

ı

The Lambert W (product logarithm) function is a well
understood non-elementary function (see Corless et al.
(1996) for an overview of the theory and applications
of the Lambert W function). Although to our knowl-
edge, this function has not appeared in the analysis of
queueing models with pricing, it has been applied in
related areas involving queueing. In Libman and Orda
(2002), the Lambert W function is used in computing
the optimal time to wait before retrying an action un-
der M/M/1-induced delay, and Gupta and Weerawat
(2006) use the function to compute the optimal inven-
tory level in a two stage queueing model.

• We find the following strikingly simple approximation
for the optimal earning rate

R(k∗, λ, V ) ≈ V − (k∗ + 1)

• We find the following asymptotic characterizations for
k∗ as V → ∞:

k∗ ∼

8

>

<

>

:

(1 − λ)V if λ > 1√
2V if λ = 1

logλ(V ) if λ > 1

and these asymptotic results can be used together with
the aforementioned approximation to obtain the fol-
lowing asymptotic characterizations of R(k∗):

R(k∗) ∼
(

λV if λ < 1

V if λ ≥ 1

• Finally, we demonstrate some simple examples where
the optimal threshold can produce a many-fold in-
crease in earning rate.

3. THE ANALYSIS

In the interest of space, we only show the analysis for our
first result, the derivation of the closed form expression for
the optimal threshold, k∗, which minimizes the earning rate.

We start by deriving the earning rate, which, after some
lengthy algebra, can be expressed as follows (assuming λ 6=
1):

R(k, λ, V ) = λ
k−1
X

n=0

p(n) · π(k)
n

=
λ

1 − λk+1
· 1

1 − λ

·
h

V (1 − λk)(1 − λ) + λk(1 + k − kλ) − 1
i

(4)

In the case where λ = 1, it is straightforward to compute:

R(k, 1, V ) = k ·
„

V

k + 1
− 1

2

«

(5)

3.1 The forward difference technique
We seek to find the optimal threshold

k∗ = arg max
k∈Z+

{R(k, λ, V )}.

We know that at least one such optimal threshold exists, see
Chen and Frank (2001). We consider the function ∆R(·),
defined by ∆R(x) = R(x + 1) − R(x), also known as the
forward difference of R(·). This function loosely captures
the idea of a “discrete derivative” which we can use with
the modified first order condition ∆R(x) = 0. The following
theorem, stated without proof, formalizes this approach.

Theorem 3.1. The optimal threshold k∗ is achieved at
k∗ = 0, or k∗ = ⌈x⌉ for some x ∈ R+ that satisfies

R (x + 1, λ, V ) −R (x, λ, V ) = 0 (6)

We will refer to x as the unrounded optimal threshold.
Solving the forward difference equation for x, we have:

0 = R(x, λ, V ) −R(x + 1, λ, V )

=
λ

1 − λx+1
· 1

1 − λ

· [V (1 − λx)(1 − λ) + λx(1 + x − xλ) − 1]

− λ

1 − λx+2
· 1

1 − λ

·
ˆ

V (1 − λx+1)(1 − λ) + λx+1(1 + (x + 1) − (x + 1)λ) − 1
˜

Multiplying both sides by 1−λ

λ
· (1 − λx+1)(1 − λx+2),

and performing some straightforward, if lengthy, algebra,
we have:

0 = (1 − λx+2) · [V (1 − λx)(1 − λ) + λx(1 + x − xλ) − 1]

− (1 − λx+1)

·
ˆ

V (1 − λx+1)(1 − λ) + λx+1(2 + x − xλ − λ) − 1
˜

= −V (1 − λ)3λx + λx

·
ˆ

(1 − 2λ)(1 − λ) + x(1 − λ)2 + λx+2(1 − λ)
˜

Dividing both sides by λx(1 − λ) we have:

0 = −V (1 − λ)2 − 1 + 2(1 − λ) + x(1 − λ) + λx+2

Dividing both sides again by (1 − λ) and using x̃ = x + 2
yields:

0 = −V (1 − λ) − 1

1 − λ
+ x̃ +

λx̃

1 − λ



We now define:

G(λ, V ) = V (1 − λ) +
1

1 − λ
(7)

Rewriting to use G(λ, V ) we have:

G(λ, V ) − x̃ =
λx̃

1 − λ

Multiplying both sides by λG(λ,V )−x̃, we have:

(G(λ, V ) − x̃) λG(λ,V )−x̃ =
λG(λ,V )

1 − λ

Expressing λG(λ,V )−x̃ as eln(λ)·((G(λ,V )−x̃) and multiplying
both sides by ln(λ), we have

ln(λ) · (G(λ,V ) − x̃) eln(λ)·(G(λ,V )−x̃) =
ln(λ) · λG(λ,V )

1 − λ
(8)

Our goal is to solve this equation for x̃, and hence x = x̃−2.

Definition 3.1. For all z > −1/e, the Lambert W func-
tion (also known as the product logarithm, or productlog
function) is defined as either one of two real-valued func-
tions (branches) giving the solution to:

W (z)eW (z) = z

We refer to the specific branches as W0 and W−1, with
W0(z) > W−1(z) for all z > −1/e.

By definition of the Lambert W function, the solutions to
equations of the form XeX = Y are X = W (Y ). Observing
that (8) has this form, and rearranging terms, we have:

x̃ = G(λ, V ) − 1

ln(λ)
· W

„

ln(λ) · λG(λ,V )

1 − λ

«

(9)

Finally, recalling that x̃ = x + 2, we have:

x = G(λ, V ) − 1

ln(λ)
· W

„

ln(λ) · λG(λ,V )

1 − λ

«

− 2 (10)

Substituting back (7), we obtain a closed form for the un-
rounded optimal threshold:

x = (1 − λ)V +
1

1 − λ
− 1

ln(λ)
· X − 2 (11)

where

X = W

 

ln(λ) · λ(1−λ)V + 1
1−λ

1 − λ

!

Therefore, by the analysis above, we may conclude that x
is a solution to R(x + 1) − R(x) = 0. By Theorem 3.1, it
follows that the optimal threshold, k∗, satisfies

k∗ =

‰

(1 − λ)V +
1

1 − λ
− 1

ln(λ)
· X − 2

ı

(12)

where

X = W

 

ln(λ) · λ(1−λ)V + 1
1−λ

1 − λ

!

3.2 Selecting the correct branch of the Lam-
bert W function

As stated earlier, the Lambert W function has two real-
valued branches, W0(x), and W−1(x). It follows that k∗

must be given in terms of the correct branch, which we find
depends on λ. Theorem 3.2 unambiguously states k∗ in
closed form by indicating which branch should be selected.
The proof relies on the observation that, when λ < 1, only
the W0(x) branch yields a positive value for k∗ in (12). Sim-
ilarly, when λ > 1, only the W−1(x) branch yields a positive
value for k∗.

Theorem 3.2. For all λ 6= 1,

k∗ =

‰

(1 − λ)V +
1

1 − λ
− 1

ln(λ)
· Xi − 2

ı

(13)

where

Xi = Wi

 

ln(λ) · λ(1−λ)V + 1
1−λ

1 − λ

!

where

i =



0 if 0 < λ < 1
−1 if λ > 1

In the remaining case where λ = 1,

k∗ =

‰

1

2

“√
1 + 8V − 3

”

ı

Proof. Omitted due to lack of space.

4. DISCUSSION

While the statement of the problem is very simple and has
been considered in multiple prior papers, there was seem-
ingly no interest in looking for a closed-form solution to the
optimal cutoff, or in understanding the asymptotic behavior
of this cutoff in terms of how it scales with V and λ. It
is possible that the algebraic manipulations needed to find
these forms were off-putting and obscured the underlying
simple result in (13). This simple formula leads to the ele-
gant asymptotics described in Section 2.

There are many more general customer models that we
are currently considering, involving multiple classes of cus-
tomers, with different V and v values.
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