Cost Models based on the
A-Calculus
or
The Church Calculus
the Other Turing Machine

Guy Blelloch
Carnegie Mellon University

Church/Turing

Machine Models and Simulation

Handbook of Theoretical Computer Science

Chapter 1: Machine Models and Simulations
[Peter van Emde Boas]

Machine Models [2"Y paragraph]

“If one wants to reason about complexity
measures such as time and space consumed by
an algorithm, then one must specify precisely
what notions of time and space are meant.

The conventional notions of time and space

complexity within theoretical computer science
are based on the implementation of algorithms
on abstract machines, called machine models.”

Machine Models [2"Y paragraph]

“If one wants to reason about complexity
measures such as time and space consumed by
an algorithm, then one must specify precisely
what notions of time and space are meant.

The conventional notions of time and space
complexity within theoretical computer science
are based on the implementation of algorithms

on abstract machirM models.”

programming models

Simulation [3™ paragraph]

“Even if we base complexity theory on abstract
instead of concrete machines, the arbitrariness
of the choice of model remains. It is at this
point that the notion of simulation enters. If we
present mutual simulations between two
models and give estimates for the time and
space overheads incurred by performing these
simulations...”

Machine Models

Goes on for over 50 pages on machine models

Turing Machines
— 1 tape, 2 tape, m tapes
— 2 stacks
— 2 counter, m counters,
— multihead tapes,
— 2 dimensional tapes
— various state transitions

Machine Models

Random Access Machines
— SRAM (succ, pred)
— RAM (add, sub)
— MRAM (add, sub, mult)
— LRAM (log length words)
— RAM-L (cost of instruction is word length)

Pointer Machines
— SMM, KUM, pure, impure
Several others

Some Simulation Results (Time)

SRAM(time n) < TM(time n? log n)
RAM(time n) < TM(time n3)
RAM-L(time n) < TM(time n?)
 RAM(time n) < TM(time n? log n)
MRAM(time n) < TM(time Exp)

TM(time n) < SRAM(time n)
TM(time n) < RAM(time n/log n)

Some Simulation Results (Space)

 LRAM(space n) < TM(space n log n)
* RAM-L(space n) < TM(space n)
— space = sum of word sizes, 1 if empty

Complexity Classes

LOGSPACE € NLOGSPACE
CP
C NP
C PSPACE
= NPSPACE
C EXPTIME
C NEXPTIME
C EXPSPACE
= NEXPSPACE ...

Parallel Machine Models

Circuit models
PSPACE

TM with alternation
Vector models

PRAM
— EREW, CREW, CRCW (priority, arbitrary, ...

SIMDAG
k-PRAM, MIND-RAM, PTM

)

Church/Turing

o
—

Language-Based Cost Models

A cost model based on a “cost semantics” instead of
a machine.

Why use the A-calculus? historically the first model,
a very clean model, well understood.

What costs? Number of reduction steps is the
simplest cost, but as we will see, not sufficient
(e.g. space, parallelism).

Language-Based Cost Models

Advantages over machine models:

— naturally parallel (parallel machine models are
messy)

— more elegant
— model is closer to code and algorithms

|II

— closer in terms of simulation costs to “practica
machine models such as the RAM.

Disadvantages:
— 50 years of history

Our work

Call-by-value A-Calculus [BG 1995, FPGA

Call-by-need/speculation [BG 1996, POPL
CBV A-Calculus with Arrays [BG 1996,ICFP

CBV space [SBHG 2006, ICFP]
CVB cache model [BH 2012, POPL]

Gibbons, Greiner, Harper, Spoonhower

D

Other work

SECD machine [Landin 1964]
CBN, CBV and the A-Calculus [P

Cost Semantics [Sands, Roe,]

otkin 1975]

The lenient A-Calculus [Roe 1991]
A-Calculus and linear speedups [SGM 2002]
Various recent work [Martini, Dal Lago,

Accattoli, ...]

Various work on “implicit computational
complexity” (Leivant, Girard, Cook, ...)

Call-by-value A-calculus

e=xl(e e,)lAx. e

Call-by-value A-calculus

el v relation

M.e | Ax.e (LAM)

edAx.e e v ev/ix]{|V (APP)

(e, e,) | V'

The A-calculus is Parallel

e, | Ax.e e, v ev/x]{|V

e e, ||V

(APP)

It is “safe” to evaluate e, and e, in parallel

But what is the cost model?
How does it compare to other parallel models?

The Parallel A-calculus: cost model
el v;w,d

Reads: expression e evaluates to v with work w
and span d.

 Work (W): sequential work

e Span (D): parallel depth

The Parallel A-calculus: cost model

Ax.e | Ax.eflll (LAM)
e, | Ax. e;.a’1 e, | v;.d2 e[v/x]| v';.,d3 (APP)
e e, | v'; W Wl |+ max(d,.d,) + d,
Work adds
Span adds sequentially, d

and max in parallel

22

The Parallel A-calculus: cost model

e, | Ax. e;.

dl

Ax.e |)Lx.e;n

62UV;.

d,

e[v/x]| v'; .

(LAM)

d3

ere; §v's [IEMEEMS)

1 +max(d,,d,) +d,

(APP)

let, letrec, datatypes, tuples, case-statement can all
be implemented with constant overhead

Integers and integer operations (+, <,

...) can be

added as primitives or implemented with O(log n)

cost.

23

Defining basic types and constructs

Recursive Data types

pair=Axy.(Affxy))
first=Ap.p(Axy.x) second=Ap.p(Axy.y)

Local bindings
letvalx=e;ine end = (Ax.e)e,

Conditionals
true=Axy. x false=Axy.y
ife,thene,elsee; = ((Ap.(Axy.pxy))e)e, e;

Recursion
Y-combinator

Integers (logarithmic overhead)
List of bits (true/false values)
Church numerals do not work

F(F(

)

Other costs

 What about cost of substitution, or variable
lookup?

 What about finding a redux?
Not a problem

- implement with sharing via a store or
environment. If using an environment variable
lookup is “cheap”

Simulation

* P-CEK machine
((C\.E,,K)),(C,,E,.K,),...)
K=mnll(argl)::Kl(funl):: K

(e, e,,E,K) = ((e,,E,(argl):: K), (e, E,(fun [):: K)), new [

The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]:If e v; w,d then v can be
calculated from e on a CREW PRAM with p

pProcessors in o(mogm +dlogp) time.
p

m = # of distinct variable names in e
in practice constant (will assume from now on)

* assumes implicit representation of result
with sharing. For explicit representation,
need to add (|v|/p) term.

The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]:If e v; w,d then v can be
calculated from e on a CREW PRAM with p
pProcessors in 0(W+d10gp) time.

p

Can’ t really do better thanimax(z,d)
p

If w/p >d log p then “work dominates”

We refer to w/p as the parallelism.

The Parallel A-calculus
(including constants)

c ol (CONST)

e | c;lal1 e, | v;.,@ o(c,v) | v' (APPC)
e e, | v';_ 1 + max(d,,d,)

c, =0, 044, <<, <, X, X 0,000, X 000 (constants)

n > "' n?

A 29

The Parallel A-calculus
(including constants)

c ol (CONST)

e | c;lal1 e, | v;.,@ o(c,v) | v' (APPC)
e e, | v';_ 1 + max(d,,d,)

c, =0, 044, <<, <, X, X 0,000, X 000 (constants)

n > "' n?

The model we use in an introductory algorithms course at CMU
(almost).

A special case

Corollary: [FPCA95]:Ife | vi w,_ then v can be
calculated from e on a RAM in O(wlogm) time.

Quicksort in the A-Calculus

fun gsort S =
if (size(S) <= 1) then S
else
let val a = randelt S
val S1 = filter (fn x => x < a) S
val S2 = filter (fn x => x a) S
val S3 = filter (fn x => x > a) S

in
append (gsort S1) (append S2 (gsort S3))
end

Qsort on Lists

fun gsort [] []

| gsort S =
let val a:: =S
val S; = filter (fn x => x < a) S
val S, = filter (fn x => x a) S

filter (fn x => x > a) S

val S,
in
append (gsort S;) (append S, (gsort S,))

end

Qsort Complexity

All bounds expected case
Sequential Partition over all inputs of size n

Parallel calls
Work = O(n log n)

(less than, ...)

Span = O(n) Parallelism = O(log n)

Not a very good parallel algorithm

Tree Quicksort

datatype ‘a seq

fun append Empty b = b
| append a Empty = a
| append a b = Node(a,b)

fun filter £ Empty = Empty
| filter £ (Leaf x) =
if (f x) the Leaf x else Empty
| £filter £ Node(l,r) =
append (filter £ 1) (filter f r)

Tree Quicksort

fun gsort Empty = Empty
| gsort S =
let val a = first S
val S; = filter (fn x => x < a) S
val S, = filter (fn x => x a) S
filter (fn x => x > a) S

val S,
in
append (gsort S;) (append S, (gsort S,))
end

Qsort Complexity

Parallel partition Span = O(lg n)
Parallel calls 4

q

Work = O(n log n)

Span = O(lg2n)

A good parallel algorithm Parallelism = O(n/log n)

A 37

Tree Quicksort

datatype ‘a seq

fun append Empty b = b
| append a Empty = a
| append a b = Node(a,b)

fun filter £ Empty = Empty
| filter £ (Leaf x) =
if (f x) the Leaf x else Empty
| £filter £ Node(l,r) =
append (filter £ 1) (filter f r)

Qsort Complexity

Parallel partition Span = O(lg n)
Parallel calls 4

q

Work = O(n log n)

All expected case

Span = O(lg2n)

A good parallel algorithm Parallelism = O(n/log n)

A 39

The Parallel Speculative A-calculus:
cost model

Can apply the argument before it is fully
computed, allows for pipelined parallelism

— Futures

— |-structures

The Parallel Speculative A-calculus:

cost model

d>elv, w, d', d

Evaluate e starting at depth (time) d,
returning value v

with work w
with “min” (available) detph d’

dNC

“max” (completed) depth d hat

The Parallel Speculative A-calculus:

Cost Model
delv, w, d, d

€ €,

QU

42

The Parallel Speculative A-calculus:

Cost Model
delv, w, d, d

d
d+1,/o\>, d+1

le | Ax.e g /e, |V

dl\ :
ey

1

€ €,

NQ»

d’=d§ e[V/.Xj U« V'

d;

<

) d =1+max(c?1,c§2,6?3)

The Parallel Speculative A-calculus:
cost model

d>Ax.e| Ax.e; 1,1+d,1+d

d>(Ax.e;d") || Ax. e; 1, 1 +max(d,d"), 1+max(d,d")

d+1>e | Ax.e; w,, d,, c?l

Va\

d+l>e, |v; w,, d,, d,

d >el(v;d,) ! x]|v'; w,, d;, d,

d>e e, | v 1+w +w,+w,, d,, 1 + max(d,,d,,d,)

Provable Implementation Bounds

Theorem [POPL96]:If O0>e | v; w,d',d then v can
be calculated from e¢ on a F&A CREW PRAM

with p processors in o(Lénogp) time.
pP

Modeling Space

o,R>ell,o',s

Evaluate e with store o, and root set R C dom(o)
returning label [€ dom(oc")
with updated store o’
and space s

Modeling Space

O,R> Ax.e | l,0[l+— Ax. e],space(RUI)
where [& dom(o)

o,RUlabels(e,)> e, | [,0,,s,
o,RU{l}>e, | 1,,0,,s,
o, (l)=Ax.e
o,,R>elx/]|l,0,s,

o,R>e e, | l,0,max(1+5s,1+5,,s;)

Provable Implem

Theorem [ICFP96,06]:If
theno(l) can be calcu
O(s) spaceandonaC

entation Bounds

{}.O0>el l,o,wd,s
ated from e on a RAM in
REW PRAM with P

processors in O(s + po

O(K+dlogp) time
p

log p) space and

Adding Functional Arrays: NESL

{e,:x1ne, | e}

e'v,/x1|v'sw,d i€{l..n}

{e"xinv,..v, 1} I [v,"..v,'T; 1+ 30w, 1+ maxd,

Primitives:

<- : ‘a seq * (int, a) seq -> ‘a seq

° [q/n/x/i/a] <- [(0,d),(2,x),(0,1)]
[i/nlrlila]

elt, index, length [ICFP96]

Quicksort in NESL

function quicksort(S) = Span — O(log n)
if (#S <= 1) then S Work = O(n)
else let

om0

Sl = {e in S | e < a};

S2 = {e in S | e = a};

S3 = {e in S | e > a};

R = {quicksort(v) : v in [S1l, S3]};
in R[0] ++ S2 ++ R[1];

Provable Implementation Bounds

Theorem: Ife | v; w,d,s then v can be calculated
from e on a CREW PRAM with p processors in

O(W+d10gp) time and o(s+ pdlog p) Space.
p

Cache Efficient Algorithms

Ideal-cache model/IO Model
slow memory

fast memory

N

= >
<-> > M/B
<@ block

C /

© OO

cost=0 cost =1

Known Bounds

* Merge Sort: O 2lo ﬂ)
: (21og, 2

e Optimal Sort: ol Lo ﬁ)
P (B g(M/B)M

3
n

BIYM

 Matrix Multiply: O

Merging

Blocks (B = 4)

y

11318 |11(14]15(18]25|27|32|35|40
2156|719 (1211920212628 (29

—K

Lists

head of list

head of list

/i/i@l/i/i

11

14

18

25

MergeSort

Cache Cost
mergeSort > kn/B
/ \
mergeSort mergeSort kn/B
g ? > log, (n/2M)
O
O

o o
0000000 kn/B |
size = M, just fits in cache Free

_ Total = (kn/B) logs (n/2M)
Requires careful - O(n/B log,, (/M)

memory allocation

Functional MergeSort

1)
[a]l) = [a]

| —
| I

fun mergeSort (

[
| mergeSort (
| mergeSor (A) =
let
val (L,H) = split(A)
fun merge([], B) = B
| merge (4, []) = A
| merge((a::At), (b::Bt)) =>
1f (a < b) then !'a :: merge (At, B)
else !'b :: merge (A, Bt)
1in

merge (mergeSort (L) ,mergeSort (H))
end

Our Model

nursery (v)

(size = M, not organized in blocks) _
main memory ()

llocati i
" (wites) =iy

(live data only)

= [1]] oldest

——
FP B

read cache (p)

‘\ N
<@¢[_block =
reads
> M/B

toss <@ | ==

00O

w <

cost=0

cost = 1 Rules similar to
space model

Conclusions

A-calculus good for modeling:
— sequential time (work)
— parallel time (nested parallelism)
— parallel time (futures)
— space
— arrays

— cache efficient algorithms

