
SOFTScale: Stealing Opportunistically For
Transient Scaling

Anshul Gandhi∗ Timothy Zhu∗
Mor Harchol-Balter∗ Michael Kozuch†

June 2012
CMU-CS-12-111

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Carnegie Mellon University, Pittsburgh, PA, USA
†Intel Labs, Pittsburgh, PA, USA

This research was sponsored by the National Science Foundation under grant number CNS-1116282 and Intel
Science and Technology Center on Cloud Computing. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.



Keywords: Data centers; load spikes; resource provisioning; power management



Abstract

Dynamic capacity provisioning is a well studied approach to handling gradual changes in data cen-
ter load. However, abrupt spikes in load are still problematic in that the work in system rises very
quickly during the setup time needed to turn on additional capacity. Performance can be severely
affected even if it takes only 5 seconds to bring additional capacity online.
In this paper, we propose SOFTScale, an approach to handling load spikes in multi-tier data cen-
ters without having to over-provision resources. SOFTScale works by opportunistically stealing
resources from other tiers to alleviate the bottleneck tier, even when the tiers are carefully pro-
visioned at capacity. SOFTScale is especially useful during the transient overload periods when
additional capacity is being brought online.
Via implementation on a 28-server multi-tier testbed, we investigate a range of possible load spikes,
including an artificial doubling or tripling of load, as well as large spikes in real traces. We find that
SOFTScale can meet our stringent response time Service Level Agreement goal of 500ms without
using any additional resources even under some extreme load spikes that would normally cause the
system (without SOFTScale) to exhibit response times as high as 96 seconds.





1 Introduction

Data centers play an important role in today’s IT infrastructure. Government organizations, hospi-
tals, financial trading firms, and major IT companies, such as Google, Facebook and Amazon, all
rely on data centers for their daily business activities. A primary goal for data center operators is
to provide good response times to users; these response time targets typically translate to some re-
sponse time Service Level Agreements (SLAs). A secondary goal is to reduce operational costs by
exploiting the variability in user demand. By scaling capacity to match current demand, operators
can either: (i) reduce power consumption by turning off unneeded servers, or (ii) save on rental
costs by releasing unneeded virtual machines, or (iii) get additional work done by repurposing
unneeded servers for other tasks.

Data center services today are often organized as multiple tiers. Typically, one of these tiers is
an application tier that processes requests, and another tier is the data tier that is responsible for
efficiently delivering data back to the application tier. While it is possible to physically collocate
the application tier and the data tier on the same servers, dividing the architecture into physically
different tiers is preferable because it makes it easier to scale and manage the individual tiers [14,
33, 35]. The data tier is stateful, and is almost never turned off [34, 9], even if there is a significant
drop in load [8]. The application tier, on the other hand, is usually stateless and can be dynamically
scaled using existing reactive [24, 27, 31], predictive [21, 18] or mixed [35, 17, 16] approaches,
provided that the load does not change too abruptly.

Unfortunately, abrupt changes in load, or load spikes, are all too common in today’s data cen-
ters. Important events, such as the September 11 attacks [23, 19], earthquakes or other natural
disasters [37], slashdot effects [3], Black Friday shopping [12], or sporting events, such as the Su-
per Bowl [29] or the Soccer World Cup [7], are common causes of load spikes for website traffic.
Service outages [30] or server failures [32] can also result in abrupt changes in load caused by a
sharp drop in capacity. While some of the above events are predictable, most of them cannot be
predicted in advance.

Abrupt changes in load are especially problematic since adding capacity requires some time,
which we call setup time, denoted by tsetup. Even if we instantaneously detect a spike in load,
it will still take the system at least the setup time to add the required capacity. In our lab, the
setup time for turning on an additional server is approximately 5 minutes. Likewise, the setup time
needed to create virtual machines (VMs) can range anywhere from 30 seconds – 1 minute if the
VMs are locally created (based on our measurements using kvm [20]) or 5 – 10 minutes if the
VMs are obtained from a cloud computing platform (see, for example, [5]). All these numbers are
extremely high, and can result in long periods where the SLA is violated.

Throughout the paper, we focus on the performance of the system during the setup time fol-
lowing a load spike. Since no additional capacity can be added during the setup time, the system
has a fixed number of servers online, and we refer to such a system as the baseline. A typical
SLA requires that the 95th percentile of response time, denoted by T95, stay below 500ms1. In

1Our choice of SLA is motivated by recent studies [35, 21, 13] which indicate that 95th percentile guarantees of
several hundred milliseconds are typical.

1



Figure 1: Using SOFTScale, we can meet response time SLAs even under a 15% to 30% load jump.
Note that the y-axis ranges from 0s to 50s.

this paper, we consider the more difficult goal of meeting the T95 requirements during the setup
time (i.e., after the onset of the spike, and before additional servers can be brought online). This
is equivalent to saying that no more than 5% of all requests that arrive during the setup time are
allowed to exceed the 500ms response time. In addition to the T95 (which measures over the entire
setup time), in some plots, we also show the “instantaneous T95”, which is the 95th percentile of
response times collected every second.

Consider a system which has the appropriate number of application servers turned on to ensure
that the 95th percentile of response times stays below 500ms at the current load of 15% of peak
load. Here, peak load refers to the maximum load that our system can handle (see Section 2 for
details of our experimental testbed). Now, imagine that the load suddenly increases to 30%. The
time needed to turn on the necessary additional servers is the setup time, say 5 minutes. We say
that our system can “handle” a load jump if T95 ≤ 500ms during the setup time. As shown in
Figure 1, our baseline system is not able to handle the 15% to 30% load jump. The black dots
in Figure 1 show the increase in instantaneous T95 during the first two minutes of the setup time
under the baseline, where the system is clearly under-provisioned during this time. The data for
Figure 1 is generated from experiments running on our implementation testbed using a key-value
based workload (see Section 2 for full details of our experimental testbed). As shown in the figure,
instantaneous T95 increases rapidly over time, reaching 50 seconds after only two minutes. Even
if future hardware reduces this setup time to 10 seconds, we see that instantaneous T95 can be well
over 3 seconds.

In order to avoid setup times, data center operators typically over-provision capacity at all times
(since load spikes are often unpredictable). For example, to handle a 15% to 30% load jump, one
needs to over-provision resources by a factor of 2. Clearly, such an approach is quite expensive.

We propose SOFTScale, an approach that allows data centers to handle load spikes without
having to over-provision resources and incur costs. SOFTScale leverages the fact that the data
tier in a multi-tier data center is always left on [34, 9, 8]. Thus, during the setup time following
a load spike, we can use these “always on” data tier servers to do some of our application work.
SOFTScale involves running the application tier software on the data tier servers, where this soft-
ware is only invoked during the setup time. We refer to this notion as “stealing” of the data tier

2



capacity. SOFTScale requires no additional resources and can even handle a doubling of load,
so long as the final load is not too high. Returning to our example where the load instantaneously
doubles from 15% to 30%, we see that SOFTScale, denoted by the flat gray line in Figure 1, allows
the instantaneous T95 to stay within the 500ms SLA at all times. While stealing from the data tier
can increase the latency of data operations, the overall benefit of being able to meet SLAs during
setup times makes a compelling case for using SOFTScale. Note that one could theoretically use
SOFTScale even after the setup time, however, the (non-zero) increase in latency of data opera-
tions as a result of using SOFTScale suggests otherwise. The SOFTScale middleware is depicted
in Figure 2, and is described in detail in Section 3.4.

Almost all papers on dynamic capacity management (see, for example, [24, 27, 31, 21, 18,
35, 17, 16]) deal with new approaches to scale capacity in response to changes in load. However,
such approaches can be ineffective during the setup time, as shown in Figure 1. SOFTScale is a
complementary solution that aims to improve performance specifically during the setup time, and
is meant to be used in conjunction with any existing dynamic capacity management approach.

While the concept behind SOFTScale seems obvious, there are some practical difficulties that
may have led researchers to dismiss this idea as “unworkable”, hence the lack of publications on
this idea. First, there’s the question of when SOFTScale is useful. Since the data tier is provisioned
to handle peak load, invoking SOFTScale when the data tier is already bottlenecked will lead to
SLA violations. Second, there’s the question of how much can we steal from the data tier. If we end
up stealing too much from the data tier, overall system performance might degrade. Third, there’s
the fear that running application work on the data tier servers will interfere with data delivery work,
and can possibly lead to SLA violations. Finally, there’s the fear that implementing SOFTScale is
too complicated.

In this paper, we demonstrate via implementation that the SOFTScale middleware is a practical
solution that allows us to meet response time SLAs even when load increases suddenly by a factor
of 2. In particular, this paper makes the following contributions:

• We determine load regimes for which SOFTScale can be successfully applied to handle load
spikes (see Section 3.1). This addresses the question of when to invoke SOFTScale. Further,
identifying load regimes where SOFTScale is not beneficial avoids accidental overload of
the data tier.
• We determine how much data tier capacity can be leveraged by SOFTScale for a given load

(see Section 3.2). This enables us to steal the right amount of capacity from the data tier
without hurting overall response time.
• We show that it is possible to avoid interference between the application work and the data

delivery work on the data servers by simply isolating these processes at the core level (see
Section 3.3).
• We outline the steps needed to implement the SOFTScale middleware (see Section 3.4). In

our testbed, we implemented SOFTScale by adding less than a thousand lines of code in the
Apache load balancer.

We evaluate SOFTScale via implementation on a 28-server multi-tier testbed hosting a key-

3



Figure 2: Our experimental testbed.

value based application built along the lines of Facebook or Amazon. Our implementation results
show that SOFTScale can be used to handle instantaneous load spikes (see Section 4.1), load
spikes seen in real-world traces (see Section 4.2) as well as load spikes caused by server failures
(see Section 4.3). To fully investigate the applicability of SOFTScale, we experiment with multiple
setup times ranging from 5 minutes (see Section 4) all the way down to 5 seconds (see Section 5).
Our results indicate that SOFTScale can provide huge benefits across the entire spectrum of setup
times. We also investigate the applicability of SOFTScale in future server architectures which may
have a larger number of cores per server. Our results (see Section 6) indicate that SOFTScale will
be even more beneficial in such cases.

2 Our experimental testbed

Figure 2 illustrates our experimental testbed. The gray components make up SOFTScale, and will
be described in detail in Section 3.4. We employ one server as the front-end load generator running
httperf [26]. Another server is used as a load balancer running the Apache HTTP Server, which
distributes incoming PHP requests to the application servers. Each application server communi-
cates with the data tier, which in our setup comprises memcached servers, to retrieve data required
to service the requests. Another server is used to store the entire data set, a billion key-value pairs,
on a database.

Throughout this paper we measure power consumption and use that as a proxy for all opera-
tional (resource) costs. We monitor the power consumption of individual servers by reading the
power values from the power distribution unit. The idle power consumption for our servers is about
140W (with C-states enabled) and the average power consumption for our servers when they are
busy or in setup is about 200W. The setup time for our servers is about tsetup = 5 minutes. How-
ever, we also examine the effects of lower tsetup2. We replicate this effect by not routing requests
to a server if it is marked for sleep, and by replacing its power consumption values with 0W. When
the server is marked for setup, we wait for tsetup seconds before sending requests to the server, and
replace its power consumption values during the tsetup seconds with 200W.

2Lower setup times could either be a result of using sleep states (which are prevalent in laptops and desktop
machines, but are not well supported for server architectures yet), or using virtualization to quickly bring up virtual
machines.

4



2.1 Workload

We design a key-value workload to model realistic multi-tier applications such as the social net-
working site, Facebook, or e-commerce sites like Amazon [13]. Each generated request (or job) is
a PHP script that runs on the application server. A request begins with the application server re-
questing a value for a key from the memcached servers. The memcached servers provide the value,
which itself is a collection of new keys. The application server then again requests values for these
new keys from the memcached servers. This process can continue iteratively. In our experiments,
we set the number of iterations to correspond to an average of roughly 2,200 key-value requests
per job, which translates to a mean service time of approximately 200 ms, assuming no resource
contention. The job size distribution is highly variable, with the largest job requiring roughly 20
times as many key-value requests as the smallest job.

In this paper, we use the Zipf [28] distribution to model the popularity of requests. To minimize
the effects of misses in the memcached layer (which could result in an unpredictable fraction of
the requests violating the response time SLA), we tune the parameters of the Zipf distribution so
that only a negligible fraction of requests miss in the memcached layer.

2.2 Provisioning

In order to demonstrate the effectiveness of SOFTScale, we tune our implementation testbed to
have no spare capacity at the memcached tier at peak load. Our memcached tier comprises 5
servers, each with a 6-core Intel Xeon X5650 processor and 48GB of memory. However, we offline
two cores3 per server to be consistent with the specifications that were published by Facebook [25],
leaving us with 4-core memcached servers. We now determine how many application servers we
need to fully saturate the memcached tier.

Each of our application servers is a powerful 8-core (dual-socket) Intel Xeon E5520 processor-
based server. We run an experiment where we have one application server and all five memcached
servers, and we flood the system. We find that the application server can handle at most 37.5 req/s
without violating the SLA, as shown in Figure 3(a).

We now examine how well the system scales as we add more application servers. Ideally, if
we have x application servers, the system should be able to handle a maximum request rate of at
least 37.5×x req/s without violating the 500ms SLA. Figure 3(b) shows our scaling results, where
we vary the number application servers from 1 to 28, and use a request rate of 37.5 req/s times
the number of application servers. We see that the system scales perfectly up to 20 application
servers. Once we have more than 20 application servers, we see that they can no longer handle
37.5 req/s per server. This is because at this peak load, which corresponds to 37.5 × 20 = 750
req/s, the memcached tier starts becoming a bottleneck. We validate our claim by ensuring that the
other components in the system, namely the load generator, the load balancer, and the application

3Observe that weakening the memcached servers greatly hurts SOFTScale in that there is less capacity to steal, but
we do this purposely to create a fully saturated memcached tier.

5



(a) Single application server. (b) Application tier scaling.

Figure 3: Figure (a) shows that a single application server can handle 37.5 req/s per server. Figure
(b) shows that once we have more than 20 application servers, they can no longer handle 37.5 req/s
per server because the memcached tier becomes the bottleneck.

servers, are not a bottleneck. Further, by monitoring the network bandwidth, we ensure that it is
not a bottleneck. With this ratio of 20 application servers to 5 memcached servers, we ensure that
the memcached tier is saturated. Thus, at least 5 memcached servers are needed to handle peak
load (using more than 5 memcached servers only improves the performance of SOFTScale). This
4:1 ratio of application servers to memcached servers is consistent with Facebook [2].

Based on the above experiments, we conclude that the 5 memcached servers can handle at most
750 job req/s before they become a bottleneck. Thus, in our experiments, we limit our total request
rate to 750 req/s, which we also refer to as peak load or 100% load. At peak load, we do not
have any spare capacity on the memcached servers. Thus, we cannot “steal” any resources from
memcached servers at high load without violating the 500ms SLA.

When running the system, the 5 memcached servers are always kept on. By contrast, the
number of application servers needed at any time is d r

37.5
e, where r is the current request rate into

the system. For example, if the current request rate is 15% of the peak (or 112 req/s), we provision
d 112
37.5
e = 3 application servers. Now, if the load suddenly doubles from 15% (112 req/s) to 30%

(225 req/s), we need 6 application servers in total. Thus, the 3 application servers that are currently
on, become the bottleneck.

3 SOFTScale

The key idea behind SOFTScale is to leverage the computational power at the always on data tier
servers to do some of our application work during the setup time while additional application tier
capacity is being brought online. The motivation behind this idea is that, while our memcached
servers are provisioned to have exactly the right amount of resources at high load (for our system,
peak load is 750 req/s), there are extra resources available at low load. Thus, when the system load

6



is low, we should be able to “steal” resources from the memcached servers to offset some of the
workload at the bottlenecked application servers.

SOFTScale works by enhancing the Apache load balancer to route some of the application
requests to the memcached servers during load spikes. Note that the software needed to process
the application work will first have to be installed on the data tier servers. For our experimental
testbed, this only involved installing the Apache web server with PHP support on the memcached
servers. Further, our application software does not consume a lot of memory.

While SOFTScale sounds like a promising idea, exploiting the full potential of SOFTScale is
challenging. We now describe SOFTScale by discussing the design decisions behind the algorithm.

3.1 When to invoke SOFTScale?

SOFTScale must be invoked as soon as there is a spike in load. A spike in load could be caused
either by an increase in request rate or by a loss in application tier capacity (server failures or
service outages).

If the spike in load is caused by a sudden increase in request rate, then the obvious approach to
detect this spike would be to monitor request rate periodically. Unfortunately, request rate is a time-
average value, and is thus not instantaneous enough to detect load spikes. We propose monitoring
the number of active requests at each application server, napp, to detect load spikes. If the system
is under-provisioned because the request rate is too high, then napp will immediately increase.
Monitoring napp is fairly straightforward, and many modern systems, including the Apache load
balancer, already track this value.

Spikes in load can also be caused by a sudden loss in application tier capacity (server failures
or service outages). In this case, request rate cannot be used to detect the spike. Fortunately, napp is
immediately responsive to server failures, since it increases instantaneously when the application
tier capacity drops.

We must invoke SOFTScale when napp becomes so high that the T95 SLA is in danger of being
violated. In particular, if n∗app is the maximum number of simultaneous requests that a single
application server can handle without violating the SLA, then we invoke SOFTScale as soon as
napp exceeds n∗app for all application servers. Of course, one can also be conservative and invoke
SOFTScale even when napp is below n∗app.

An easy way to determine n∗app is by profiling the application servers. We run a closed-loop
experiment with a single application server where we fix the number of simultaneous requests in
the system (napp), and monitor T95. Figure 4(a) shows our results. We see that, for our system,
n∗app = 13. This same technique (profiling the application servers) can be used for determining
n∗app for different systems as well. Note that n∗app corresponds to the 37.5 req/s that each application
server can handle. Since we provision the application tier so as not to exceed 37.5 req/s at each
server, a reading of napp > 13 indicates overload. Thus, we invoke SOFTScale as soon as the load
balancer detects that napp has exceeded 13 for all the application servers.

7



(a) Application server. (b) Memcached server.

Figure 4: Figure (a) shows that we should invoke SOFTScale whenever the number of requests
at the application server exceeds 13. Figure (b) shows n∗mem, the optimal number of application
requests that can be simultaneously handled by a memcached server without violating the 500ms
SLA, as a function of the total system load.

3.2 How much application work can memcached handle?

Now that we know when to invoke SOFTScale (and thus, when to attempt to steal resources from
the data tier), the next design question is: how much can we steal? The memcached servers are
primarily responsible for providing data to the application work. Thus, we cannot overload mem-
cached servers with too much application work. Figure 4(b) shows n∗mem, the maximum number
of application requests that a memcached server can handle simultaneously without violating the
SLA. We see that n∗mem depends on the overall system load, as should be expected. When the
system load is low (< 20%), each memcached server can handle almost half the work capacity of
an application server, whereas when the load is high (≥ 80%), memcached servers cannot handle
any application work.

3.3 Need for isolation

While we have successfully overloaded the functionality of the memcached servers, we have not
eliminated interference between the memcached work and the application work at the memcached
servers. One way of reducing interference is to “isolate” these two processes at the memcached
servers, by partitioning the four cores at the memcached server between the memcached work and
the application work. We achieve this core isolation by using the taskset command in Linux. A
logical way of partitioning the cores is in a 2:2 ratio, with 2 cores dedicated to memcached work
and 2 cores dedicated to application work. However, we find that the performance of SOFTScale
improves greatly if we dynamically adjust the partitioning based on total system load. For example,
when the system load is extremely low, we can get away with restricting memcached to only one
core at each memcached server and reserving the remaining three cores for application work in case

8



Figure 5: The figure illustrates enhancement in
SOFTScale using dynamic isolation.

Figure 6: The figure illustrates the load
jumps we use in our experiments. Note
that we only evaluate the system during
the setup time.

of a load spike (1:3 partitioning). On the other hand, when the system load is very high, we need
all four cores for memcached work (4:0 partitioning). Figure 5 shows n∗mem for the memcached
servers with dynamic isolation and without any isolation (same as Figure 4(b)). Note the four
discrete horizontal levels for dynamic isolation. These refer to a 4-core partitioning between the
memcached work and application work in the ratio of 1:3, 2:2, 3:1 and 4:0 respectively. We see
that dynamic isolation greatly enhances the capacity of memcached servers to handle application
work. Henceforth, when we use SOFTScale, it will be implied that we are referring to SOFTScale
with dynamic isolation.

3.4 The SOFTScale algorithm

We are now ready to describe our SOFTScale algorithm, which is implemented in the load bal-
ancer, and is depicted in gray in Figure 2. We send application requests to the application servers,
via Join-the-Shortest-Queue routing, as long as any server has less than n∗app simultaneous requests.
If all of the application servers have at least n∗app requests, SOFTScale is invoked. SOFTScale sends
any additional requests above the n∗app requests to the memcached servers. The resource manager
(see Figure 2) at each memcached server is responsible for invoking the software that will serve
the incoming application requests. In our case, this software is the Apache web server with PHP
support, which is invoked upon boot. The resource manager also isolates the application work from
the memcached work. We limit the number of requests that we send to each memcached server
to n∗mem. Recall that n∗mem, which is the optimal number of simultaneous application requests
that a memcached server can handle, is not a constant, and in fact varies with load as specified
in Section 3.3 and Figure 5. Note that n∗mem = 0 if load is greater than or equal to 80% of peak
load. Thus, SOFTScale will not send application requests to the memcached servers if load is high.
Once we have n∗mem requests at all memcached servers, then we load balance additional requests
among the application servers.

9



4 Results

We now evaluate the performance of SOFTScale for a variety of load spikes. We start in Sec-
tion 4.1, where we consider a range of instantaneous load jumps and characterize the space
of jumps that SOFTScale can handle. Then, in Section 4.2, we examine the performance of
SOFTScale under real-world load spikes. Finally, in Section 4.3, we examine the performance
of SOFTScale for load spikes that are caused by service outages or server failures. For all the
experiments in this section, we consider tsetup = 5 minutes, which is the setup time for our servers.
Later, in Section 5, we examine SOFTScale under lower setup times.

4.1 Characterizing the range of load jumps that SOFTScale can handle

In this section, we consider instantaneous jumps in load, as shown in Figure 6, and examine the
system only during the setup time. We assume the system is properly provisioned for the initial
load, and thus, is under-provisioned after the load jump, during the setup time. Under SOFTScale,
although the application tier is under-provisioned during the setup time, we can use the memcached
tier to compensate. By contrast, under the “baseline” architecture, we are limited to the capacity
of the under-provisioned application tier. We compare SOFTScale with the “baseline” architecture
by examining the following metrics: T95, the 95th percentile of response times during the 5 minute
setup time, and Pavg, the average power consumed by the application servers and the memcached
servers during the setup time. Note that Pavg is proportional to the amount of resources being used,
and can thus be thought of as a proxy for operational costs. For a given load jump, if the system
has T95 ≤ 500ms, we say that it can “handle” the load jump.

Figure 7(a) shows the effect of SOFTScale on T95 for specific load jumps. We choose these
specific load jumps since they correspond to the maximum jump that SOFTScale can handle at
each of the initial loads. For example, if the initial load is 10% of the peak, then SOFTScale
can handle a maximum jump of 10% → 29%, where the load changes instantaneously from an
initial load of 10% to a final load of 29%. We see that SOFTScale provides huge benefits in
T95, as long as the final load is less than 50%. In particular, the T95 under SOFTScale is less
than 500ms for the 10% → 29% jump, as compared with 96s under the baseline. Likewise,
SOFTScale lowers T95 from 64s to less than 500ms for the 20%→ 35%, and from 38s to less than
500ms for the 30% → 45% load jump. SOFTScale provides these performance improvements by
opportunistically stealing resources from the memcached servers to handle the critical application
work. When the load jumps from 40% → 55% and 50% → 61%, SOFTScale still provides
improvement in T95, but these improvements are not as dramatic. This is because the memcached
tier is optimally provisioned (see Section 2.2), and thus has very little spare capacity at high loads.

By contrast, the baseline architecture (no SOFTScale) would have to resort to significant over-
provisioning to handle the load jumps. For example, for the 10%→ 29% jump, the baseline would
have to over-provision the application tier by about 190% to meet SLA goals during the setup time.
Clearly, this is a huge waste of resources.

10



(a) T95 (b) Pavg

Figure 7: SOFTScale meets T95 = 500ms SLA without consuming any extra resources for a range
of load jumps.

Figure 7(b) plots Pavg, the average power consumed by the application servers and the mem-
cached servers, for SOFTScale and the baseline. We see that SOFTScale does not consume any
additional power as compared to baseline. This is because the total amount of work done by all
servers under SOFTScale and under baseline is about the same, for a given load level. Thus, Pavg,
which is a proxy for operational costs, does not change significantly when using SOFTScale.

Figure 8 shows the full set of results for SOFTScale. In Figure 8(a), the gray region shows
the solution space, or regimes, of load jumps that SOFTScale can handle without violating the
500ms SLA, while the black region shows the load jumps that the baseline can handle without
violating the SLA. Note that SOFTScale’s solution space is a superset of the baseline’s solution
space. The crosses in the figure refer to the specific load jump cases we showed in Figure 7, namely
the maximum load jumps that SOFTScale can handle for each of the initial loads.

Since the system is optimally provisioned (see Section 2), the baseline cannot handle any sig-
nificant load jumps. In particular, when the initial load is either too low or too high, the baseline
cannot handle any load jumps. However, because of the inherent elasticity in the system, the base-
line can handle some small load jumps when the initial load is moderate. For example, when
the initial load is 20%, the black region indicates that baseline can handle a maximum jump of
20%→ 24%.

By contrast, SOFTScale can handle a much larger range of load jumps as compared to the
baseline. For example, when the initial load is 20%, the gray region indicates that SOFTScale can
handle a maximum jump of 20%→ 35%.

In Figure 8(b), we plot the maximum load jump (in %) that SOFTScale can handle for each
initial load. Again, the crosses in the figure refer to the specific load jump cases we showed in
Figure 7. For example, the first cross from the left corresponds to the 10% → 29% load jump,
which amounts to a 190% jump in load. As expected, SOFTScale can handle huge jumps when
the initial load is low, but can only handle moderate load jumps when the initial load is high.

11



(a) Solution space for tsetup = 5 minutes. (b) Improvement for tsetup = 5 minutes.

Figure 8: Full range of results for SOFTScale. The crosses in the figures refer to the specific load
jump cases shown in Figure 7. Note that SOFTScale’s solution space in Figure (a) is a superset of
the baseline’s solution space.

4.2 Spikes in real-world traces

In addition to evaluating SOFTScale under instantaneous load jumps (as in Section 4.1), we also
evaluate SOFTScale under the real-world traces, Pi Day [6], NLANR [1] and WC98 [7], shown in
Figure 9. We re-scale each trace so that the peak load corresponds to 750 req/s, and then consider
five minute (tsetup) snippets that highlight load spikes. The load numbers in Figure 9 correspond to
the post-scaled traces. We assume the system is well provisioned at time t = 0, and then examine
the system performance for the next five minutes, during which additional capacity is being brought
online.

(a) Baseline:
T95 = 115, 730ms.
SOFTScale:
T95 = 418ms.

(b) Baseline:
T95 = 1, 050ms.
SOFTScale:
T95 = 470ms.

(c) Baseline:
T95 = 3, 477ms.
SOFTScale:
T95 = 439ms.

(d) Baseline:
T95 = 620ms.
SOFTScale:
T95 = 474ms.

Figure 9: Real-world traces used for our experiments.

12



Figure 10: The plot illustrates the superiority of SOFTScale over the baseline for the Pi Day [6]
trace in Figure 9(b).

Although the initial load ranges from 5% to 30% across the different traces, SOFTScale achieves
a T95 of less than 500ms for all cases (see Figures 9(a) to 9(d)). By contrast, the baseline results
in a T95 of over 115s in Figure 9(a), where the load quadruples from 5% to 20%. In Figure 9(b),
where the load roughly doubles from 25% to 46%, the T95 under the baseline is just over a second,
in contrast to SOFTScale’s 470ms. The superiority of SOFTScale over the baseline for the trace in
Figure 9(b) is further illustrated in Figure 10, which depicts the instantaneous T95 (collected every
second) over the trace.

4.3 Spikes created by server faults

Thus far, we considered the case where load spikes are caused by a sudden increase in request rate.
However, load spikes can also result because of a sudden drop in capacity. Service outages [30]
and server failures [32] are common causes for a sudden (and unpredictable) drop in capacity.
SOFTScale is useful regardless of the cause of load spikes since SOFTScale is invoked when the
number of jobs at a server increases (see Section 3.1). We now illustrate the fault-tolerance benefits
of SOFTScale.

Consider a system that is well provisioned to handle 30% initial load. Suppose a failure takes
down half of the provisioned capacity, resulting in a system that can now only handle 15% load.
We refer to this as a 30% → 15% capacity drop. Figure 11(a) shows our experimental results for
instantaneous T95 (collected every second) under a 30%→ 15% capacity drop, which is triggered
at the 10s mark. Apache’s load balancer is very quick to recognize that some of the application
servers are offline, and thus stops sending additional requests to them. In Figure 11(a), while
SOFTScale successfully handles the capacity drop, the baseline completely falls apart. The power
consumption for SOFTScale and the baseline are about the same, and are thus omitted due to lack
of space.

Figure 11(b) shows our experimental results for instantaneous T95 under a very severe 50%→
20% capacity drop, which is produced by taking down 6 of the 10 application servers at the 10s
mark. This time, we see that instantaneous T95 rises sharply for both SOFTScale and the baseline.

13



(a) 30%→ 15% capacity drop. (b) 50%→ 20% capacity drop.

Figure 11: SOFTScale provides significant benefits even when load spikes are caused by a sudden
drop in capacity. In the figures above, we drop capacity at the 10s mark.

However, the rate at which instantaneous T95 increases under SOFTScale is significantly lower
than that under the baseline. Thus, we conclude that SOFTScale is useful even when load spikes
are caused by a sudden drop in capacity.

5 Lower setup times
While production servers today are only equipped with “off” states that necessitate a huge setup
time (tsetup = 5 minutes for our servers), future servers may support sleep states, which can
lower setup times considerably. Further, with virtualization, the setup time required to bring up
additional capacity (in the form of virtual machines) might also go down. In this section, we
analyze SOFTScale for the case of lower setup times by tweaking our experimental testbed as
discussed in Section 2. Intuitively, for low setup times, one might expect that SOFTScale is not
needed since instantaneous T95 should not rise too much during the setup time. This turns out to
be false.

Figure 12 shows our experimental results for instantaneous T95 under the 15% → 30% load
jump, for a range of tsetup values. We change the scale for Figure 12(a) to fully capture the effect of
the 50s setup time. Recall from Figure 8(a) that SOFTScale can handle the 15%→ 30% load jump,
even if tsetup = 5 minutes. Thus, it is not surprising that SOFTScale can handle the 15% → 30%
load jump for tsetup = 50s, 20s and 5s in Figure 12.

By contrast, the instantaneous T95 for the baseline quickly grows and exceeds the 500ms SLA
during the entire setup time duration, even for the tsetup = 5s case. However, the instantaneous
T95 values for the baseline are not too high under lower setup times. This is because when the
setup time is low, the overload period is very short. Observe that instantaneous T95 does not drop
immediately after the setup time because of the backlog created during the setup time.

Figure 13 shows our experimental results for instantaneous T95 under the 20% → 50% load
jump. Recall from Figure 8(a) that SOFTScale cannot handle the 20% → 50% load jump when
tsetup = 5 minutes. In Figure 13, we see that instantaneous T95 rises sharply during the setup time

14



(a) tsetup = 50s. (b) tsetup = 20s. (c) tsetup = 5s.

Figure 12: Effect of tsetup on instantaneous T95 for a 15%→ 30% jump in load.

(a) tsetup = 50s. (b) tsetup = 20s. (c) tsetup = 5s.

Figure 13: Effect of tsetup on instantaneous T95 for a 20%→ 50% jump in load.

for both SOFTScale and the baseline. However, the rate at which instantaneous T95 increases under
SOFTScale is at most half that under the baseline.

Figure 14 shows the full set of results for SOFTScale for the case of tsetup = 20s. In Fig-
ure 14(a), we show the solution space of load jumps that SOFTScale and the baseline can handle
without violating the 500ms T95 SLA (over the 20s setup time). The crosses in the figure refer to
the specific load jump cases we showed in Figures 12 and 13. We see that SOFTScale can handle
a much larger range of load jumps (gray region) as compared to the baseline (black region), just
as we observed in Figure 8(a) for tsetup = 5 minutes. In Figure 14(b), we plot the maximum load
jump (in %) that SOFTScale can handle for each initial load. Again, as expected, SOFTScale can
handle huge jumps when the initial load is low, but can only handle moderate load jumps when the
initial load is high.

It is very interesting to note that the performance degradation caused by load spikes for the
baseline case does not go away even when the setup time is really low. Thus, there is a need for
SOFTScale even under low setup times. Comparing Figures 8 and 14, we see that the range of load
jumps that the baseline (and SOFTScale) can handle increases only slightly under the much lower
setup time of 20s. The reason that this increase is so small is that most of the “damage” to T95 has
already occurred after only a few seconds.

15



(a) Solution space for tsetup = 20s. (b) Improvement for tsetup = 20s.

Figure 14: Full range of results for SOFTScale under tsetup = 20s. The crosses in the figures refer
to the specific load jump cases shown in Figures 12 (15%→ 30% load jump) and 13 (20%→ 50%
load jump).

6 Future architectures
In our implementation testbed (see Section 2), we use 4-core servers for the memcached tier. In
the near future, it is likely that 4-core processors will be replaced by 8 (or more) core processors,
even though their memory capacity is unlikely to increase significantly. Thus, we would still need
just as many memcached servers. On the other hand, data replication needs may require additional
memcached servers. In either case, the memcached tier will now have more spare compute capacity
that can be exploited by the application tier via SOFTScale. In this section, we investigate the
performance of SOFTScale for the case where we have 8-core memcached servers.

Figure 15 shows n∗mem, the optimal number of application requests that a memcached server
can handle simultaneously without violating the 500ms SLA, for 8-core and 4-core memcached

Figure 15: Using 8-core memcached servers significantly enhances SOFTScale’s ability to handle
load jumps.

16



(a) Solution space for tsetup = 5 minutes. (b) Solution space for tsetup = 20s.

Figure 16: Full range of results for SOFTScale with 8-core memcached servers under (a) tsetup = 5
minutes and (b) tsetup = 20s. We see that 8-core memcached servers provide huge benefits for
SOFTScale regardless of the setup time.

servers. We see that using 8-cores allows us to put a lot more application work on the mem-
cached servers. Thus, SOFTScale should be able to handle much higher load jumps with 8-core
memcached servers.

Figure 16(a) shows the full set of results for SOFTScale and the baseline, both with 8-core
memcached servers, for the case of tsetup = 5 minutes. We see that SOFTScale with 8-core
memcached servers can handle a significantly larger range of load jumps. For example, SOFTScale
can handle a 10% → 50% load jump as compared to the maximum jump of 10% → 29% using
4-core memcached servers, as was shown in Figure 8(a). Further, SOFTScale can now handle
load jumps even when the load is as high as 80%, since the memcached work requires at most 4
cores at peak load (see Section 2), still leaving 4 cores at each memcached server for application
work. Figure 16(b) shows the full set of results for SOFTScale for the case of tsetup = 20s. These
results are very similar to those in Figure 16(a). Thus, even though there is a cost (monetary cost
and increased power consumption) involved in switching to 8-core memcached servers, it might
make sense to deploy these servers for the memcached tier to handle severe load spikes using
SOFTScale.

7 Prior work
There is a lot of prior work that deals with dynamic capacity management. These works can be
classified into reactive [24, 27, 31], predictive [21, 18] and mixed [35, 17, 16] approaches. While
these approaches can handle gradual changes in load, they cannot handle abrupt changes, especially
load spikes that occur almost instantaneously. This claim was also verified by other authors [10].

There has been some prior work specifically dealing with load spikes [10, 22]. Chandra et
al. [10] show that existing dynamic capacity management algorithms are not good at handling
flash crowds in an internet data center. In order to handle flash crowds, the authors advocate either

17



having spare servers that are always available (over-provisioning), or finding a way to lower setup
times. However, as our work shows (see Figures 12(c) and 13(c)), even a 5s setup time can result
in severe SLA violations. Further, by using SOFTScale, we do not have to pay for any additional
resources, which is not the case when over-provisioning via spare servers. Lassettre et al. [22]
propose a short-term forecasting approach to handle load spikes for a multi-tier system with a
setup time of 30s. While [22] is very effective at handling load spikes that gradually build over
time, it is not well suited for the instantaneous load spikes we consider in this paper since the
forecasting in [22] itself requires at least 10s, and we have shown that even a 5s setup time is
detrimental. Observe that SOFTScale is actually complementary to the above approaches, and can
be used in conjunction with them.

There has also been recent work looking at data spikes, where a particular web object becomes
extremely popular. Data spikes can be handled by caching or replication techniques (see, for
example [34]), and are not the focus of our paper.

To handle load spikes for small websites with only static content, a possible solution is to
host their content on a cloud computing platform. These platforms are able to handle load spikes
by over-provisioning more economically since they host multiple websites, and load spikes on
individual websites are often not correlated (statistical multiplexing) [15]. For multi-tiered cloud
computing environments, SOFTScale can be used in conjunction with statistical multiplexing.

Finally, there is also a lot of prior work [4, 36, 11] that deals with managing overload condi-
tions by allowing for performance degradation. Some of the popular techniques that have been
used to regulate performance degradation include admission control and request prioritization. By
contrast, SOFTScale handles load spikes without any performance degradation, provided the load
is not high. If the load is high, SOFTScale can be coupled with techniques like those in [4, 36, 11]
to minimize the damage caused by load spikes.

8 Conclusion
In this paper, we consider load spikes, which are all too common in today’s data centers [12, 29,
23, 19, 7, 30, 32]. Our results in Figures 12 and 13 show that ignoring load spikes can result
in severe SLA violations, even if it takes only 5 seconds of setup time to bring capacity online.
The obvious solution of over-provisioning resources is quite expensive since load spikes are often
unpredictable.

We propose SOFTScale, an approach to handling load spikes in multi-tier data centers without
consuming any extra resources. In multi-tier data centers, the application tier is typically state-
less, and can be dynamically provisioned, whereas the data tier is stateful, and is always left on.
SOFTScale works by opportunistically stealing resources from the data tier to alleviate the over-
load at the application tier during the setup time needed to bring additional application tier capacity
online. Since tiers in a data center are typically carefully provisioned for peak load, SOFTScale
must steal from the data tier without hurting overall performance. SOFTScale does this by first

18



determining how much spare capacity can be stolen from the data tier without violating SLAs at
different load levels, and then dynamically isolating the application work and the data delivery
work at the data tier to avoid interference.

Our implementation results on a 28-server testbed demonstrate that SOFTScale can handle
various load spikes for a range of setup times (see Figures 8 and 14). Specifically, SOFTScale can
handle instantaneous load jumps ranging from 5% → 25% to 50% → 61%, even when the setup
time is 5 minutes. SOFTScale works extremely well for real-world load spikes (see Figure 9), and
significantly improves performance (typically a 2X – 100X factor improvement) when compared
to the baseline. Even more benefits are possible for future many-core servers (see Figure 16).

While our implementation testbed mimics a web site of the type seen in Facebook or Amazon
with an application tier and a memcached tier, we believe SOFTScale will also be applicable when
the memcached tier is replaced by any other data tier. Since the data tier is stateful, there will
always be a subset of servers that will not be turned off. Thus, SOFTScale can leverage these
servers to alleviate the bottleneck at the application tier during load spikes.

References

[1] National Laboratory for Applied Network Research. Anonymized access logs.
ftp://ftp.ircache.net/Traces/.

[2] Personal communication with Facebook.

[3] Stephen Adler. The Slashdot Effect: An Analysis of Three Internet Publications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html.

[4] Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur, Jon Howell, and Jacob
Lorch. Load management in a large-scale decentralized file system. MSR-TR, 2004-60, July
2004.

[5] Amazon Inc. Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/ec2/,
2008.

[6] David G. Andersen. Trace of web site activity on Pi day (3/14/2011)from domains hosted by
angio.net. Personal communication, December 2011.

[7] Martin Arlitt and Tai Jin. Workload characterization of the 1998 world cup web site. IEEE
Network, 1999.

[8] Eitan Frachtenberg Song Jiang Berk Atikoglu, Yuehai Xu and Mike Paleczny. Workload
analysis of a large-scale key-value store. In Sigmetrics 2012, London, UK.

[9] Roy Bryant, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaustubh Joshi, Matti Hiltunen,
Andres Lagar-Cavilla, and Eyal de Lara. Kaleidoscope: cloud micro-elasticity via vm state
coloring. In EuroSys 2011, Salzburg, Austria.

19



[10] Abhishek Chandra and Prashant Shenoy. Effectiveness of dynamic resource allocation for
handling internet flash crowds. Technical Report TR03-37, Department of Computer Science,
University of Massachusetts at Amherst, November 2003.

[11] Ludmila Cherkasova and Peter Phaal. Session-based admission control: A mechanism for
peak load management of commercial web sites. IEEE Trans. Comput., 51, June 2002.

[12] Josh Constine. Walmarts black friday disaster: Website crippled, violence in stores.
http://techcrunch.com/2011/11/25/walmart-black-friday, November 2011.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store. In SOSP 2007, Stevenson, WA, USA.

[14] Wayne W. Eckerson. Three tier client/server architecture: Achieving scalability, perfor-
mance, and efficiency in client server applications. Open Information Systems, 10, January
1995.

[15] Jeremy Elson and Jon Howell. Handling flash crowds from your garage. In USENIX ATC
2008, Boston, MA, USA.

[16] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah. Minimizing data center sla
violations and power consumption via hybrid resource provisioning. In IGCC 2011, Orlando,
FL, USA.

[17] Daniel Gmach, Stefan Krompass, Andreas Scholz, Martin Wimmer, and Alfons Kemper.
Adaptive quality of service management for enterprise services. ACM Trans. Web, 2(1):1–46,
2008.

[18] Tibor Horvath and Kevin Skadron. Multi-mode energy management for multi-tier server
clusters. In PACT 2008, Toronto, ON, Canada.

[19] Jim Hu and Greg Sandoval. Web acts as hub for info on attacks. CNET news, September
2001.

[20] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual machine
monitor. In Linux Symposium 2007, Ottawa, ON, Canada.

[21] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler, and Randy
Katz. Napsac: Design and implementation of a power-proportional web cluster. In Green
Networking 2010, New Delhi, India.

[22] Ed Lassettre, David W. Coleman, Yixin Diao, Steve Froehlich, Joseph L. Hellerstein,
Lawrence S. Hsiung, Todd W. Mummert, Mukund Raghavachari, Geoffrey Parker, Lance
Russell, Maheswaran Surendra, Veronica Tseng, Noshir Wadia, and Pery Ye. Dynamic surge
protection: An approach to handling unexpected workload surges with resource actions that
have lead times. In DSOM 2003, Heidelberg, Germany.

20



[23] William LeFebvre. CNN.com: Facing A World Crisis. Invited Talk, USENIX ATC 2002.

[24] Julius C.B. Leite, Dara M. Kusic, and Daniel Mossé. Stochastic approximation control of
power and tardiness in a three-tier web-hosting cluster. In ICAC 2010, Washington, DC,
USA.

[25] Mark LaPedus. Facebook Wants New and Cheaper Memories.
http://semimd.com/blog/2011/11/08/facebook-wants-new-and-cheaper-memories, Novem-
ber 20011.

[26] David Mosberger and Tai Jin. httperf—A Tool for Measuring Web Server Performance. ACM
Sigmetrics: Performance Evaluation Review, 26:31–37, 1998.

[27] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: Managing performance
interference effects for qos-aware clouds. In EuroSys 2010, Paris, France.

[28] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics,
46:323–351, December 2005.

[29] Kathleen Ohlson. Victorias secret knows ads, not the web. Computer World, February 1999.

[30] Peter Pachal. Amazon apologizes for cloud outage, issues credit to customers. PCMag, April
2011.

[31] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang,
Sharad Singhal, and Arif Merchant. Automated control of multiple virtualized resources. In
EuroSys 2009, Nuremberg, Germany.

[32] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild: a
large-scale field study. In SIGMETRICS 2009, Seattle, WA, USA.

[33] George Schussel. Client/server: Past, present and future. http://www.dciexpo.com/
geos/dbsejava.htm, September 2006.

[34] Beth Trushkowsky, Peter Bodı́k, Armando Fox, Michael J. Franklin, Michael I. Jordan, and
David A. Patterson. The scads director: scaling a distributed storage system under stringent
performance requirements. In FAST 2011, San Jose, CA, USA.

[35] Bhuvan Urgaonkar and Abhishek Chandra. Dynamic provisioning of multi-tier internet ap-
plications. In ICAC 2005, Washington, DC, USA.

[36] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra. Kernel mechanisms for
service differentiation in overloaded web servers. In USENIX ATC 2001, Boston, MA, USA.

[37] L. A. Wald and S. Schwarz. The 1999 southern california seismic network bulletin. Seismo-
logical Research Letters, 71:401–422, July 2000.

21


