
Brief Announcement:
The Problem Based Benchmark Suite

Julian Shun† Guy E. Blelloch† Jeremy T. Fineman∗ Phillip B. Gibbons‡
Aapo Kyrola† Harsha Vardhan Simhadri† Kanat Tangwongsan†
†Carnegie Mellon University ∗Georgetown University ‡Intel Labs, Pittsburgh

{jshun,guyb,akyrola,harshas,ktangwon}@cs.cmu.edu
jfineman@cs.georgetown.edu, phillip.b.gibbons@intel.com

ABSTRACT
This announcement describes the problem based benchmark suite
(PBBS). PBBS is a set of benchmarks designed for comparing par-
allel algorithmic approaches, parallel programming language styles,
and machine architectures across a broad set of problems. Each
benchmark is defined concretely in terms of a problem specifica-
tion and a set of input distributions. No requirements are made in
terms of algorithmic approach, programming language, or machine
architecture. The goal of the benchmarks is not only to compare
runtimes, but also to be able to compare code and other aspects of
an implementation (e.g., portability, robustness, determinism, and
generality). As such the code for an implementation of a benchmark
is as important as its runtime, and the public PBBS repository will
include both code and performance results.

The benchmarks are designed to make it easy for others to try their
own implementations, or to add new benchmark problems. Each
benchmark problem includes the problem specification, the speci-
fication of input and output file formats, default input generators,
test codes that check the correctness of the output for a given input,
driver code that can be linked with implementations, a baseline se-
quential implementation, a baseline multicore implementation, and
scripts for running timings (and checks) and outputting the results in
a standard format. The current suite includes the following problems:
integer sort, comparison sort, remove duplicates, dictionary, breadth
first search, spanning forest, minimum spanning forest, maximal
independent set, maximal matching, K-nearest neighbors, Delaunay
triangulation, convex hull, suffix arrays, n-body, and ray casting. For
each problem, we report the performance of our baseline multicore
implementation on a 40-core machine.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms
and Problem Complexity]: General

Keywords: Parallel Algorithms, Benchmarking, Algorithm Perfor-
mance

1 Introduction
When writing parallel code for a particular problem, should one use
transactions, race-free algorithms, nested parallelism, bulk synchro-
nization, speculative parallelism, futures, data parallelism, threads,
message passing, or other options? Should one use a GPU, a multi-
core, or a cluster? Despite decades of experience with parallelism,

Copyright is held by the author/owner(s).
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
ACM 978-1-4503-1213-4/12/06.

there is still little guidance on what approach to use when writing
parallel codes, especially for irregular, non-numeric applications.

To help address this challenge, we are developing a problem-
based benchmark suite (PBBS) for a broad set of non-numeric
problems (see http://www.cs.cmu.edu/~pbbs). Unlike
most existing benchmarks, which are based on specific code, the
benchmarks are defined in terms of the problem specifications—a
concrete description of valid inputs and corresponding valid outputs,
along with some specific inputs. Any algorithms, programming
methodologies, specific programming languages, or machines can
be used to solve the problems. The benchmark suite is designed to
compare the benefits and shortcomings of different algorithmic and
programming approaches, and to serve as a dynamically improv-
ing set of educational examples of how to parallelize applications.
The nature of PBBS will encourage the community to submit open-
source solutions that will be judged by not only its performance but
also the quality of the code: its elegance, readability, extensibility,
modularity, scalability, correctness guarantees, and the ability to
formally analyze performance. We realize many of these measures
are hard to quantify and ultimately the judgment will be in the eye
of the reader. Thus, the main outcome should be the code itself (and
its performance numbers).

Our benchmark problems are selected to have reasonably simple
efficient solutions (our base implementations all use fewer than 500
lines of code), but represent realistic real-world problems covering
a wide class of domains and potential solution approaches. These
consist of many well-known problems that are already de facto stan-
dards for benchmarking, such as sorting, nearest-neighbor searching,
breadth first search, Delaunay triangulation and ray tracing, as well
as many others. In the suite, each benchmark consists of (1) the prob-
lem specification including specific input and output file formats, (2)
input generators and specific input instances, (3) code for checking
the correctness of output for the given input, (4) scripts for running
tests, (5) a reasonably efficient sequential base implementation for
the problem, and (6) a reasonably efficient parallel (multicore) base
implementation for the problem.

2 Related Work
Many benchmark suites have been designed and are currently being
used for many different purposes, but none match our goals for a
problem-based suite. There are several broad-based performance-
based suites such as SPEC, WorldBench, V8, and Da Capo [6]; and
domain-specific benchmarks such as BioBench [2], the San Diego vi-
sion benchmarks [18], MediaBench [12] (multimedia), SATLIB [10]
(satisfiability), MineBench [15] (data mining), and the TPC bench-
marks (databases). Except for SATLIB and the TPC benchmarks,

68

http://www.cs.cmu.edu/~pbbs


Basic Building Blocks Scan, Integer Sort, Comparison Sort, Remove Duplicates, Dictionary, Sparse matrix-
vector multiply

Graph Algorithms Breadth First Search, Spanning Forest, Minimum Spanning Forest, Maximal Indepen-
dent Set, Maximal Matching, Graph Separators

Computational Geometry Quad/Oct Tree, Delaunay Triangulation, Convex Hull, k-Nearest Neighbors
Text Processing Tokenize, Suffix Array
Computational Biology Multiple sequence alignment, Phylogenetic tree, N-body
Data Mining Build Index, Edit Distance Graph
Graphics Ray Casting, Micropolygon Rendering
Machine Learning Sparse SVM, K-means, Gibbs Sampling in Graphical Models

Table 1. A (preliminary) set of 28 problem-based benchmarks covering a reasonably broad set of non-numerical applications.

these are code-based benchmarks. The TPC and SATLIB are prob-
lem based, but for specific domains.

For parallel machines, there have also been many benchmarks
developed. Broad-based performance benchmarks include Splash-
2 [19], PARSEC [5], and STAMP [8], which are designed for shared
memory machines. Other benchmarks cover a more general class of
machines but are meant to measure particular machine characteris-
tics, such as the HPC Challenge Benchmarks [14] that put an empha-
sis on measuring communication throughput. There are benchmarks
aimed at particular languages, such as the Java Grande Benchmark
Suite [17]. There are also some domain-specific parallel bench-
marks such as ALPBench [13] (multimedia) and BioParallel [11].
All these benchmarks are code-based. The Berkeley “dwarfs” de-
fine a set of 13 parallel computational patterns [3]. While sharing
some of the same high-level goals as ours (e.g., evaluate parallel
programming models), their benchmarks are in terms of patterns,
not problems. The Galois benchmarks [16] are defined in terms of
particular algorithmic approaches but are not problem based.

In terms of being defined with regards to a problem specifica-
tion, perhaps the closest benchmarks to PBBS are the NAS bench-
marks [4]. In the original form (NPB 1), these consisted of a set of
eight problem-based benchmarks where one of the main goals was
architecture neutrality. Indeed, several different programming styles
(vector code, message passing, data parallel) were used to code the
benchmarks on different machines. These benchmarks, however,
did not focus on code quality and because vendors were not required
to release their codes, some of the solutions were extremely messy.
Also, the NAS benchmarks were focused on numerical computing.

Finally, there have also been various attempts to compare pro-
gramming languages by defining a set of benchmarks. Probably
the one that captures the broadest set of languages is the Com-
puter Language Benchmarks Game [9], which compares over 25
programming languages on a set of 12 micro benchmarks. Bench-
marks results are reported in terms of performance and size of the
gzip-compressed source file (comments and redundant whitespace
removed). The benchmarks, however, only consider small inputs—
for example, their “n-body” benchmark consists of 5 bodies. Also,
the benchmarks require that the program use the “same algorithm”
as specified—returning the same result is not sufficient.

In summary, we know of no benchmark suite that matches our
goals—i.e., defined in input/output terms, covers a broad set of non-
numeric problems, scales to large problem sizes, and emphasizes
code quality.

3 Benchmark Problems and Current Status
We selected benchmark problems with the following goals in mind.
First, the set of problems should have a wide coverage from state-

of-the-art real-world applications. Second, the problem must have
a well-defined way to validate output correctness or quality. Third,
the problem should have efficient solutions that can be implemented
in a reasonably small program. Finally, the inputs to these problem
should be scalable. Table 1 summarizes a set of problem-based
benchmarks categorized by application domain or type of data.
These 28 benchmarks represent our current list of what we believe
would make a good mix of problems, though the list is flexible.

An important challenge with defining a benchmark in terms of a
problem’s input-output behaviors is picking a good and scalable set
of test inputs. A good set of test inputs should withstand “tricks” that
fail to work in the general case, should represent a realistic input, and
should have varying sizes. We leverage the growing body of work
on generating scalable synthetic data that models real data. There
are many standard distributions used in computational geometry
that are much more realistic than evenly distributed random data.
Similarly, there has been considerable work in generating graphs
that have characteristics similar to real-world graphs [1] and DNA
data that represents a population.

We require the program to output the result to a file in a particular
format. We provide test code that checks correctness and outputs
any quality criteria (e.g. the size of a graph cut). The time for input
and output is not included in the running time or code length—for
some benchmarks it could dominate the cost.

It is important to have at least one base implementation of each
benchmark so that results can be compared and as a proof of concept
that the benchmarks fit within our parameters (e.g., have reasonably
simple and efficient solutions). We are currently developing two
base implementations for each benchmark, one serial and one paral-
lel. Our parallel implementations are designed for multicores and
use only parallel loops, nested fork-join, and compare-and-swap op-
erations and are currently implemented in Intel Cilk Plus. We have
implemented an initial set of base implementations for some of the
benchmarks and have made initial timings. We ran our experiments
on a 40-core (with hyper-threading) machine with 4×2.4GHZ Intel
10-core E7-8870 Xeon Processors, a 1066MHz bus, and 256GB
of main memory. All programs were compiled with Intel’s icpc
compiler (version 12.1.0 with Cilk Plus support) with the -O3 flag.

Table 2 summarizes the results of these experiments. We report
the weighted average of runtimes over various inputs. For example,
for Comparison Sort, we use three sequences of doubles distributed
according to uniform, exponential, and almost sorted distributions
and two sequences of character strings from a trigram distribution.
All sequences were of length 107. For the graph benchmarks, we
used three types of graphs: random graphs, grid graphs, and rMat
(power law) graphs. Each graph has either 107 or 224 nodes. De-
scriptions of all the algorithms and further experimental results can

69



Application 1 40 T1/T40 TS/T40

Algorithm thread core

Integer Sort
serialRadixSort 0.48 – – –
parallelRadixSort 0.299 0.013 23.0 36.9

Comparison Sort
serialSort 2.85 – – –
sampleSort 2.59 0.066 39.2 43.2

Remove Duplicates
serialHash 0.689 – – –
parallelHash 0.867 0.027 32.1 25.5

Dictionary
serialHash 0.574 – – –
parallelHash 0.748 0.025 29.9 23

Breadth First Search
serialBFS 2.61 – – –
parallelBFS 5.54 0.247 22.4 10.6

Spanning Forest
serialSF 1.733 – – –
parallelSF 5.12 0.254 20.1 6.81

Min Spanning Forest
serialMSF 7.04 – – –
parallelKruskal 14.9 0.626 23.8 11.2

Maximal Ind. Set
serialMIS 0.405 – – –
parallelMIS 0.733 0.047 14.1 8.27

Maximal Matching
serialMatching 0.84 – – –
parallelMatching 2.02 0.108 18.7 7.78

K-Nearest Neighbors
octTreeNeighbors 24.9 1.16 21.5 –

Delaunay Triangulation
serialDelaunay 56.3 – – –
parallelDelaunay 76.6 2.6 29.5 21.7

Convex Hull
serialHull 1.01 – – –
quickHull 1.655 0.093 17.8 10.9

Suffix Array
serialKS 17.3 – – –
parallelKS 11.7 0.57 20.5 30.4

Ray Casting
kdTree 7.32 0.334 21.9 –

Table 2. Weighted average of running times (seconds) over various
inputs on a 40-core machine with hyper-threading (80 threads).
Time of the parallel version on 40 cores (T40) is shown relative
to both (i) the time of the serial version (TS) and (ii) the parallel
version on one thread (T1). In some cases our parallel version on
one thread is faster than the baseline serial version.

be found in [7]. All code is available on the benchmark web page:
http://www.cs.cmu.edu/~pbbs.

Acknowledgements. This work is partially funded by the National
Science Foundation under Grant number 1019343 to the Computing
Research Association for the CIFellows Project and Grant number
CCF-1018188, and by Intel via the Intel Labs Academic Research
Office for the Parallel Algorithms for Non-Numeric Computing
Program and the Intel Science and Technology Center for Cloud
Computing (ISTC-CC).

4 References

[1] L. Akoglu and C. Faloutsos. RTG: A recursive realistic graph
generator using random typing. Data Min. Knowl. Discov., 19(2),
2009.

[2] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.
Tseng, and D. Yeung. BioBench: A benchmark suite of bioinformatics
applications. In IEEE ISPASS, 2005.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, UC Berkeley, 2006.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS
parallel benchmarks—summary and preliminary results. In
ACM/IEEE Supercomputing, 1991.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In ACM PACT,
2008.

[6] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In ACM OOPSLA, 2006.

[7] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally
deterministic parallel algorithms can be fast. In ACM PPoPP, 2012.

[8] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC ’08,
September 2008.

[9] B. Fulgham. The computer language benchmarks game.
http://shootout.alioth.debian.org/, 2009.

[10] H. H. Hoos and T. Stützle. SATLIB: An online resource for research
on SAT. In I. P. Gent, H. v. Maaren, and T. Walsh, editors, SAT 2000.
IOS Press, 2000.

[11] A. Jaleel, M. Mattina, and B. Jacob. Last-level cache (LLC)
performance of data-mining workloads on a CMP—A case study of
parallel bioinformatics workloads. In IEEE HPCA, 2006.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems. In IEEE/ACM MICRO, 1997.

[13] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The
ALPBench benchmark suite for complex multimedia applications. In
IEEE IISWC, 2005.

[14] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas,
R. Rabenseifner, and D. Takahashi. The HPC challenge (HPCC)
benchmark suite. In ACM/IEEE SC06 Conference Tutorial, 2006.

[15] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. N.
Choudhary. MineBench: A benchmark suite for data mining
workloads. In IEEE IISWC, 2006.

[16] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui. The tao of parallelism in algorithms. In
ACM PLDI, 2011.

[17] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel Java Grande
benchmark suite. In ACM/IEEE SC2001, 2001.

[18] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor. SD-VBS: The San Diego vision
benchmark suite. In IEEE IISWC, 2009.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In ACM ISCA, 1995.

70

http://www.cs.cmu.edu/~pbbs

	Introduction
	Related Work
	Benchmark Problems and Current Status
	References



