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ABSTRACT
Systems whose arrival or service rates fluctuate over time
are very common, but are still not well understood ana-
lytically. Stationary formulas are poor predictors of sys-
tems with fluctuating load. When the arrival and service
processes fluctuate in a Markovian manner, computational
methods, such as Matrix-analytic and spectral analysis, have
been instrumental in the numerical evaluation of quantities
like mean response time. However, such computational tools
provide only limited insight into the functional behavior of
the system with respect to its primitive input parameters:
the arrival rates, service rates, and rate of fluctuation.

For example, the shape of the function that maps rate of
fluctuation to mean response time is not well understood,
even for an M/M/1 system. Is this function increasing,
decreasing, monotonic? How is its shape affected by the
primitive input parameters? Is there a simple closed-form
approximation for the shape of this curve? Turning to user
experience: How is the performance experienced by a user
arriving into a “high load” period different from that of a
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user arriving into a “low load” period, or simply a random
user. Are there stochastic relations between these? In this
paper, we provide the first answers to these fundamental
questions.

1. INTRODUCTION

Motivation and model
The vast majority of queueing models assume a stationary
process in order to derive performance characteristics, such
as mean response time or mean number in system. In re-
ality, computer systems have arrival rates which fluctuate
over time. Furthermore, when the arrival rate is high, it is
common to try to compensate by increasing the service rate,
possibly by adding additional servers.

System designers often try to use standard queueing the-
orems, such as the stationary M/M/1 formulas, to predict
the performance of their system. However, when the load
fluctuates over time, it is not clear which stationary formula
to use. One can try to average the load in some way over
time, and use a stationary M/M/1 with the “average load,”
to predict system performance. However, as many system
designers know, this is a very poor estimation of mean be-
havior. Furthermore, it completely ignores the differences in
user perceived performance depending on whether the user
arrives into a high-load or low-load state.

As people have become aware of the effects of fluctuat-
ing load, mathematical tools have been developed, such as
matrix analytic methods and spectral analysis, which allow
one to numerically evaluate systems in which the arrival rate
and/or service rate change over time according to a Marko-
vian process. While such tools provide numerical values for
time-average behavior, they provide only limited insight into
the functional behavior of the system with respect to the in-
put parameters. These methods don’t tell us how the mean
response time is affected by the rate of fluctuation between
high and low load, whether this is increasing or decreasing,
whether it is monotonic, etc. These methods don’t give us
a complete sense of how the results vary as a function of the
other input primitives, such as the arrival rate and service
rate, or which parameters are most important.

In order to consider such questions, we evaluate a specific
model for fluctuating load, shown in Figure 1. The system
alternates between a “high” state and a “low” state, accord-



ing to a Markovian process, where the system is in “high”
for an exponentially-distributed time with rate αH and in
the “low” state for an exponentially-distributed time with
rate αL. While in the high state (respectively low state),
arrivals occur according to a Poisson Process with rate λH

(respectively, λL). Also while in the high state (respectively
low state), services complete with exponential rate µH (re-

spectively, µL). We define ρH = λH

µH and ρL = λL

µL and

assume throughout that ρH ≥ ρL (but we do not assume
any relationship between λH and λL or between µH and
µL). We allow ρH > 1, provided that the system is still
stable, as defined in Section 2. Note that the above model
encompasses as special cases models with ON/OFF arrival
processes (where λL = 0) and/or breakdowns (µH = 0, in
this case we define ρH = ∞). Even our simple Markovian
model generates non-obvious and counter-intuitive behavior,
and provides insight for more general models. In Section 3,
we will consider a more general variant of our model where
we allow for a burst of arrivals at each arrival instant, where
the burst size can have an arbitrary distribution.

Hλ ,H

µL
λ ,L

exp(     )αL exp(     )αL

exp(     )αH exp(     )αH

µ

Figure 1: Alternating Load Model

Prior Work
Time-varying models, have been very widely studied since
the earliest work in the 50’s, continuing unabated to the
present. (In the interest of brevity, we focus on models hav-
ing non-deterministic switching behavior.) The earliest ref-
erence of this type is Clarke [9], who used generating func-
tions to derive expressions for the number in queue. Soon
thereafter other researchers applied transforms and gener-
ating functions to related models: Neuts [21], Çinlar [7, 8],
Arjas [3]. Yechiali and Naor [35] used generating functions
to reduce the solution of our model to that of obtaining the
roots of a cubic equation. Using similar techniques, de Smit
[10] obtained a Wiener-Hopf factorization for systems with
MAP arrivals and general service; Sengupta [30] analyzed a
system with Markovian arrival and service distributions and
service interruptions; Takine and Sengupta [33] generalized
[30] to MAP arrivals and general service; Adan and Kulkarni
[2] allowed dependencies between successive arrivals and ser-
vices in a MAP/G/1 framework; and finally Harrison and
Zatschler [13] numerically derived the entire sojourn time
distribution for very general Markovian systems which they
call G-Queues.

A second class of highly effective analytical tools for time-
varying models are the Matrix Analytical and related tech-
niques. Neuts [22] used Matrix Analytical techniques to
obtain numerical results for our model, observing that its
behavior could be qualitatively different from the station-
ary M/M/1; Ramaswami [26] allowed general service times
and Markovian Arrival Processes (MAP); Lucantoni, Meier-
Hellstern and Neuts [16] modeled phase-type service and

added server vacations; Sengupta [31] allowed dependen-
cies between semi-Markov interarrival and semi-Markov ser-
vice times; Takine et al. [32] combined Matrix Analytical
techniques with generating functions to allow multiple cus-
tomer classes and priorities; Lucantoni and Neuts [17] al-
lowed batch MAP arrivals; Mitrani and Chakka numerically
compared Matrix Analytic and spectral expansion techniques
[19]; and finally Asmussen and Møller [4] solved matrix equa-
tions to get the entire waiting time distribution for a queue
with MAP arrivals, phase-type service and multiple servers.

It is thus clear that researchers have been highly effec-
tive at developing methods to obtain numerical results, but
what about basic properties, intuitive insights and simple
approximations? Researchers have been at work in these
directions as well. One of the classic conjectures in queue-
ing theory was posed by Ross [29], who conjectured that
increasing variability (fluctuation rate) in a Poisson arrival
process would (weakly) increase mean customer delay, when
the service rate does not vary. Rolski [28] confirmed this con-
jecture, and more recently Miyoshi and Rolski [20] extended
the proof of Ross’s conjecture to more general queueing mod-
els. Heyman [14] provided a contrasting insight – he gave an
example of a deterministically varying arrival function that
performs no worse than the stationary version. We con-
tinue this tradition in our current work – generalizing [14]
by finding simple conditions which guarantee that a station-
ary system and its time-varying analog perform identically
in our Markovian setting.

Another way to garner intuition for time-varying systems
is to analyze limiting regimes. Very early on, Newell [23, 24,
25] used diffusion approximations for time-varying M/M/1
queues. Later, Massey [18] used uniform acceleration to de-
rive the transient behaviors; Abate, Choudhury and Whitt
[1] derived tail asymptotics for the waiting time and work-
load in MAP/GI/1 and MAP/MAP/1 queues; and Rider
[27], Gelenbe and Rosenberg [11], Choudhury et al. [6], and
Yang and Knessl [34] evaluated the special case when transi-
tions happen much more slowly than arrivals or departures.
Finally, Knessl and Yang [15] restricted themselves to a case
in which the traffic intensity takes a very specific form, with
the aim of generating insights for more general cases.

Our Goals
As we saw above, the prior work is very effective at produc-
ing computational results for our, and even more complex
models. However, it is more limited at providing intuition.
Part of the problem is that all these methods (generating
functions, Matrix Analytical, Spectral Expansion) involve
calculating the root of a cubic equation. While in theory a
cubic polynomial can be solved analytically, in practice the
solution is so cumbersome (dozens of lines in Mathematica)
that there is no way to get a sense of the effect of the in-
put parameters on the system performance. For example,
the prior work does not provide a sense of the shape of the
response time curve, nor how response time relates to the
input primitives, such as the αH and αL parameters or the
λH , λL, µH , µL parameters. Our goal in this paper is to get
this type of intuition.

One of the simplest/most fundamental questions is what
happens when the rate of fluctuation (the α’s) either ap-
proach zero or approach infinity. The prior work has not yet
provided answers to even the very basic question of whether
fast or slow fluctuations lead to higher mean response times.



Ross [29] conjectured, and Rolski confirmed [28], that fluctu-
ation leads to higher mean response time for the case where
the mean service rate is a constant (µH = µL = µ). In
our more general model, however, where the service rate
changes (µH 6= µL), we find in Section 2 that lower rate of
fluctuation does not always lead to higher mean response
time. There are cases where the response time is insensitive
to the rate of fluctuation, or can even drop as the rate of
fluctuation decreases. We derive a criterion, based on the
notion of “slack,” (sH and sL) where sH = µH − λH and
sL = µL − λL, which determines whether faster or slower
rates of fluctuation result in better system performance.

Another fundamental question in the same vein is whether
response time is always bounded by the two asymptotes, the
case of high fluctuation rate and low fluctuation rate. Specif-
ically, does a system with a “medium” fluctuation rate al-
ways have mean response time in between those two extreme
cases? And if so, does mean response time change monoton-
ically between those two extremes? To answer these ques-
tions,we start by deriving the transform for the number of
jobs in our model (Section 3), and then we analyze a certain
root of the denominator of this transform which allows us
to answer these questions affirmatively in Section 4.

Our work also produces simple and accurate approxima-
tions for the mean number of jobs in the system, see Sec-
tion 5. We do this by again starting with the transform
derived in Section 3, but deriving approximations on its
roots. We provide both a simple closed-form approxima-
tion which holds for all fluctuation rates (α’s), as well as
even simpler approximations which specialize for the case of
only “high” or “low” α. While computational methods exist
for obtaining the exact mean response time, our simple and
accurate approximations have advantages over the exact re-
sults. From a computational perspective, the fact that our
approximations are closed-form solutions means that they
can easily be computed on any spread-sheet. More impor-
tantly our approximations provide the first results about
the shape of the mean response time curve as a function of
the fluctuation rate, α. In particular, they provide a simple
and accurate approximation for the curve’s functional form.
The advantage of the simple functional form is that it shows
which primitives are most important in determining mean
response time, and allows for further sensitivity analysis.

Finally, while our results thus far have dealt with the over-
all time-average mean performance behavior, it is also of
practical importance to understand how this time-average
mean compares to the experience of a customer arriving into
a “high” (H) period or a customer arriving into a “low” (L)
period. Once again computational results can be used to
evaluate specific instances, however we seek a qualitative
ordering. We answer this question in Section 6, compar-
ing three quantities: the number in system witnessed by an
arrival into an H period, the number in system witnessed
by an arrival into an L period, and the number in system
witnessed by an arrival into a stationary system whose ar-
rival rate is the weighted average of the two arrival rates
and whose service rate is the weighted average of the two
service rates. We find that a stochastic dominance relation-
ship does exist. However, counter to intuition we find that
while the number of jobs seen by an arrival into the ‘average’
system and the number of jobs seen by an arrival into an
L phase are both stochastically dominated by the number
of jobs seen by an arrival into an H phase, the number of

jobs seen by an arrival into an L phase is not stochastically
dominated by the number of jobs in the average system.

Throughout the majority of the paper we investigate the
characteristics of the mean number in system, E[N ], as
through application of Little’s Law (using the time-average
arrival rate) this yields results for mean response time.

2. ANOMALOUS BEHAVIOR OF FLUCTU-
ATING LOAD QUEUE

We start our work by asking the most basic of questions:
How does the mean number of jobs in the system, E[N ],
compare in the case when the load fluctuates slowly (low
α), as compared with the case where the load fluctuates
quickly (high α)? For all the work that has been done on
numerically evaluating instances of our model, the question
of whether E[N ] is higher under low α or high α has not
been addressed. Although intuition would tell us that low
α should lead to higher E[N ] because there is seemingly
more variability in the load in this case, this fact has not
been proven. In this section we prove that lower α does
not always lead to higher E[N ], and we derive a criterion
that tells us when E[N ] increases for low α and when it
decreases for low α. Before we can state our theorem, we
need to define a quantity which we call slack and which we
use throughout the paper.

Definition 1. The slack during the low load period is de-
fined as sL ≡ µL−λL. The slack during the high load period
is defined as sH ≡ µH − λH .

Recall that we make no assumptions about µL, µH , λL, or

λH , except to assume that ρH ≡ λH

µH > ρL ≡ λL

µL . We allow

ρH > 1, so long as stability is met. The remainder of the
section will be spent proving Theorem 1 below; providing a
condition for stability; and discussing the nebulous concept
of “load,” in a load-fluctuating system.

Theorem 1. Let α = αL + αH .
If sL < sH , then E[Nα→0] < E[Nα→∞].
If sL > sH , then E[Nα→0] > E[Nα→∞].
If sL = sH , then E[Nα→0] = E[Nα→∞].

Corollary 1. If µH = µL, then E[Nα→0] ≥ E[Nα→∞]
for all settings. This confirms Ross’s Conjecture.

We start with a discussion of the two extreme values of
E[N ] when ρH < 1; the case where αL and αH are both
very low, and the case where αL and αH are both very high.
When the α’s are very low, E[N ] can be shown to be a
weighted mixture of the mean numbers of jobs under two
stationary M/M/1 queues: one with load ρL and the other
with load ρH . This may seem obvious, but it will be formally
verified via our analysis in Section 3. Specifically, we have:

E[Nα→0] =

ρL

1−ρL · 1
αL + ρH

1−ρH · 1
αH

1
αL + 1

αH

By contrast, when αL and αH are very high, fluctuations
are very rapid. In this case, our analysis in Section 3 will
show that the system converges to a single M/M/1 queue
with load ρA:

ρA =
λA

µA
=

λH

αH + λL

αL

µH

αH + µL

αL
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(a) sL > sH (b) sL = sH (c) sL < sH

Figure 2: Illustration of the behavior of E[N] as a function of α, described in Theorem 1. For all three figures,
we fix ρL = 0.2 and ρH = 0.6, and αL = αH . The rest of the parameters are as follows: (a) µL = 1, λL = 0.2,
µH = 1, λH = 0.6 ; (b) µL = 1, λL = 0.2, µH = 2, λH = 1.2 ; (c) µL = 1, λL = 0.2, µH = 4, λH = 2.4.

where µA and λA are the average service and arrival rates,

µA =
µH

αH
+ µL

αL

1
αH

+ 1
αL

, λA =
λH

αH
+ λL

αL

1
αH

+ 1
αL

That is,

E[Nα→∞] =
ρA

1 − ρA

Observation 1. We observe that ρA as defined above serves
as a stability criterion for the system under all αH and αL

values, since ρA < 1 is equivalent to saying that the time-
average arrival rate is less than the time-average service rate.
However, ρA does not represent the true load. Specifically

ρA 6= 1 − π0

where π0 represents the fraction of time that the system is
idle. In fact, we conjecture that determining π0 is as hard a
problem as determining E[N ]. (These last two observations
were also made my Yechiali and Naor [35].)

We now prove Theorem 1.

Proof. The necessary and sufficient condition for
E[Nα→0] < E[Nα→∞] is:

ρL

(1−ρL)αL + ρH

(1−ρH )αH

1
αL + 1

αH

<
ρA

1 − ρA
(1)

which reduces to

λH(1 − c) + λL

„
1 −

1

c

«
> 0

where c = µL
−λL

µH
−λH . Or,

λHc2 − c(λH + λL) + λL < 0

The solution to the above inequality is c ∈
“

λL

λH , 1
”
. Note

that c > λL

λH is equivalent to ρH > ρL, which is trivially true.

Therefore the only other condition is c < 1, or (µL − λL) <
(µH − λH). Note, we are assuming ρH < 1, otherwise this
behavior is not possible. The remaining cases in the theorem
are proven analogously.

The behavior of the fluctuating-load queue is illustrated in
Figure 2.

3. ANALYSIS
We first define the following quantities.

Definition 2. NL is defined as the random variable for
the number of jobs at the instants when the system switches
from a Low (L) to a High (H) phase. The z-transform of NL

is denoted by cΠL(z). Similarly, NH represents the random
variable for the number of jobs at the end of H phases and
dΠH(z) denotes the z-transform of NH .

NL and NH are illustrated in Figure 3. Our approach

is based on deriving the expressions for cΠL(z) and dΠH(z).
In Section 3.1 we prove that knowledge of the distributions
at switching points suffices to determine the distribution of
the number of jobs in the system at a randomly sampled

point in time. To derive cΠL(z) and dΠH(z), we will first
obtain a transition function which maps the distribution of
number of jobs at a switching point to the distribution at
the next switching point (Section 3.2, equation (3)). This

transition function will then allow us to express cΠL(z) in

terms of dΠH(z), and vice-versa (see Section 3.3, equations

(6)-(7)). Finally we solve these to get expressions for cΠL(z)

anddΠH(z) in terms of π0 only (see Section 3.3, equation (5)).
All the transform derivations described above will assume a
more general model than we have considered so far, where
we allow for a burst of arrivals at each arrival instant, where
the burst size can be arbitrary.

µHλ ,H

µL

λ ,L

H−Phase

L −PhaseN
H

N
L

Figure 3: Switching Points used in Analysis

3.1 Conditional PASTA
Let N denote the random variable for the number of jobs

in the system at a randomly sampled point. The following
theorem relates the distribution of N with those of NL and
NH .



Theorem 2. N has the same distribution as N , where

N =

(
NL w.p. αH

αL+αH

NH w.p. αL

αL+αH

Proof. Let bΠ(z) be the z-transform of N . Proving the
above theorem is equivalent to proving

bΠ(z) =

dΠL(z)

αL +
dΠH (z)

αH

1
αL + 1

αH

Let cΠL(z, t) be the z-transform for the number of jobs in the
system t units of time after the start of the L phase, condi-

tioned on the phase being longer than t, and let dΠH(z, t) be

the corresponding quantity for H phase (Note that cΠL(z, 0) =
dΠH(z)). We will use renewal-reward theory to prove the
above equality where a cycle consists of a single L phase
followed by a single H phase, and where r(t) = zn(t) is the
instantaneous reward earned at time t, n(t) being the num-

ber of jobs at time T . Clearly, bΠ(z) is the long run average
rate at which reward is earned. Therefore,

bΠ(z) =
E[reward in L phase] + E[reward in H phase]

E[length of L phase] + E[length of H phase]

=

„
1

αL
+

1

αH

«
−1 » Z ∞

t=0

Z t

u=0

cΠL(z, u)du αLe−αLtdt

+

Z
∞

t=0

Z t

u=0

dΠH(z, u)du αHe−αH tdt

–

=

„
1

αL
+

1

αH

«
−1 » Z ∞

u=0

Z
∞

t=u

cΠL(z, u)du αLe−αLtdt

+

Z
∞

u=0

Z
∞

t=u

dΠH(z, u)du αHe−αH tdt

–

=

dΠL(z)

αL +
dΠH (z)

αH

1
αL + 1

αH

(2)

The intuition behind Theorem 2 is the PASTA (Pois-
son Arrivals See Time Averages) property exhibited by the
Markovian switching process, as we prove next.

Theorem 3. The time average distribution of number of
jobs in the system during L phases (respectively H phases)
is the same as the distribution of NL (respectively NH).

Proof. Consider a slight modification of our system where
whenever the system switches from H to L, we restart the
system with an initial number of jobs sampled from the dis-
tribution of NH . It is obvious that the time average distri-
bution of number of jobs during the L phases in our orig-
inal system is the same as the time average distribution of
the number of jobs during the L phases in this modified
system. Now consider another queueing system where we
set off timers according to a Poisson process with rate αL.
Whenever a timer expires, we restart the system with some
number of jobs sampled from the distribution of NH . This
can be visualized as seeing only the L phases of our modified
queueing system stitched together. Since the timer events
are a Poisson process, by PASTA, the distribution of num-
ber of jobs at these event instants is the same as the time
average distribution, which is the time average distribution
of number of jobs during the L phases in the modified sys-
tem and hence the same as the time average distribution of
jobs during L phases in the original system.

Now, since the long term fraction of time spent in L phases

is αH

αL+αH and in H is αL

αL+αH , the linear combination of

Theorem 2 follows. Although we have proved the above
result for only one observable quantity, the number of jobs
in the system, the result holds for any observable quantity
e.g. square of number of jobs in system, age of the job in
service, z-transform of the number of jobs in service.

To summarize, although we defined NL and NH to be the
distributions of number of jobs at switching points, they are
the same as the distributions for number of jobs seen by an
arbitrary arrival during the L or H phase, respectively.

3.2 Derivation of Transition functions
Our goal in this section is to derive a transition func-

tion which maps the distribution of the number of jobs at
a switching point to the distribution at the next switch-
ing point. To do this, we first need to return to a simple
M/M/1 queue (without fluctuating load), and consider its
transient behavior with respect to the number of jobs at time
T ∼ exp(α), given a distribution on the number of jobs at
time 0.

Consider an M/M/1 queue with service rate µ where with
rate λ arrivals occur (possibly, more than 1). Let N(t) be

the number of jobs in the system at time t and bΠ(z, t) be the
z-transform of N(t). Let T be an exponentially distributed

random variable with mean 1
α
. We represent bΠ(z, T ), the

z-transform of N(T ), by bΠα(z). The following Theorem

expresses bΠα(z) as a function of bΠ(z, 0).

Theorem 4.

bΠα(z) =
αzbΠ(z, 0) − µ(1 − z)πα

αz − µ(1 − z) + λz(1 − bA(z))
(3)

where bA(z) is the z-transform of the burst size distribution
and if we let ξ denote the root of denominator of (3) in the
interval (0, 1), then,

πα =
αξbΠ(ξ, 0)

µ(1 − ξ)
(4)

The constant πα is equal to the idle probability at T .

Proof. The proof of the above theorem is a trivial ex-
tension of Bailey’s [5] work on transient analysis of M/M/1
queues to incorporate bursts. We mention it here for com-
pleteness. Let aj be the probability that the burst size is j
(wlog, a0 = 0). Also, let pi(t) be the probability that there
are i jobs in the system at time t. We can now write the
differential equations for this system:

dpi(t)

dt
= λ

iX

j=1

ajpi−j(t) − (λ + µ)pi(t) + µpi+1(t)

p0(t)

dt
= −λp0(t) + µp1(t)

which gives,

∂bΠ(z, t)

∂t
= bΠ(z, t)

n
µ(1 − z) − λ(1 − bA(z))

o

− µ(1 − z)p0(t)



Integrating by parts, we get the expression for bΠα(z) as:

bΠα(z) =

Z
∞

0

bΠ(z, t)αe−αtdt

=
αzbΠ(z, 0) − µ(1 − z)p0(T )

αz − µ(1 − z) + λz(1 − bA(z))

To complete the solution we need to find p0(T ) (= πα). Note

that the denominator in the expression of bΠα(z) has a root

ξ ∈ (0, 1). For bΠα(z) to converge inside the unit disk |z| < 1,
ξ must also be a root of the numerator. Hence,

p0(T ) =
αξbΠ(ξ, 0)

µ(1 − ξ)

The transition functions mapping the distribution at the
start of an L or an H phase to the end of the phase is

obtained by specifying µ, λ, α and bA(z) in (3).

3.3 Distributions at Switching Points
The transition function we have derived will now allow us

to write fixed point equations, the solution to which will be

the desired expressions for cΠL(z) and dΠH(z). To get there,

let cAL(z) (respectively dAH(z)) be the z-transform for the
distribution of the burst sizes for arrivals during L (respec-

tively H) phases. Let AL and AH be the mean burst sizes
during L and H phases. Theorem 5, gives the expressions

for cΠL(z) and dΠH(z).

Theorem 5.

cΠL(z) =
zαHσL + zαLσH − (1 − z)σH

z (µLπL
0 )

zαHσL
z + zαLσH

z − (1 − z)σH
z σL

z

(5)

where,

σL
z = µL − λLz

1 − cAL(z)

1 − z

σH
z = µH − λHz

1 −dAH(z)

1 − z

σL = σL
z

˛̨
˛
z=1

= µL − λLAL

σH = σH
z

˛̨
˛
z=1

= µH − λHAH

πL
0 = Pr{NL = 0}

The expression for dΠH(z) is completely symmetric to (5)

Proof. From (3), we can write the following relations

cΠL(z) =
αLzdΠH(z) − µL(1 − z)πL

0

αLz − µL(1 − z) + λLz(1 − cAL(z))
(6)

dΠH(z) =
αHzcΠL(z) − µH(1 − z)πH

0

αHz − µH(1 − z) + λHz(1 −dAH(z))
(7)

where πL
0 = Pr{NL = 0} and πH

0 = Pr{NH = 0} are

unknowns. We can solve (6)-(7) for cΠL(z) to get

cΠL(z) =
zαLµHπH

0 + zαHµLπL
0 − (1 − z)σH

z µLπL
0

zαHσL
z + zαLσH

z − (1 − z)σH
z σL

z

(8)

By substituting z = 1 in the above equation we get one
equation relating πL

0 and πH
0 :

µL

αL πL
0 + µH

αH πH
0

µL

αL + µH

αH

= 1 −
λLAL

αL + λHAH

αH

µL

αL + µH

αH

(9)

= 1 − ρA (10)

It turns out that there is a very simple explanation for (9)
based on Little’s Law. Imagine stretching the L periods by a
factor of µL and H periods by µH . Now in this transformed
time, the service rate is a constant, 1. The switching times
are distributed as exp(αL/µL) and exp(αH/µH). The time
average arrival rate scales by a factor of

`
1

αL + 1
αH

´
divided

by
“

µL

αL + µH

αH

”
, because the arrivals that were earlier oc-

curring in
`

1
αL + 1

αH

´
now occur in

“
µL

αL + µH

αH

”
amount of

time. Applying Little’s Law at the server in this scaled sys-
tem gives (9).
To complete the solution, we need one more equation relat-
ing πL

0 and πH
0 . Using PASTA we know that

πL
0

αL +
πH
0

αH

1
αL + 1

αH

= π0

where π0 is the long term fraction of the time when system
is idle. However, π0 is also unknown and is not equal to
1 − ρA. But, by using (9), (8) simplifies to (5).

Corollary 2. When cAL(z) = dAH(z) = z (burst size

≡ 1), cΠL(z) and dΠH(z) become:

dΠH(z) =
zαHsL + zαLsH − (1 − z)sL

z (µHπH
0 )

zαHsL
z + zαLsH

z − (1 − z)sH
z sL

z

(11)

cΠL(z) =
zαHsL + zαLsH − (1 − z)sH

z (µLπL
0 )

zαHsL
z + zαLsH

z − (1 − z)sH
z sL

z

(12)

where,

sL
z = µL − λLz , sH

z = µH − λHz
sL = µL − λL , sH = µH − λH

Expressions (11)-(12) agree with those derived by Yechiali
and Naor [35]. In the rest of the paper we will analyze the
special case mentioned in Corollary 2. Again, we can solve
for πL

0 and πH
0 by noticing that the cubic polynomial in

the denominators of these expressions has a root in (0, 1)
where both numerators must also be 0. Numerically solving
for this root, however, does not achieve our goals of getting
simple and intuitive expressions.

4. RESULTS - MONOTONICITY OF E[N]
In Section 2, we analyzed how asymptotic behavior of our

2-phase fluctuating load queue compares for the cases α → 0
and α → ∞. We are now interested in determining the
behavior in the mid-α range. To be precise, we want to
answer questions like: If we fix the values of µL, µH , λL, λH

and the ratio αL

αH , but start increasing α (α = αH + αL)

from 0 to ∞, how do E[N ], E[NL] and E[NH ] behave? Are
they always between the asymptotes of Section 2? Do they
increase or decrease monotonically with α? What is the
asymptotic behavior when ρH > 1?

We will first derive expressions for πL
0 and πH

0 as linear
combinations of the asymptotes, and show that these are



monotonic, in Section 4.2. Then, in Section 4.3, we will in-
troduce the parameter r, which can be thought of as denot-
ing the ratio, or the mixture, of the two asymptotes at the
given parameter setting. We will use this parameterization
for our ultimate expressions for E[N ], recasting the expres-
sions in Section 4.2 in terms of r. These expressions will
be used to prove the desired monotonicity results for E[N ],
first for ρH < 1, in Section 4.4, and then in Section 4.5 for
ρH > 1.

Throughout, we disregard the singular case ρH = 1.

4.1 Definitions
To clean up our derivations we start with some definitions.

Definition 3. The normalized switching rate, ∆, is de-
fined as

∆ =
αL

µL
+

αH

µH
(13)

The intuition behind using ∆ instead of α is that ∆ can be
thought of as absorbing the scale of the problem by stretch-
ing the L periods by a factor of µL and the H phases by a
factor of µH . This leads to identical queueing behavior (at
least at the switching points) but further analysis only de-
pends on ρA, ρL and ρH as will be seen later since the service
rates are now a constant 1 (we will assume µL, µH 6= 0 1).
Using ∆, Equations (11)-(12), can be rewritten as follows:

dΠH(z) =
z∆(1 − ρA) − (1 − z)(1 − ρLz)πH

0

z∆(1 − ρAz) − (1 − z)(1 − ρLz)(1 − ρHz)
(14)

cΠL(z) =
z∆(1 − ρA) − (1 − z)(1 − ρHz)πL

0

z∆(1 − ρAz) − (1 − z)(1 − ρLz)(1 − ρHz)
(15)

Definition 4. Let F (z) denote the quadratic in the de-
nominators of (14) and (15):

F (z) = z∆(1 − ρAz) − (1 − z)(1 − ρLz)(1 − ρHz). (16)

The roots of F (z) 2 will play an important part in our anal-
ysis.

Definition 5. We define χ to be the root of F (z) that lies
in the interval (0, 1). Further, let

θ =

„
1 − ρA

1 − ρAχ

«

To convince ourselves that F (z) has exactly one root in
(0, 1), note that F (0) < 0, F (1) > 0 and F (1/ρL) ≤ 0.

4.2 Monotonicity of the π0’s
The following two theorems establish the desired mono-

tonicity property.

Theorem 6. For ρH ≥ 1, πH
0 , πL

0 and π0 decrease mono-
tonically as switching rates decrease.

Theorem 7. for ρH < 1

(i) πH
0 decreases monotonically as switching rates decrease.

(ii) πL
0 increases monotonically as switching rates decrease.

1
When either of these is 0, the solution reduces to solving a quadratic.

2
It is interesting to note that if Q(x) represents the characteristic

matrix polynomial obtained during the spectral expansion solution

of our fluctuating load queue, then
det [Q(x)]

x−1 = Kx3F (x−1) for a

constant K.

(iii) When µL > µH , π0 decreases monotonically as switch-
ing rates decrease but increases monotonically when
µL < µH .

Proof. Our first step is to derive expressions for πL
0 and

πH
0 . As mentioned previously, since F (χ) = 0 and χ < 1, the

numerators of dΠH(z) and cΠL(z) must be zero at z = χ for
these z-transforms to converge inside the unit disk |z| < 1.
Therefore,

πH
0 =

χ

(1 − χ)(1 − ρLχ)
∆(1 − ρA)

πL
0 =

χ

(1 − χ)(1 − ρHχ)
∆(1 − ρA)

yielding

πH
0 (1 − ρLχ) = πL

0 (1 − ρHχ)

Combining this with (9) and using the definition of θ gives
simpler expressions for πH

0 and πL
0 :

πH
0 = (ρA)−1[(1 − ρA)ρH − θ(ρH − ρA)]

πL
0 = (ρA)−1[(1 − ρA)ρL + θ(ρA − ρL)]

We can write the above as follows:

πH
0 = (1 − ρA)

»
1 − θ

1 − (1 − ρA)

–
+ (1 − ρH)

»
θ − (1 − ρA)

1 − (1 − ρA)

–

(17)

πL
0 = (1 − ρA)

»
1 − θ

1 − (1 − ρA)

–
+ (1 − ρL)

»
θ − (1 − ρA)

1 − (1 − ρA)

–

(18)

or equivalently as

πH
0 = (1 − ρA)

»
ω − θ

ω − (1 − ρA)

–
+ 0

»
θ − (1 − ρA)

ω − (1 − ρA)

–
(19)

πL
0 = (1 − ρA)

»
ω − θ

ω − (1 − ρA)

–

+

„
(ρH − ρL)(1 − ρA)

ρH − ρA

«»
θ − (1 − ρA)

ω − (1 − ρA)

–
(20)

where ω = ρH (1−ρA)

(ρH
−ρA)

. By observing that lim∆→∞ θ = (1 −

ρA) and lim∆→0 θ = min (1, ω), equations (17)-(18) can be
seen as expressing πH

0 and πL
0 as a convex combination of the

limiting cases when ρH < 1. Similarly, equations (19)-(20)
express πH

0 and πL
0 as a convex combination of the limiting

cases when ρH > 1.
Since χ and hence θ are monotonic in ∆ 3, this proves the

monotonicity in πH
0 and πL

0 . Since π0 is a linear combination
of πL

0 and πH
0 , the behavior of π0 will also be monotonic

between its limiting values limα→0 π0 and limα→∞ π0. For
ρH ≥ 1, it is easy to see that

lim
α→∞

π0 < lim
α→0

π0

For ρH < 1 we have

lim
α→∞

π0 · lim
α→0

π0 ⇐⇒ ρH(µL − µH) · ρL(µL − µH)

Since ρL ≤ ρH , the last part of the theorem follows.

3
χ is the root of a polynomial that is the sum of a cubic with roots

1, 1

ρL , 1

ρH and a quadratic that is positive in
“
0, 1

ρA

”
and increases

uniformly with α. Therefore, F (z) increases uniformly in
“
0, 1

ρA

”
as

α increases, hence proving monotonicity of χ.



4.3 Parameterization in Terms ofr
While parameterization in terms of θ is sufficient to show

monotonicity of πL
0 and πH

0 , parameterization by θ does not
yield the simplest expressions for E[N ], which is our ulti-
mate aim. We identify a new parameter r which will allow
us to express E[N ] as a convex combination of two limits,
similar to what we did above for πH

0 and πL
0 . We will show

how to express E[NL] and E[NH ] as convex combinations
of their limiting curves. Similar expression for E[N ] can be
obtained using the following fact proved in Section 3.1:

E[N ] =

E[NL]

αL + E[NH ]

αH

1
αL + 1

αH

We start by defining the parameter r for the cases ρH < 1
and ρH ≥ 1.

Definition 6. For ρH < 1, we define r(ρH<1) as:

r(ρH<1) ≡
`(ρH<1) − θ

∆`′
(ρH<1)

(21)

where

`(ρH<1) ≡ lim
∆→0

θ = 1 (22)

`′(ρH<1) ≡ lim
∆→0

`(ρH<1) − θ

∆
=

ρA

(1 − ρL)(1 − ρH)
(23)

(24)

Definition 7. For ρH > 1, we define r(ρH>1) as:

r(ρH>1) ≡
`(ρH>1) − θ

∆`′
(ρH>1)

(25)

where

`(ρH>1) ≡ lim
∆→0

θ =
ρH(1 − ρA)

ρH − ρA
(26)

`′(ρH>1) ≡ lim
∆→0

`(ρH>1) − θ

∆
=

ρAρH(1 − ρA)

(ρH − ρL)(ρH − 1)(ρH − ρA)
(27)

Whenever unambiguous, we will suppress the subscripts on
r. By the way we have defined r, limα→0 r = 1 and limα→∞ r =
0. To obtain the limits mentioned in the above definitions,

we first substitute z =
“

θ−(1−ρA)

ρAθ

”
in (16) to obtain the

following cubic polynomial:

g(θ) = (ρA)2∆[θ − (1 − ρA)]θ

− [θ − 1][θ(ρA
− ρL) + ρL(1 − ρA)][θ(ρH

− ρA) − ρH(1 − ρA)]
(28)

Then, θ is the root of the above polynomial lying in the
interval (1 − ρA, 1).

We now present one of our main results, expressing E[NL]
and E[NH ] as convex combinations of the limiting curves in
terms of r.

Theorem 8. a. For ρH < 1

E[NH ] =

»
ρA

1 − ρA

–
+

»
ρH

1 − ρH
−

ρA

1 − ρA

–
r(ρH<1)

(29)

E[NL] =

»
ρA

1 − ρA

–
+

»
ρL

1 − ρL
−

ρA

1 − ρA

–
r(ρH<1)

(30)

b. For ρH > 1

E[NH ] =

»
ρA

1 − ρA

–
+

»
ρA

1 − ρA
+

ρH

ρH − 1

– "
1 − `(ρH>1)

−`′
(ρH<1)

∆

+

 
`′(ρH>1)

−`′
(ρH<1)

!
r(ρH>1)

#
(31)

E[NL] =

»
ρA

1 − ρA

–
+

»
ρA

1 − ρA
−

ρL

1 − ρL

– "
1 − `(ρH>1)

−`′
(ρH<1)

∆

+

 
`′(ρH>1)

−`′
(ρH<1)

!
r(ρH>1)

#
(32)

Proof. We start by differentiating our transforms from
(14)-(15) and set z = 1, which results in:

E[NH ] =
ρA

1 − ρA
−

(1 − ρL)(1 − ρH − πH
0 )

∆(1 − ρA)
(33)

E[NL] =
ρA

1 − ρA
−

(1 − ρH)(1 − ρL − πL
0 )

∆(1 − ρA)
(34)

By substituting πH
0 and πL

0 in terms of θ from (17)-(18)
into (33)-(34) and collecting the terms dependent on ∆, we
get the expressions in (29)-(30). Similarly, substituting πH

0

and πL
0 from (19)-(20) into (33)-(34) results in (31)-(32).

Note that for the case ρH < 1, we express E[NH ] and
E[NL] in (29)-(30) as the convex combination of two con-
stants. This is not possible when ρH > 1 because when
∆ → 0, the mean number of jobs becomes unbounded.
However for this case, we can write E[NH ] (and respec-
tively E[NL]) as a convex combination of two asymptotic
functions of the form a + b

∆
which are only separated by a

constant.

4.4 Monotonicity of Number in System,ρH < 1

The following theorem proves monotonicity of E[N ] for
ρH < 1:

Theorem 9. For the case ρH < 1

(i) E[NL] decreases and E[NH ] increases monotonically as
the switching rates decrease.

(ii) If sL < sH then E[N ] decreases monotonically as switch-
ing rates decrease, otherwise it increases monotoni-
cally.

Proof. For succinctness, we will define the following quan-
tities

N∞ ≡
ρA

1 − ρA

N0 ≡

1
αH

ρH

1−ρH + 1
αL

ρL

1−ρL

1
αH + 1

αL

From (29)-(30), we can write the expectations of number
of jobs in system as

E[NH ] =

»
ρA

1 − ρA

–
+

»
ρH

1 − ρH
−

ρA

1 − ρA

–
r (35)

E[NL] =

»
ρA

1 − ρA

–
+

»
ρL

1 − ρL
−

ρA

1 − ρA

–
r (36)

E[N ] = N∞ + [N0 − N∞] r (37)



From the limits proved in (22)-(23), we know that for the
case ρH < 1, lim∆→∞ r = 0 and lim∆→0 r = 1. We will now
show that r is monotonic in ∆. This will imply that E[NH ]
increases and E[NL] decreases monotonically as switching
rates decrease and E[N ] will increase or decrease depending
on whether sL is larger or smaller than sH , respectively.

By substituting θ = 1 − r∆`′(ρH<1) in g(θ) from (28), we

get the following polynomial relating ∆ and r:

h(∆, r) =r2∆2(`′(ρH<1))
2[ρA(1 − ρL)(1 − ρH)

+ r(ρA − ρL)(ρH − ρA)]

− r∆`′(ρH<1)ρ
A[(1 + ρA)(1 − ρL)(1 − ρH)

+ r{(ρA − ρL)(ρH − 1) + (1 − ρL)(ρH − ρA)}]

+ (ρA)2(1 − ρL)(1 − ρH)(1 − r) (38)

The above may be viewed as a cubic for r in terms of ∆, or,
alternatively, as a quadratic for ∆ in terms of r. Therefore
for any r there can be at most two values of ∆. Since r is a
continuous function of ∆, h(∆, r) must cross r = c with c ∈
(0, 1) an odd number of times and with c ∈ (−∞, 0)∪(1,∞)
an even number of times. For r > 1, the product of the two
roots of the above quadratic is negative and hence does not
have two positive roots. The case r < 0 cannot arise because

as mentioned earlier χ ∈ (0, 1) and hence θ =
“

1−ρA

1−ρAχ

”
∈

(1 − ρA, 1). Therefore r decreases monotonically from 1 to
0 as ∆ increases.

4.5 Monotonicity of Number in System,ρH > 1

Complementary to Theorem 9, the following Theorem
proves monotonicity of E[N ] for ρH > 1:

Theorem 10. When ρH > 1, E[N ], E[NL] and E[NH ]
increase monotonically as the switching rates decrease.

Proof. From (31)-(32), we can write the expression for
E[N ] as

E[N ] = N∞ + [N∞ − N0]

 

1 − `(ρH>1)

−`′
(ρH<1)

∆
+

`′
(ρH>1)

`′
(ρH<1)

r

!

(39)

From the limits proved in (26)-(27), we know that for ρH >
1, lim∆→∞ r = 0 and lim∆→0 r = 1. We will now show that
r is monotonic in ∆. From equations (31)-(32) and (39),
this will imply that E[NH ],E[NL] and E[N ] all increase
monotonically as switching rates decrease. Moreover E[N ]
is bounded between two curves which are separated by the
constant, C,

C =

2
4 ρA

1 − ρA
+

1
αH

ρH

ρH
−1

− 1
αL

ρL

1−ρL

1
αH + 1

αL

3
5
 

`′(ρH>1)

−`′
(ρH<1)

!

The proof of monotonicity of r for this case will be along
the same lines as the ρH < 1 case. By substituting θ =
`(ρH>1)−r∆`′(ρH>1) in (28), we get the following polynomial

relating ∆ and r:

h(∆, r) =r2(`′
(ρH>1)

)2∆2
h

(ρA)2 + r`′
(ρH>1)

(ρA
− ρL)(ρH

− ρA)
i

− r`′
(ρH>1)

∆ρA

»

ρA(1 − ρA)(ρH + ρA)

ρH
− ρA

+r`′
(ρH>1)

“

(1 − ρA)(ρH
− ρL) − (ρH

− 1)(ρA
− ρL)

”i

+ ρAρH

„

ρA(1 − ρA)

ρH
− ρA

«2

(1 − r) (40)

As before, the case r < 0 cannot arise and for r > 1 the
product of the roots is negative. Following the same argu-
ment we have the desired results.

5. RESULTS - SIMPLE APPROXIMATIONS
Having established the monotonicity property of E[N ]

with respect to ∆ (and hence α), we now turn to the ques-
tion of obtaining tight approximations for the E[N ] versus
∆ curve that are simple and can be easily analyzed. Evalu-
ating these approximations yields insights into the behavior
of E[N ] versus the system primitives, in particular α. In
Sections 4.4 and 4.5, we expressed E[N ] as a function of r.
To recapitulate, for ρH < 1 we had

E[N ] = a + br(ρH<1)

for some constants a, b and for ρH > 1 we had

E[N ] = a′ + b′r(ρH>1) +
c′

∆

for some different constants a′, b′, c′. The aim of this section
is to get simple approximations for r.

We handle the cases ρH < 1 and ρH > 1 together by
defining the following quantities.

Definition 8.

u
def
= min (1, ρH), v

def
= max (1, ρH)

For succinctness, we also define the following constants

c1 = (v − u)(v − ρL)

c2 = (u − ρA)(v − ρL) − (v − u)(ρA − ρL)

We first derive r∗, an approximation for r, shown in equa-
tion (41). The r∗ approximation is highly accurate under all
values of ∆ (and hence α), and yet it is a closed-form ex-
pression, which does not require the solution of a cubic.

In Section 5.1 we go further by finding simpler approxima-
tions for r∗ in the case where ∆ is “low” and the case where
∆ is “high” separately (we make low and high precise in
the coming sections). Although these approximations r∗∆:low

(equation (45)) and r∗∆:high (equation (44)) are intended to
work only for “low” and “high” ∆, we will find (see Figure 4)
that using just these two expressions gives us an excellent
sense of the shape of the E[N ] curve as a function of ∆
(and hence α). We also give another approximation, r∗∆:med

(equation (46)), for the special case: ρH ≈ 1.

Claim 1. The r versus ∆ curve is well-approximated by
the r∗ versus ∆ curve where,

r∗ =
2c1

c1 + (v + ρA)∆ +
q

c21 + 2∆((v + ρA)c1 + 2vc2) + (v − ρA)2∆2

(41)

Although, we don’t have a formal proof of the above claim
we will provide arguments in support of the same. The
r3∆2 terms in (38) and (40) go to 0 as ∆ → 0. Also as
∆ → ∞, r∆ approaches a constant but r3∆2 again goes to
0. Therefore, by neglecting this term in h(∆, r), we get the
following quadratic equation in r,

h
∗(∆, r) = r2v

h
∆2ρA − ∆c2

i
− rc1

h
∆(v + ρA) + c1

i
+ c2

1

(42)



where we have used u and v to combine (38) and (40).
The polynomial h∗(∆, r) gives a very good approximation
to h(∆, r) around the root of interest. The approximation
r∗ is obtained by taking the root of h∗(∆, r)

r∗ = c1
∆(v + ρA) + c1 −

p

(∆(v + ρA) + c1)2 − 4v(∆2ρA
− ∆c2)

2v(∆2ρA
− ∆c2)

(43)

=
2c1

c1 + (v + ρA)∆ +
q

c21 + 2∆((v + ρA)c1 + 2vc2) + (v − ρA)2∆2

The sign of the discriminant in (43) has to be negative be-
cause

1. If the coefficient of r2 is negative then the product
of the roots is negative and minus sign will give the
positive root.

2. If the coefficient of r2 is positive then both roots are
positive and minus sign will give the smaller of the
roots.

5.1 Simpler Approximations
In this section, we start with the expression for r∗ and

simplify it further by looking at two different ∆ regimes,
high and low.
Case: High ∆

Claim 2. When ∆ � 2
˛̨
˛ (v+ρA)c1+2vc2

(v−ρA)2

˛̨
˛ ≡ th, r∗∆:high ap-

proximates r where

r∗∆:high =
c1/v

∆ + c1+c2
(v−ρA)

(44)

(Proof omitted due to lack of space. See [12] for details.)
Case: Low ∆

Claim 3. When ∆ � 2
˛̨
˛ c21
2(v+ρA)c1+4vc2

˛̨
˛ ≡ tl, r∗∆:low ap-

proximates r where

r∗∆:low =
1

1 + (c1(v+ρA)+vc2)∆

c21

(45)

(Proof omitted due to lack of space. See [12] for details.)
We defined the “high” ∆ regime as ∆ � th and the “low”
∆ regime as ∆ � tl. We will now provide very simple
bounds on these thresholds. First observe that

(v − u)(v + ρL) <
(v + ρA)c1 + 2vc2

v − ρA
< (v − ρL)(1 + ρH)

Therefore,

th = 2

˛̨
˛̨ (v + ρA)c1 + 2vc2

(v − ρA)2

˛̨
˛̨

< 2
(v − ρL)(1 + ρH)

(v − ρA)
<

2v(1 + ρH)

(v − ρA)

and

tl =

˛̨
˛̨ c2

1

2(v + ρA)c1 + 4vc2

˛̨
˛̨

>
(v − ρL)(1 − ρH)2

2(v − ρA)(1 + ρH)
>

(1 − ρH)2

2(1 + ρH)

Another salient question concerns the size of the area be-
tween the thresholds for the two regimes ; how wide th

tl
is:

th

tl
=

„

2
(v + ρA)c1 + 2vc2

(v − ρA)c1

«2

<

„

2
(v − ρL)(1 + ρH)(v − ρA)

(v − ρA)(v − ρL)(v − u)

«2

=

„

2
(1 + ρH)

(v − u)

«2

Therefore as ρH → 1, this gap increases (Figure 4 (a)-(d)).
We handle this special case next.

Case: Intermediate ∆, ρH ≈ 1
As we have noted above, when ρH → 1, the gap where
neither r∗∆:low nor r∗∆:high approximation is tight increases.
The reason this happens is that the range of switching rates
where the ∆ term dominates the constant c2

1 term and the
∆2 term in the radical of Equation (41) increases. Therefore,
for this case we give the following approximation, r∗∆:med,
obtained from (41) by just keeping the ∆ term of the radical:

r∗∆:med =
2c1

c1 + (v + ρA)∆ +
p

2∆(c1(v + ρA) + 2vc2)
(46)

The r∗∆:med approximation is illustrated in Figure 4(e)-(f).
This approximation supplements r∗∆:low and r∗∆:high and de-

pending on the switching rates and ρH , one should be chosen
appropriately for observing the functional behavior.

6. RESULTS – STOCHASTIC ORDERING
Most results in queueing theory describe the experience

of an arbitrary arrival to a system. But, in a time-varying
system, an arrival may know that she is not “arbitrary”;
she may know whether she is arriving into a high load or a
low load period. In this case the salient question, as far as
the arrival is concerned, is not about an arbitrary arrival’s
experience, but rather about her experience (conditional on
the type of period into which she arrives).

To explore this question we compare, NH , NL, and NρA

stochastically, where the last term denotes the number in
system seen by an arrival to a stationary queue with the
same average load, ρA, as our time-varying system.

Note that the distribution of future service rates, and thus
response time, is completely determined by the number in
system seen upon arrival and the type of period arrived into.
Moreover, if only arrival rates vary (i.e. if service rates are
constant), stochastic orderings for number in system imme-
diately translate into stochastic orderings for response times.

Intuition leads one to believe that an arrival into a high
load state should see more customers than one arriving into a
low load state in expectation, but whether there is a stochas-
tic dominance between these, that is, NH ≥st NL, is not
obvious; we prove this to be true. Furthermore, one might
also believe that an arrival during a high load state would
see more customers than an arrival into the average sys-
tem, and that an arrival into the average system would see
more customer than an arrival during the low load state,

NH ≥st NρA

≥st NL. Surprisingly, we find that this state-
ment is only partially true: The first inequality holds but
the second does not in general. Thus our system exhibits a
striking lack of symmetry.

We start with a preliminary result:
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Figure 4: Illustration of E[N] as a function of α (= αH +αL), using the exact r; our closed-form approximation
r∗; and our very simple approximations r∗∆:low and r∗∆:high. The top row shows examples where ρH < 1.

The middle row shows examples where ρH > 1. The bottom row illustrates the approximation r∗∆:med when
ρH ≈ 1. The vertical lines in each plot indicate the thresholds for the low ∆ and high ∆ regimes. In all cases
µH = µL = 1 and αH = αL.

Lemma 1. Given an M/M/1 queue with load ρ and sta-
tionary distribution X , if we start this system with an initial
distribution X(0), then

X(t) ≥st X(t + s) ≥st X ∀s, t ≥ 0

⇐⇒

Pr{X(0) = j} ≥ ρ Pr{X(0) = j − 1}

The directions of all the inequalities can be reversed to get
the condition for a stochastically increasing system.

Proof. Define a discrete time process Y such that Y (0) =st

X(0). Set timers according to a Poisson process with rate

(λ+µ). At each timer expiration we toss a coin and have an
arrival with probability µ

µ+λ
and a departure with probabil-

ity λ
µ+λ

. Let the distribution just after the ith such event

be Y (i). A simple coupling argument shows that

X(t) ≥st X(t + s) ≥st X ∀s, t ≥ 0

⇐⇒

Y (i) ≥st Y (i + k) ≥st X ∀i, k ≥ 0.



We first examine the condition for Y (i + 1) ≤st Y (i):

Pr{Y (i + 1) ≥ j} ≤ Pr{Y (i) ≥ j}

⇐⇒

Pr{Y (i) ≥ j − 1} λ
λ+µ

+ Pr{Y (i) ≥ j + 1} µ

λ+µ
≤

Pr{Y (i) ≥ j}( λ
λ+µ

+ µ

λ+µ
)

⇐⇒

Pr{Y (i) ≥ j − 1} − Pr{Y (i) ≥ j}] λ
λ+µ

≤

Pr{Y (i) ≥ j} − Pr{Y (i) ≥ j + 1}] µ

λ+µ

⇐⇒

Pr{Y (i) = j − 1}ρ ≤ Pr{Y (i) = j}

Thus Y (i + 1) ≤st Y (i) iff Pr{Y (i) = j} ≥ ρPr{Y (i) =
j − 1} ∀j ≥ 1, as required. Now, if Y (i + 1) ≤st Y (i) ∀i ≥ 0
it immediately follows that Y (i) ≥st X , ∀i ≥ 0, because
Y (n) converge in distribution to X as n → ∞. To complete
the proof, we need to show that

Pr{Y (i) = j − 1}ρ ≤ Pr{Y (i) = j} ∀j > 0

implies

Pr{Y (i + 1) = j − 1}ρ ≤ Pr{Y (i + 1) = j} ∀j > 0

which follows for j > 1 since:

Pr{Y (i + 1) = j}

= Pr{Y (i) = j − 1}
λ

λ + µ
+ Pr{Y (i) = j + 1}

µ

λ + µ

≥ [ρPr{Y (i) = j − 2}]
λ

λ + µ
+ [ρPr{Y (i) = j}]

µ

λ + µ

= ρPr{Y (i + 1) = j − 1}

For j = 1, we have

Pr{Y (i + 1) = 1}

= Pr{Y (i) = 0}
λ

λ + µ
+ Pr{Y (i) = 2}

µ

λ + µ

≥ Pr{Y (i) = 0}
ρµ

λ + µ
+ [ρPr{Y (i) = 1}]

µ

λ + µ

= ρ[Pr{Y (i) = 0} + Pr{Y (i) = 1}]
µ

λ + µ

= ρPr{Y (i + 1) = 0}

For ρ ≥ 1, the system cannot decrease stochastically be-
cause the stationary distribution does not exist. The con-
dition for such a system to be stochastic increasing is the
same as that for an M/M/1 with ρ < 1.

Theorem 11. For our alternating load system,

NH ≥st NL

Proof. By factoring the polynomials in the numerator

and the denominator of (11) we can write dΠH(z) as:

dΠH(z) =
λLµHπH

0

λLλH

(δ − z)(z − χ)

(z − a)(z − b)(z − χ)

=
πH

0

ρH

(δ − z)

(z − a)(z − b)
(47)

where 0 ≤ χ < 1, with say a ≤ b. (As mentioned in Sec-
tion 3, the denominator has a root χ in (0, 1) and the nu-
merator must also have a root equal to χ for the z-transform

to converge in the unit disc |z| < 1.) Similarly

cΠL(z) =
πL

0

ρL

(γ − z)

(z − a)(z − b)
(48)

The fact that a, b, χ, δ and γ are all real for ρA < 1 can
be easily verified. Also, δ, γ > a since the z-transform is
an increasing function of z, it must become negative via a

discontinuity. Using cΠL(0) = πL
0 and dΠH(0) = πH

0 :

δ = ρHab, γ = ρLab (49)

Evaluating (16) for information about the roots a and b, we
have F (1/ρH) ≥ 0, F (1) > 0, F (1/ρA) ≤ 0, F (1/ρL) ≤ 0.
Therefore: max{1, 1

ρH } ≤ a ≤ 1
ρA ≤ 1

ρL ≤ b. Combining

these with (49): 1 < a ≤ γ ≤ b ≤ δ.
Let pH

i = Pr{NH = i}; to derive pH
i , we will expand (47).

dΠH(z) =
πH

0 (δ − z)

ρH(b − a)

»
1

a

„
1

1 − z/a

«
−

1

b

„
1

1 − z/b

«–

=
πH

0

ρH(b − a)

»„
δ

a
− 1

«
−

„
δ

b
− 1

«ff

+ z

„
δ

a
− 1

«
1

a
−

„
δ

b
− 1

«
1

b

ff

+ z2

„
δ

a
− 1

«
1

a2
−

„
δ

b
− 1

«
1

b2

ff
+ · · ·

–
(50)

Note that the last representation is what we would obtain
by writing out the spectral expansion solution, with 1

a
and

1
b

as the two eigenvalues and the probability distribution as
the sum of two geometric distributions.

Let νH
i =

pH
i+1

pH
i

. From (50),

νH
i =

`
δ
a
− 1
´

1
ai+1 −

`
δ
b
− 1
´

1
bi+1`

δ
a
− 1
´

1
ai −

`
δ
b
− 1
´

1
bi

=
ζui+1 − ηvi+1

ζui − ηvi

=
(ζui − ηvi)(ζui+2 − ηvi+2)

(ζui − ηvi)(ζui+1 − ηvi+1)
+

ζηuivi(u2 + v2 − 2uv)

(ζui − ηvi)(ζui+1 − ηvi+1)

= νH
i+1 +

ζηuivi(u − v)2

(ζui − ηvi)(ζui+1 − ηvi+1)
≥ νH

i+1

Since the pH
i are a mixture of two geometrics, one decaying

with rate 1
a

and the other with 1
b
, and 1

a
≥ 1

b
, as i increases

the first component dominates and the rate of decay effec-
tively becomes 1

a
; or, limi→∞ νH

i = 1
a
≥ ρL. Also because

νH
i are decreasing, νH

i ≥ 1
a
≥ ρL ∀i. Therefore starting an

M/M/1 with load ρL and initial distribution as NH satisfies
the conditions of Lemma 1 and will result in a stochastically
decreasing process. NL is the random variable for the num-
ber of jobs at a time chosen from the distribution exp(αL),
and is therefore also stochastically smaller than the initial
distribution, NH .

Theorem 12. For our model:
NH ≥st NρA

but NL ≮st NρA

.

Proof. From the proof of Theorem 11, νH
i ≥ νH

i+1 ∀i ≥ 0
and limi→∞ νH

i = 1
a

≥ ρA. Therefore, νH
i ≥ ρA ∀i ≥ 0.

Then using Lemma 1, NH ≥st NρA

.
Returning to the proof of Theorem 11, define qL

i = Pr{NL ≥

i}. Using cΠL(1) = 1 in (48),

πL
0

ρL
=

(a − 1)(b − 1)

(γ − 1)
(51)



Thus, using the formula for pL
i , derived from the expansion

of cΠL(z) analogous to (50), and using (51):

qL
i =

∞X

j=i

pL
i

=
πL

0

ρL(b − a)

»“γ

a
− 1
” 1

ai

„
1

1 − 1
a

«

−
“γ

b
− 1
” 1

bi

„
1

1 − 1
b

«–

=
(a − 1)(b − 1)

(γ − 1)(b − a)

»„
γ − a

a − 1

«
1

ai
+

„
b − γ

b − 1

«
1

bi

–

Let c = (b−1)(γ−a)
(γ−1)(b−a)

. Then qL
i = c 1

ai +(1−c) 1
bi and 0 ≤ c ≤ 1.

Also recall that a ≤ 1
ρA . Let k =

˚
logaρAc

ˇ
+ 1 so that

(aρA)k < c. Now,

qL
k = c

1

ak
+ (1 − c)

1

bk
≥

c

ak
> (ρA)k = qρA

k

Clearly, ∀j ≥ k, qL
j > qρA

j and hence NL ≮st NρA

. In fact,

NL =st NρA

if and only if ρA = ρH = ρL.

7. CONCLUSION
In this paper we have considered very basic, yet open,

questions regarding the response time of a queue with time-
varying load. We have found that the response time can
both increase or decrease when the load fluctuates more
slowly, and we have derived a simple slack criterion to spec-
ify the behavior. We have also proven the first monotonicity
results for systems with time-varying load, as well as the
first stochastic ordering results for these systems. Finally
we have provided the first results on the shape of the mean
response time in a queue with fluctuating load, as a func-
tion of the rate of fluctuation and other input primitives.
These latter results were enabled by the derivation of a se-
ries of approximations for the mean number of jobs in the
system, which are accurate and also very simple and closed-
form, telling us how the shape of the mean number of jobs
is affected by the input primitives.

We hope that our research will stimulate others to ask
further fundamental questions about time-varying systems.
For example, we have seen that E[N ], E[NH ] and E[NL]
are all monotonic in α. We conjecture that a stronger result
may exist, namely that the random variable NH is stochas-
tically monotonic in α. However this is entirely non-obvious,
particularly since NL is not stochastically monotonic.
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