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ABSTRACT
The running time of nested parallel programs on shared
memory machines depends in significant part on how well
the scheduler mapping the program to the machine is opti-
mized for the organization of caches and processors on the
machine. Recent work proposed “space-bounded schedulers”
for scheduling such programs on the multi-level cache hier-
archies of current machines. The main benefit of this class
of schedulers is that they provably preserve locality of the
program at every level in the hierarchy, resulting (in theory)
in fewer cache misses and better use of bandwidth than the
popular work-stealing scheduler. On the other hand, com-
pared to work-stealing, space-bounded schedulers are infe-
rior at load balancing and may have greater scheduling over-
heads, raising the question as to the relative effectiveness of
the two schedulers in practice.

In this paper, we provide the first experimental study
aimed at addressing this question. To facilitate this study,
we built a flexible experimental framework with separate in-
terfaces for programs and schedulers. This enables a head-
to-head comparison of the relative strengths of schedulers in
terms of running times and cache miss counts across a range
of benchmarks. (The framework is validated by comparisons
with the Intel R© CilkTM Plus work-stealing scheduler.) We
present experimental results on a 32-core Xeon R© 7560 com-
paring work-stealing, hierarchy-minded work-stealing, and
two variants of space-bounded schedulers on both divide-
and-conquer micro-benchmarks and some popular algorith-
mic kernels. Our results indicate that space-bounded sched-
ulers reduce the number of L3 cache misses compared to
work-stealing schedulers by 25–65% for most of the bench-
marks, but incur up to 7% additional scheduler and load-
imbalance overhead. Only for memory-intensive benchmarks
can the reduction in cache misses overcome the added over-
head, resulting in up to a 25% improvement in running time
for synthetic benchmarks and about 20% improvement for
algorithmic kernels. We also quantify runtime improvements
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varying the available bandwidth per core (the “bandwidth
gap”), and show up to 50% improvements in the running
times of kernels as this gap increases 4-fold. As part of
our study, we generalize prior definitions of space-bounded
schedulers to allow for more practical variants (while still
preserving their guarantees), and explore implementation
tradeoffs.

Categories and Subject Descriptors
D.3.4 [Processors]: Runtime environments

Keywords
Thread schedulers, space-bounded schedulers, work stealing,
cache misses, multicores, memory bandwidth

1. INTRODUCTION
Writing nested parallel programs using fork-join primi-

tives on top of a unified memory space is an elegant and
productive way to program parallel machines. Nested par-
allel programs are portable, sufficiently expressive for many
algorithmic problems [28, 5], relatively easy to analyze [22,
3], and supported by many programming languages includ-
ing OpenMP [25], Cilk++ [17], Intel R© TBB [18], Java Fork-
Join [21], and Microsoft TPL [23]. The unified memory
address space hides from programmers the complexity of
managing a diverse set of physical memory components like
RAM and caches. Processor cores can access memory lo-
cations without explicitly specifying their physical location.
Beneath this interface, however, the real cost of accessing a
memory address from a core can vary widely, depending on
where in the machine’s cache/memory hierarchy the data
resides at time of access. Runtime thread schedulers can
play a large role in determining this cost, by optimizing the
timing and placement of program tasks for effective use of
the machine’s caches.

Machine Models and Schedulers. Robust schedulers
for mapping nested parallel programs to machines with cer-
tain kinds of simple cache organizations such as single-level
shared and private caches have been proposed. They work
well both in theory [10, 11, 8] and in practice [22, 24].
Among these, the work-stealing scheduler is particularly ap-
pealing for private caches because of its simplicity and low
overheads, and is widely deployed in various run-time sys-
tems such as Cilk++. The PDF scheduler [8] is suited for
shared caches and practical versions of this schedule have
been studied. The cost of these schedulers in terms of cache
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misses or running times can be bounded by the locality cost
of the programs as measured in certain abstract program-
centric cost models [10, 1, 6, 7, 29].

However, modern parallel machines have multiple levels
of cache, with each cache shared amongst a subset of cores
(e.g., see Fig. 1(a)). A parallel memory hierarchy (PMH) as
represented by a tree of caches [2] (Fig. 1(b)) is a reason-
ably accurate and tractable model for such machines [16,
15, 14, 6]. Because previously studied schedulers for sim-
ple machine models may not be optimal for these complex
machines, recent work has proposed a variety of hierarchy-
aware schedulers [16, 15, 14, 27, 6] for use on such machines.
For example, hierarchy-aware work-stealing schedulers such
as PWS and HWS schedulers [27] have been proposed, but
no theoretical bounds are known.

To address his gap, space-bounded schedulers [15, 14] have
been proposed and analyzed. To use space-bounded sched-
ulers, the computation needs to annotate each function call
with the size of its memory footprint. The scheduler then
tries to match the memory footprint of a subcomputation
to a cache of appropriate size in the hierarchy and then run
the subcomputation fully on the cores associated with that
cache. Note that although space annotations are required,
the computation can be oblivious to the size of the caches
and hence is portable across machines. Under certain condi-
tions these schedulers can guarantee good bounds on cache
misses at every level of the hierarchy and running time in
terms of some intuitive program-centric metrics. Chowd-
hury et al. [15] (updated as a journal article in [14]) pre-
sented such schedulers with strong asymptotic bounds on
cache misses and runtime for highly balanced computations.
Our follow-on work [6] presented slightly generalized sched-
ulers that obtain similarly strong bounds for unbalanced
computations.

Our Results: The First Experimental Study of Space-
Bounded Schedulers. While space-bounded schedulers
have good theoretical guarantees on the PMH model, there
has been no experimental study to suggest that these (asymp-
totic) guarantees translate into good performance on real
machines with multi-level caches. Existing analyses of these
schedulers ignore the overhead costs of the scheduler itself
and account only for the program run time. Intuitively,
given the low overheads and highly-adaptive load balancing
of work-stealing in practice, space-bounded schedulers would
seem to be inferior on both accounts, but superior in terms
of cache misses. This raises the question as to the relative
effectiveness of the two types of schedulers in practice.

This paper presents the first experimental study aimed at
addressing this question through a head-to-head comparison
of work-stealing and space-bounded schedulers. To facilitate
a fair comparison of the schedulers on various benchmarks,
it is necessary to have a framework that provides separate
modular interfaces for writing portable nested parallel pro-
grams and specifying schedulers. The framework should be
light-weight, flexible, provide fine-grained timers, and en-
able access to various hardware counters for cache misses,
clock cycles, etc. Prior scheduler frameworks, such as the
Sequoia framework [16] which implements a scheduler that
closely resembles a space-bounded scheduler, fall short of
these goals by (i) forcing a program to specify the specific
sizes of the levels of the hierarchy it is intended for, mak-
ing it non-portable, and (ii) lacking the flexibility to readily
support work-stealing or its variants.
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(a) 32-core Xeon R© 7560 (b) PMH model of [2]

Figure 1: Memory hierarchy of a current generation
architecture from Intel R©, plus an example abstract
parallel hierarchy model. Each cache (rectangle) is
shared by all cores (circles) in its subtree.

This paper describes a scheduler framework that we de-
signed and implemented, which achieves these goals. To
specify a (nested-parallel) program in the framework, the
programmer uses a Fork-Join primitive (and a Parallel-For
built on top of Fork-Join). To specify the scheduler, one
needs to implement just three primitives describing the man-
agement of tasks at Fork and Join points: add, get, and
done. Any scheduler can be described in this framework as
long as the schedule does not require the preemption of se-
quential segments of the program. A simple work-stealing
scheduler, for example, can be described with only 10s of
lines of code in this framework. Furthermore, in this frame-
work, program tasks are completely managed by the sched-
ulers, allowing them full control of the execution.

The framework enables a head-to-head comparison of the
relative strengths of schedulers in terms of running times
and cache miss counts across a range of benchmarks. (The
framework is validated by comparisons with the commercial
CilkTM Plus work-stealing scheduler.) We present experi-
mental results on a 32-core Intel R© Nehalem series Xeon R©
7560 multicore with 3 levels of cache. As depicted in Fig. 1(a),
each L3 cache is shared (among the 8 cores on a socket)
while the L1 and L2 caches are exclusive to cores. We com-
pare four schedulers—work-stealing, priority work-stealing
(PWS) [27], and two variants of space-bounded schedulers—
on both divide-and-conquer micro-benchmarks (scan-based
and gather-based) and popular algorithmic kernels such as
quicksort, sample sort, matrix multiplication, and quad trees.

Our results indicate that space-bounded schedulers re-
duce the number of L3 cache misses compared to work-
stealing schedulers by 25–65% for most of the benchmarks,
while incurring up to 7% additional overhead. For memory-
intensive benchmarks, the reduction in cache misses over-
comes the added overhead, resulting in up to a 25% im-
provement in running time for synthetic benchmarks and
about 20% improvement for algorithmic kernels. To bet-
ter understand how the widening gap between processing
power (cores) and memory bandwidth impacts scheduler
performance, we quantify runtime improvements over a 4-
fold range in the available bandwidth per core and show
further improvements in the running times of kernels (up to
50%) as the bandwidth gap increases.

Finally, as part of our study, we generalize prior defini-
tions of space-bounded schedulers to allow for more practical
variants, and explore implementation tradeoffs, e.g., in a key
parameter of such schedulers. This is useful for engineering
space-bounded schedulers, which were previously described
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only at a high level suitable for theoretical analyses, into a
form suitable for real machines.

Contributions. The contributions of this paper are:

• A modular framework for describing schedulers, ma-
chines as tree of caches, and nested parallel programs
(Section 3). The framework is equipped with timers
and counters. Schedulers that are expected to work
well on tree of cache models such space-bounded sched-
ulers and certain work-stealing schedulers are imple-
mented.

• A precise definition for the class of space-bounded sched-
ulers that retains the competitive cache miss bounds
expected for this class, but also allows more sched-
ulers than previous definitions (which were motivated
mainly by theoretical guarantees [15, 14, 6]) (Section 4).
We describe two variants, highlighting the engineering
details that allow for low overhead.

• The first experimental study of space-bounded sched-
ulers, and the first head-to-head comparison with work-
stealing schedulers (Section 5). On a common multi-
core machine configuration (4 sockets, 32 cores, 3 lev-
els of caches), we quantify the reduction in L3 cache
misses incurred by space-bounded schedulers relative
to both work-stealing variants on synthetic and non-
synthetic benchmarks. On bandwidth-bound bench-
marks, an improvement in cache misses translates to
improvement in running times, although some of the
improvement is eroded by the greater overhead of the
space-bounded scheduler.

2. DEFINITIONS
We start with a recursive definition of nested parallel com-

putation, and use it to define what constitutes a schedule.
We will then define the parallel memory hierarchy (PMH)
model—a machine model that reasonably accurately repre-
sents shared memory parallel machines with deep memory
hierarchies. This terminology will be used later to define
schedulers for the PMH model.

Computation Model, Tasks and Strands. We con-
sider computations with nested parallelism, allowing arbi-
trary dynamic nesting of fork-join constructs including par-
allel loops, but no other synchronizations. This corresponds
to the class of algorithms with series-parallel dependence
graphs (see Fig. 2(left)).

Nested parallel computations can be decomposed into“tasks”,
“parallel blocks” and “strands” recursively as follows. As a
base case, a strand is a serial sequence of instructions not
containing any parallel constructs or subtasks. A task is
formed by serially composing k ≥ 1 strands interleaved with
(k − 1) “parallel blocks”, denoted by t = `1; b1; . . . ; `k. A
parallel block is formed by composing in parallel one or
more tasks with a fork point before all of them and a join
point after (denoted by b = t1‖t2‖ . . . ‖tk). A parallel block
can be, for example, a parallel loop or some constant num-
ber of recursive calls. The top-level computation is a task.
We use the notation L(t) to indicate all strands that are
recursively included in a task.

Our computation model assumes all strands share a single
memory address space. We say two strands are concurrent
if they are not ordered in the dependence graph. Concurrent
reads (i.e., concurrent strands reading the same memory
location) are permitted, but not data races (i.e., concurrent
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Figure 2: (left) Decomposing the computation:
tasks, strands and parallel blocks. f, f ′ are cor-
responding fork and join points. (right) Timeline
of a task and its first strand, showing the difference
between being live and execution.

strands that read or write the same location with at least
one write). For every strand `, there exists a task t(`) such
that ` is nested immediately inside t(`). We call this the
task of strand `.

Schedule. We now define what constitutes a valid sched-
ule for a nested parallel computation on a machine. These
definitions will enable us to precisely define space-bounded
schedulers later on. We restrict ourselves to non-preemptive
schedulers—schedulers that cannot migrate strands across
cores once they begin executing. Both work-stealing and
space-bounded schedulers are non-premptive. We use P to
denote the set of cores on the machine, and L to denote
the set of strands in the computation. A non-preemptive
schedule defines three functions for each strand `.

• Start time: start : L→ Z, where start(`) denotes the
time the first instruction of ` begins executing;

• End time: end : L → Z, where end(`) denotes the
(post-facto) time the last instruction of ` finishes; and

• Location: proc : L → P , where proc(`) denotes the
core on which the strand is executed. Note that proc is
well defined because of the non-preemptive policy for
strands.

We say that a strand ` is live at any time τ with start(`) ≤
τ < end(`).

A non-preemptive schedule must also obey the following
constraints on the ordering of strands and timing:

• (ordering): For any strand `1 ordered by the fork-join
dependence graph before `2: end(`1) ≤ start(`2).

• (processing time): For any strand `, end(`) = start(`)+
γ〈schedule,machine〉(`). Here γ denotes the processing
time of the strand, which may vary depending on the
specifics of the machine and the history of the sched-
ule. The schedule alone does not control this value.

• (non-preemptive execution): No two strands may be
live on the same core at the same time, i.e., `1 6=
`2, proc(`1) = proc(`2) =⇒ [start(`1), end(`1)) ∩
[start(`2), end(`2)) = ∅.

We extend the same notation and terminology to tasks.
The start time start(t) of a task t is a shorthand for start(t) =
start(`s), where `s is the first strand in t. Similarly end(t)
denotes the end time of the last strand in t. The function
proc, however, is undefined for tasks as a task’s contained
strands may execute on different cores.
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When discussing specific schedulers, it is convenient to
consider the time a task or strand first becomes available
to execute. We use the term spawn time to refer to this
time, which is the instant at which the preceding fork or
join finishes. Naturally, the spawn time is no later than the
start time, but a schedule may choose not to execute the
task or strand immediately. We say that the task or strand
is queued during the time between its spawn time and start
time and live during the time between its start time and end
time. Fig. 2(right) illustrates the spawn, start and end times
of a task and its initial strand. The task and initial strand
are spawned and start at the same time by definition. The
strand is continuously executed until it ends, while a task
goes through several phases of execution and idling before
it ends.

Machine Model: Parallel Memory Hierarchy (PMH).
Following prior work addressing multi-level parallel hierar-
chies [2, 12, 4, 13, 31, 9, 15, 14, 6], we model parallel ma-
chines using a tree-of-caches abstraction. For concreteness,
we use a symmetric variant of the parallel memory hierar-
chy (PMH) model [2] (see Fig. 1(b)), which is consistent
with many other models [4, 9, 12, 13, 15, 14]. A PMH con-
sists of a height-h tree of memory units, called caches. The
leaves of the tree are at level-0 and any internal node has
level one greater than its children. The leaves (level-0 nodes)
are cores, and the level-h root corresponds to an infinitely
large main memory. As described in [6] each level in the tree
is parameterized by four parameters: the size of the cache
M i at level i, the block size Bi used to transfer to the next
higher level, the cost of a cache miss Ci which represents the
combined costs of latency and bandwidth, and the fanout fi
(number of level i− 1 caches below it).

3. EXPERIMENTAL FRAMEWORK
We implemented a C++ based framework with the fol-

lowing design objectives in which nested parallel programs
and schedulers can be built for shared memory multicore
machines. The implementation, along with a few schedulers
and algorithms, is available on the web page http://www.

cs.cmu.edu/~hsimhadr/sched-exp. Some of the code for
the threadpool module has been adapted from an earlier
implementation of threadpool [20].

Modularity: The framework separates the specification of
three components—programs, schedulers, and description of
machine parameters—for portability and fairness. The user
can choose any of the candidates from these three categories.
Note, however, some schedulers may not be able to execute
programs without scheduler-specific hints (such as space an-
notations).

Clean Interface: The interface for specifying the com-
ponents should be clean, composable, and the specification
built on the interface should be easy to reason about.

Hint Passing: While it is important to separate program
and schedulers, it is useful to allow the program to pass
hints (extra annotations on tasks) to the scheduler to guide
its decisions.

Minimal Overhead: The framework itself should be light-
weight with minimal system calls, locking and code com-
plexity. The control flow should pass between the func-
tional modules (program, scheduler) with negligible time
spent outside. The framework should avoid generating back-
ground memory traffic and interrupts.

Framework	  
	  

Fork	  

Thread	  

Scheduler	  
(concurrent)	  

	  
	  
	  

Each thread is bound  
to one core 

Nested	  
Parallel	  
Program	   Join	  

run	  

add	  
done	  
get	  

Job	  

Shared	  
structures	  
(Queues…)	  

Program	  code	   Concurrent	  code	  in	  
scheduler	  module	  

Figure 3: Interface for the program and scheduling
modules.

Timing and Measurement: It should enable fine-grained
measurements of the various modules. Measurements in-
clude not only clock time, but also insightful hardware coun-
ters such as cache and memory traffic statistics. In light of
the earlier objective, the framework should avoid OS system
calls for these, and should use direct assembly instructions.

3.1 Interface
The framework has separate interfaces for the program

and the scheduler.

Programs: Nested parallel programs, with no other syn-
chronization primitives, are composed from tasks using fork

and join constructs. A parallel_for primitive built with
fork and join is also provided. Tasks are implemented as
instances of classes that inherit from the Job class. Differ-
ent kinds of tasks are specified as classes with a method
that specifies the code to be executed. An instance of a
class derived from Job is a task containing a pointer to a
strand nested immediately within the task. The control flow
of this function is sequential with a terminal fork or join

call. (This interface could be readily extended to handle
non-nested parallel constructs such as futures [30] by adding
other primitives to the interface beyond fork and join.)

The interface allows extra annotations on a task such as its
size, which is required by space-bounded schedulers. Such
tasks inherit a derived class of Job class, the extensions in the
derived class specifying the annotations. For example, the
class SBJob suited for space-bounded schedulers is derived
from Job by adding two functions—size(uint block_size)

and strand_size(uint block_size)—that allow the anno-
tations of the job size.

Scheduler: The scheduler is a concurrent module that han-
dles queued and live tasks (as defined in Section 2) and is
responsible for maintaining its own queues and other inter-
nal shared data structures. The module interacts with the
framework that consists of a thread attached to each pro-
cessing core on the machine, through an interface with three
call-back functions.

• Job* get (ThreadIdType): This is called by the frame-
work on behalf of a thread attached to a core when
the core is ready to execute a new strand, after com-
pleting a previously live strand. The function may
change the internal state of the scheduler module and
return a (possibly null) Job so that the core may im-
mediately begin executing the strand. This function
specifies proc for the strand.
• void done(Job*,ThreadIdType) This is called when a

core finishes the execution of a strand. The scheduler
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is allowed to update its internal state to reflect this
completion.

• void add(Job*,ThreadIdType): This is called when a
fork or join is encountered. In case of a fork, this
call-back is invoked once for each of the newly spawned
tasks. For a join, it is invoked for the continuation
task of the join. This function decides where to en-
queue the job.

Other auxiliary parameters to these call-backs have been
dropped from the above description for clarity and brevity.
The Job* argument passed to these functions may be in-
stances of one of the derived classes of Job* that carry ad-
ditional information helpful to the scheduler. Appendix A
presents an example of a work-stealing scheduler implemented
in this scheduler interface.

Machine configuration: The interface for specifying ma-
chine descriptions accepts a description of the cache hierar-
chy: number of levels, fanout at each level, and cache and
cache-line size at each level. In addition, a mapping between
the logical numbering of cores on the system to their left-to-
right position as a leaf in the tree of caches must be specified.
For example, Fig. 4 is a description of one Nehalem-EX se-
ries 4-socket × 8-core machine (32 physical cores) with 3
levels of caches as depicted in Fig. 1(a).

3.2 Implementation
The runtime system initially fixes a POSIX thread to each

core. Each thread then repeatedly performs a call (get)
to the scheduler module to ask for work. Once assigned a
task and a specific strand inside it, the thread completes the
strand and asks for more work. Each strand either ends in
a fork or a join. In either scenario, the framework invokes
the done call back. For a fork, the add call-back is invoked
to let the scheduler add new tasks to its data structures.

All specifics of how the scheduler operates (e.g., how the
scheduler handles work requests, whether it is distributed
or centralized, internal data structures, where mutual ex-
clusion occurs, etc.) are relegated to scheduler implementa-
tions. Outside the scheduling modules, the runtime system
includes no locks, synchronization, or system calls (except
during the initialization and cleanup of the thread pool),
meeting our design objective.

3.3 Measurements
Active time and overheads: Control flow on each thread
moves between the program and the scheduler modules. Fine-
grained timers in the framework break down the execution
time into five components: (i) active time—the time spent
executing the program, (ii) add overhead, (iii) done over-
head, (iv) get overhead, and (v) empty queue overhead.
While active time depends on the number of instructions
and the communication costs of the program, add, done and
get overheads depend on the complexity of the scheduler,
and the number of times the scheduler code is invoked by
forks and joins. The empty queue overhead is the amount
of time the scheduler fails to assign work to a thread (get
returns null), and reflects on the load balancing capability of
the scheduler. In most of the results in Section 5, we usually
report two numbers: active time averaged over all threads
and the average overhead, which includes measures (ii)–(v).
Note that while we might expect this partition of time to be
independent, it is not so in practice—the background coher-

int num_procs=32;
int num_levels = 4;
int fan_outs[4] = {4,8,1,1};
long long int sizes[4] = {0, 3*(1<<22), 1<<18, 1<<15};
int block_sizes[4] = {64,64,64,64};
int map[32] = {0,4,8,12,16,20,24,28,

2,6,10,14,18,22,26,30,
1,5,9,13,17,21,25,29,
3,7,11,15,19,23,27,31};

Figure 4: Specification entry for a 32-core Xeon R©
machine depicted in Fig. 1(a).

ence traffic generated by the scheduler’s bookkeeping may
adversely affect active time. The timers have very little over-
head in practice—less than 1% in most of our experiments.

Measuring hardware counters: Modern multicores are
equipped with hardware counters that can provide various
performance statistics such as the number of cache misses at
various levels. Such counters, however, are somewhat chal-
lenging to use. Appendix B details the specific methodology
we used for the Intel R© Nehalem architecture.

4. SCHEDULERS
In this section, we will define the class of space-bounded

schedulers and describe the schedulers we compare using our
framework.

4.1 Space-bounded Schedulers
Space-bounded schedulers are designed to achieve good

cache performance on PMHs and use the sizes of tasks and
strands to choose a schedule (start , end , proc) mapping the
hierarchy of tasks in a nested parallel program to the hierar-
chy of caches. They have been described previously in [15]
and [6]. The definitions in [15] are not complete in that they
do not specify how to handle “skip level” tasks (described
below). Our earlier definition [6] handled skip level tasks,
but was more restrictive than necessary, ruling out practical
variants, as discussed below. Here, we provide a broader def-
inition for the class of space-bounded schedulers that allows
for practical variants, while retaining the strong analytical
bounds on cache misses that are the hallmark of the class of
space-bounded schedulers. Specifically, our new definition
provides more flexibility in the scheduling of strands by (i)
allowing each strand to have its own size, and (ii) accounting
for strand sizes differently from task sizes.

Informally, a space-bounded schedule satisfies two proper-
ties: (i) Anchored: Each task t gets “anchored” to a smallest
possible cache that is larger than its size—strands within
t can only be scheduled on cores in the tree rooted at the
cache; and (ii) Bounded: At any point in time, the sum
of the sizes of all tasks and strands occupying space in a
cache is at most the size of the cache. These two condi-
tions (when formally defined) are sufficient to imply strong
bounds on the number of cache misses at every level in the
tree of caches. A good space-bounded scheduler would also
handle load balancing subject to anchoring constraints to
quickly complete execution.

More formally, a space-bounded scheduler is parameter-
ized by a global dilation parameter 0 < σ ≤ 1 and machine
parameters {Mi, Bi, Ci, fi}. We will need the following ter-
minologies for the definition (which are both simplified and
generalized from [6]).
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Chowdhury et. al. [15] also suggest two other approaches
to scheduling: CGC (coarse-grained contiguous) and CGC-
on-SB (which combines CGC with space bounded sched-
ulers). CGC is designed to keep nearby blocks of iterations
close together so they are run on the same cache. This can
be simulated in our framework by grouping iterations recur-
sively (which is what we do). This means that our approach
will not have constant critical path length for certain algo-
rithms, but experimentally we are using a modest number
of cores. CGC-on-SB is primarily a mechanism for skipping
levels in the cache. Our variant of space-bounded scheduler
already allows for level skipping.

Task Size and Strand Size: The size of a task (strand) is
defined as a function of cache-line size B, independent of the
scheduler. Let loc(t;B) denote the set of distinct cache lines
touched by instructions within a task t. Then S(t;B) =
|loc(t;B)| · B denotes the size of t. The size of a strand is
defined in the same way. While results in [6] show that it
is not necessary for the analytical bounds that strands be
allowed to have their own size, we found that the flexibility
it enables is an important running time optimization.1 Note
that even strands immediately nested within the same task
may have different sizes.

Cluster: For any cache Xi, its cluster is the set of caches
and cores nested below Xi. Let P (Xi) denote the set of
cores in Xi’s cluster.

Befitting Cache: Given a particular cache hierarchy and
dilation parameter σ ∈ (0, 1], we say that a level-i cache
befits a task t if σMi−1 < S(t, Bi) ≤ σMi.

Maximal Task: We say that a task t with parent task t′

is level-i maximal if and only if a level-i cache befits t but
not t′, i.e., σMi−1 < S(t, Bi) ≤ σMi < S(t′, Bi).

Anchored: A task t with strand set L(t) is said to be an-
chored to level-i cache Xi (or equivalently to Xi’s cluster)
if and only if (i) it is executed entirely in the cluster, i.e.,
{proc(`)|` ∈ L(t)} ⊆ P (Xi), and (ii) the cache befits the
task. Anchoring prevents the migration of tasks to a differ-
ent cluster or cache. The advantage of anchoring a task to
a befitting cache is that once it loads its working set, it can
reuse the working set without the risk of losing it from the
cache. If a task is not anchored anywhere, for notational
convenience we assume it is anchored at the root of the tree.

Cache-occupying tasks: The definition depends on whether
the cache is inclusive or non-inclusive. For a level-i inclusive
cache Xi and time τ , the set of cache-occupying tasks for
a cache Xi at time τ , denoted by Ot(Xi, τ), is the union
of (a) the maximal tasks live at time τ that are anchored
to Xi, and (b) the maximal tasks live at time τ that are
anchored to any cache below Xi in the hierarchy whose im-
mediate parents are anchored to a cache above Xi in the
hierarchy. The tasks in (b) are called “skip level” tasks. For
a non-inclusive cache, only type (a) tasks are included in
Ot(Xi, τ). Tasks in Ot(Xi, τ) are the tasks that consume
space in the cache at time τ . Note that we need account
only for maximal tasks because any non-maximal task t′ is
anchored to the same cache as its closest enclosing maximal
task t and loc(t′;B) ⊆ loc(t;B).

1On the other hand, it does require additional size informa-
tion on programs—thus we view it as optional: Any strand
whose size is not specified is assumed by default to be the
size of its enclosing task.

Cache-occupying strands: The set of cache-occupying
strands for a cache Xi at time τ , denoted by Ol(Xi, τ), is
the set of strands {`} such that (a) ` is live at time τ (b) `
is executed below Xi, i.e., proc(`) ∈ P (Xi), and (c) `’s task
is anchored strictly above Xi.

A space-bounded scheduler for a particular cache hier-
archy is a scheduler parameterized by σ ∈ (0, 1] that satisfies
the following two properties:

• Anchored: Every subtask (recursively) of the root task
is anchored to a befitting cache.
• Bounded: At every time τ , for every level-i cache Xi,

the sum of the sizes of cache-occupying tasks and strands
is at most Mi:

Σt∈Ot(Xi,τ)
S(t, Bi) + Σ

`∈Ol(Xi,τ)
S(`, Bi) ≤Mi.

A key property of the definition of space-bounded sched-
ulers in [6] is that for any PMH and any level i, one can
upper bound the number of level-i cache misses incurred by
executing a task on the PMH by Q∗(t;σMi, Bi), where Q∗

is the cache complexity as defined in the Parallel Cache-
Oblivious (PCO) model in [6]. Roughly speaking, the cache
complexity Q∗ of a task t in terms of a cache of size M and
line size B is defined as follows. Decompose the task into a
collection of maximal subtasks that fit in M space, and“glue
nodes” – instructions outside these subtasks. For a maximal
size M task t′, the PCO cache complexity Q∗(t′;M ;B) is
defined to be the number of distinct cache lines it accesses,
counting accesses to a cache line from unordered instruc-
tions multiple times. The model then pessimistically counts
all memory instructions that fall outside of a maximal sub-
task (i.e., glue nodes) as cache misses. The total cache com-
plexity of an algorithm is the sum of the complexities of
the maximal subtasks, and the memory accesses outside of
maximal subtasks. Note that Q∗ is a program-centric or
machine-independent metric, capturing the inherent local-
ity in a parallel algorithm [7, 29].

Theorem 1. Consider a PMH and any dilation param-
eter 0 < σ ≤ 1. Let t be a task anchored to the root of
the tree. Then the number of level-i cache misses incurred
by executing t with any space-bounded scheduler is at most
Q∗(t;σMi, Bi), where Q∗ is the cache complexity as defined
in the Parallel Cache-Oblivious (PCO) model in [6].

The proof is a simple adaptation of the proof in [6] to
account for our more general definition. At a high level, the
argument is that for any cache Xi, the cache-occupying tasks
and strands for Xi bring in their working sets into the cache
Xi exactly once because the boundedness property prevents
cache overflows. Thus a replacement policy that keeps these
working sets in the cache until they are no longer needed will
incur no additional misses; because the PMH model assumes
an ideal replacement policy, it will perform at least as well.

In the course of our experimental study, we found that the
following minor modification to the boundedness property of
space-bounded schedulers improves their performance. Namely,
we introduce a new parameter µ ∈ (0, 1] (µ = 0.2 in our ex-
periments) and modify the boundedness property to be such
that at every time τ , for every level-i cache Xi:

Σt∈Ot(Xi,τ)
S(t, Bi)+Σ

`∈Ol(Xi,τ)
min{µMi, S(`, Bi)} ≤Mi,

The minimum term with µMi is to allow several large strands
to be explored simultaneously without their space measure
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taking too much of the space bound. This helps the sched-
uler to quickly traverse the higher levels of recursion in the
DAG and reveal parallelism so that the scheduler can achieve
better load balance.

Given this modified boundedness condition, it is easy to
show that the bound in Theorem 1 becomesQ∗(t;µσMi, Bi).

Note that while setting σ to 1 yields the best bounds on
cache misses, it also makes load balancing harder. As we will
see later, a lower value for σ like 0.5 allows greater scheduling
flexibility.

4.2 Schedulers implemented
Space-bounded schedulers: SB and SB-D. We imple-
mented a space-bounded scheduler by constructing a tree
of caches based on the specification of the target machine.
Each cache is assigned one logical queue, a counter to keep
track of “occupied” space and a lock to protect updates to
the counter and queue. Cores can be considered to be leaves
of the tree; when a scheduler call-back is issued to a thread,
that thread can modify an internal node of the tree after
gathering all locks on the path to the node from the core
it is mapped onto. This scheduler accepts Jobs which are
annotated with task and strand sizes. When a new Job is
spawned at a fork, the add call-back enqueues it at the clus-
ter where its parent was anchored. For a new Job spawned
at a join, add enqueues it at the cluster where the Job that
called the corresponding fork of this join was anchored.

A basic version of such a scheduler would implement logi-
cal queues at each cache as one queue. However, this presents
two problems: (i) It is difficult to separate tasks in queues
by the level of cache that befits it, and (ii) a single queue
might be a contention hotspot. To solve problem (i), behind
each logical queue, we use separate “buckets” for each level
of cache below to hold tasks that befit those levels. Cores
looking for a task at a cache go through these buckets from
the top (heaviest tasks) to bottom. We refer to this variant
as the SB scheduler. To solve problem (ii) involving queue-
ing hotspots, we replace the top bucket with a distributed
queue—one queue for each child cache—like in the work-
stealing scheduler. We refer to the SB scheduler with this
modification as the SB-D scheduler.

Work-Stealing scheduler: WS. A basic work-stealing
scheduler based on Cilk++ [11] is implemented and is re-
ferred to as the WS scheduler. Since the Cilk++ runtime
system is built around work-stealing and deeply integrated
and optimized exclusively for it, we focus our comparison on
the WS implementation in our framework for fairness and
to allow us to implement variants. The head-to-head micro-
benchmark study in Section 5 between our WS implemen-
tation and CilkTM Plus (the commercial version of Cilk++)
suggests that, for these benchmarks, WS well-represents
the performance of Cilk++’s work-stealing. We associate
a double-ended queue (dequeue) of ready tasks with each
core. The function add enqueues new tasks (or strands)
spawned on a core to the bottom of its dequeue. When in
need of work, the core uses get to remove a task from the
bottom of its dequeue. If its dequeue is empty, it chooses
another dequeue uniformly at random, and steals the work
by removing a task from the top of that core’s dequeue. The
only contention in this type of scheduler is on the distributed
dequeues—there is no other centralized data structure.

To implement the dequeues, we employed a simple two-
locks-per-dequeue approach, one associated with the owning

core, and the second associated with all cores currently at-
tempting to steal. Remote cores need to obtain the second
lock before they attempt to lock the first. Contention is
thus minimized for the common case where the core needs
to obtain only the first lock before it asks for work from its
own dequeue.

Priority Work-Stealing scheduler: PWS. Unlike in the
basic WS scheduler, cores in the PWS scheduler [27] choose
victims of their steals according to the “closeness” of the vic-
tims in the socket layout. Dequeues at cores that are closer
in the cache hierarchy are chosen with a higher probabil-
ity than those that are farther away to improve schedul-
ing locality while retaining the load balancing properties of
WS scheduler. On our 4 socket machines, we set the prob-
ability of an intra-socket steal to be 10 times that of an
inter-socket steal.

5. EXPERIMENTS
The goal of our experimental study is to compare the per-

formance of the four schedulers on a range of benchmarks,
varying the available memory bandwidth. Our primary met-
rics are runtime and L3 (last level) cache misses. We have
found that the cache misses on other levels do not vary sig-
nificantly among the schedulers (within 5%). We will also
validate our work-stealing implementation via a compari-
son with the commercial CilkTM Plus scheduler. Finally,
we will quantify the overheads for space-bounded schedulers
and study the performance impact of the key parameter σ
for space-bounded schedulers.

5.1 Benchmarks
We use seven benchmarks in our study. The first two

are synthetic micro-benchmarks that mimic the behavior of
memory-intensive divide-and-conquer algorithms. Because
of their simplicity, we use these benchmarks to closely ana-
lyze the behavior of the schedulers under various conditions
and verify that we get the expected cache behavior on a
real machine. The remaining five benchmarks are a set of
popular algorithmic kernels.

Recursive repeated map (RRM): This benchmark takes
two n-length arrays A and B and a point-wise map function
that maps elements of A to B. In our experiments each
element of the arrays is a double and the function simply
adds one. RRM first does a parallel point-wise map from
A to B, and repeats the same operation multiple times. It
then divides A and B into two by some ratio (e.g., 50/50)
and recursively calls the same operation on each of the two
parts. The base case of the recursion is set to some constant
at which point the recursion terminates. The input parame-
ters are the size of the arrays n, number of repeats r, the cut
ratio f , and the base-case size. We set r = 3 (the number
of repeats in quicksort), and f = 50% in the experiments
unless mentioned otherwise. RRM is a memory intensive
benchmark because there is very little work done per mem-
ory operation. However, once a recursive call fits in a cache
(i.e., the cache size is at least 16n bytes for subproblem size
n), all remaining accesses are cache hits.

Recursive repeated gather (RRG): This benchmark is
similar to RRM but instead of doing a simple map it does
a gather. In particular at any given level of the recursion it
takes three n-length arrays A, B and I and for each location
i sets B[i] = A[I[i] mod n]. The values in I are random in-
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tegers. As with RRM after repeating r times it splits the
arrays in two and repeats on each part. RRG is even more
memory intensive than RRM because its accesses are ran-
dom instead of linear. Again, however, once a recursive call
fits in a cache all remaining accesses are cache hits.

Quicksort: This is a parallel quicksort algorithm that both
parallelizes the partitioning and the recursive calls, using a
median-of-3 pivot selection strategy. It switches to a version
which parallelizes only the recursive calls for n < 128K and
a serial version for n < 16K. These parameters worked well
for all the schedulers. We note that our quicksort is about
2x faster than the Cilk code found in the Cilk+ guide [22].
This is because it does the partitioning in parallel. It is also
the case that the divide does not exactly partition the data
evenly, because it depends on how well the pivot divides the
data. For an input of size n the program has cache com-
plexity Q∗(n;M,B) = O(dn/Belog2(n/M)) and therefore is
reasonably memory intensive.

Samplesort: This is cache-optimal parallel Sample Sort al-
gorithm described in [9]. The algorithm splits the input of
size n into

√
n subarrays, recursively sorts each subarray,

“block transposes” them into
√
n buckets and recursively

sorts these buckets. For this algorithm, Q∗(n;M,B) =
O(dn/Be log2+(M/B) n/B) making it relatively cache friendly,
and optimally cache oblivious even.

Aware samplesort: This is a variant of sample-sort that is
aware of the cache sizes. In particular it moves elements into
buckets that fit into the L3 cache and then runs quicksort on
the buckets. This is the fastest sort we implemented and is
in fact faster than any other sort we found for this machine.
In particular it is about 10% faster than the PBBS sample
sort [28].

Quad-tree: This generates a quad tree for a set of n points
in two dimensions. This is implemented by recursively par-
titioning the points into four sets along the mid line of each
of two dimensions. When the number of points is less than
16K we revert to a sequential algorithm.

Matrix multiplication: This benchmark is an 8-way re-
cursive matrix multiplication. To allow for an in-place im-
plementation, four of the recursive calls are invoked in par-
allel followed by the other four. Matrix multiplication has
cache complexity Q∗(n;M,B) = (dn2/Be × dn/

√
Me). The

ratio of instructions to cache misses is therefore very high,
about B

√
M , making this is a very compute-intensive bench-

mark. We switch to serial Intel R© Math Kernel Library’s
cblas_dgemm matrix multiplication for sizes of ≤ 128× 128
to make use of the floating point SIMD operations.

5.2 Experimental Setup
The benchmarks were run on a 4-socket 32-core Xeon R©

7560 machine (Nehalem-EX architecture), as described in
Fig. 1(a) and Fig. 4, using each of the four schedulers. Each
core uses 2-way hyperthreading. The last level cache on each
socket is a 24MB L3 cache that is shared by eight cores. Each
of the four sockets on the machine has memory links to dis-
tinct DRAM modules. The sockets are connected with the
Intel R© QPI interconnect. Memory requests from a socket to
a DRAM module connected to another socket pass through
the QPI, the remote socket, and the remote memory link. To
prevent excessive TLB cache misses, we use Linux hugepages
of size 2MB to pre-allocate the space required by the algo-
rithms. We configured the system to have a pool of 10, 000

huge pages by setting vm.nr_hugepages to that value us-
ing sysctl. We used the hugectl tool to execute memory
allocations with hugepages.

Monitoring L3 cache. We focus on L3 cache misses, the
most expensive cache level before DRAM on our machine.
While we will report runtime subdivided into application
code and scheduler code, such partitioning was not possi-
ble for L3 misses because of software limitations. Even if it
were possible to count them separately, it would be difficult
to interpret the results because of the non-trivial interfer-
ence between the data cached by the program and by the
scheduler. Further details can be found in Appendix B.

Controlling bandwidth. As part of our study, we will
quantify runtime improvements varying the available mem-
ory bandwidth per core (the “bandwidth gap”). We control
the memory bandwidth available to the program as follows.
Because the QPI has high bandwidth, if we treat the RAM
as a single functional module, the bandwidth between the
L3 and the RAM depends on the number of memory links
used, which in turn depends on the mapping of pages to the
DRAM modules. If all the pages used by a program are
mapped to DRAM modules connected to one socket, the
program effectively utilizes one-fourth of the memory band-
width. On the other hand, an even distribution of pages to
DRAM modules across the sockets provides the full band-
width to the program. The numactl tool can be used to
control this mapping.

Code. We use the same code for the applications/algo-
rithms for all benchmarks, except for the CilkPlus code,
which we kept as close as possible. The code always includes
the space annotations, but those annotations are ignored by
the schedulers that do not need them. The code was com-
piled with a CilkPlus fork of gcc 4.8.0 compiler.

5.3 Results
We use σ = 0.5 and µ = 0.2 in the SB and SB-D sched-

ulers, after some experimentation with the parameters, un-
less otherwise noted. All numbers reported in this paper are
the average of at least 10 runs with the smallest and largest
readings across runs removed. The results are not sensitive
to this particular choice of reporting.

Synthetic benchmarks. Fig. 5 and Fig. 6 show the num-
ber of L3 cache misses of RRM and RRG, respectively, along
with their active times and scheduling overheads on 64 hy-
perthreads at different bandwidth values. In addition to the
four schedulers discussed in Section 4.2 (WS, PWS, SB and
SB-D), we include the CilkPlus work-stealing scheduler in
these plots to validate our WS implementation. We could
not separate overhead from time in CilkPlus because it does
not supply such information.

These plots show that the space-bounded schedulers in-
cur roughly 42–44% fewer L3 cache misses than the work-
stealing schedulers. As expected, the number of L3 misses
does not significantly depend on the available bandwidth.
On the other hand, the active time is most influenced by the
number of instructions in the benchmark (constant across
schedulers) and the costs incurred by L3 misses. The ex-
tent to which improvements in L3 misses translates to an
improvement in active time depends on the memory band-
width given to the program. When the bandwidth is low
(25%), the active times are almost directly proportional to
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Figure 5: RRM on 10 million double elements, vary-
ing the memory bandwidth. Left axis is running
time in seconds. Right axis is L3 misses in millions.
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Figure 6: RRG on 10 million double elements, vary-
ing the memory bandwidth. Left axis is running
time in seconds. Right axis is L3 misses in millions.

the number of L3 cache misses, while at full bandwidth, the
active times are far less sensitive to misses.

The differences in L3 cache costs of space-bounded and
work-stealing schedulers roughly corresponds to the differ-
ence between the cache complexity of the program with a
cache of size σM3 (M3 being the size of L3) and a cache of
size M3/16 (because eight cores with sixteen hyperthreads
share an L3 cache). In other words, space-bounded sched-
ulers share the cache constructively while work-stealing sched-
ulers effectively split the cache between the cores. To see
this, consider our RRM benchmark. Each Map operation
that does not fit in L3 touches 2 × 107 × 8 = 160 million
bytes of data, and RRM has to unfold four levels of recur-
sion before it fits in σM3 = 0.5× 24MB= 12MB space with
space-bounded schedulers. Therefore, since the cache line
size B3 = 64 bytes, space-bounded schedulers incur about
(160×106×3×4)/64 = 30×106 cache misses, which matches
closely with the results in Fig. 5. On the other hand, the
number of cache misses of the WS scheduler (55 million)
corresponds to unfolding about 7 levels of recursions, three
more than with space-bounded schedulers. Loosely speak-
ing, this means that the recursion has to unravel to one-
sixteenth the size of L3 before work-stealing schedulers start
preserving locality.

To support this observation, we ran the RRM and RRG
benchmarks varying the number of cores per socket; the re-
sults are in Fig. 7. The number of L3 cache misses when
using the SB and SB-D schedulers do not change with the
number of cores, because cores constructively share the L3
cache independent of their number. However, when using
the WS and PWS schedulers, the number of L3 misses is
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Figure 7: L3 cache misses for RRM and RRG, vary-
ing the number of cores used per socket.
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Figure 8: Active times, overheads, and L3 cache
misses for the 5 benchmark algorithms at full band-
width.
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Figure 9: Active times, overheads, and L3 cache
misses for the 5 benchmark algorithms at 25% band-
width.

highly dependent on the number of cores: when fewer cores
are active on each socket, there is lesser contention for space
in the shared L3 cache. Thus, again the experimental results
coincide with the theoretical analysis.

These experiments indicate that the advantages of space-
bounded schedulers over work-stealing schedulers improve
as (i) the number of cores per socket goes up, and (ii) the
bandwidth per core goes down. At 8 cores there is a 30–35%
reduction in L3 cache misses. At 64 cores we would expect
(by the analysis) over a 60% reduction.

Algorithms. Fig. 8 and Fig. 9 show the active times,
scheduling overheads, and L3 cache misses of the five algo-
rithmic kernels at 100% and 25% bandwidth, respectively,
with 64 hyperthreads. These plots show that the space-
bounded schedulers incur significantly fewer L3 cache misses
on 4 of the 5 benchmarks, with up to 65% on matrix multi-
ply. The cache-oblivious sample sort is the sole benchmark
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Figure 10: Empty queue times for Quad-tree.

with little difference in L3 cache misses across schedulers.
Given the problem size n = 108 doubles and sample sort’s√
n-way recursion, all subtasks after one level of recursion

are much smaller than the L3 cache. Thus, all four sched-
ulers avoid overflowing the cache. Because of their added
overhead relative to work-stealing, the space-bounded sched-
ulers are 7% slower for this benchmark.

As with the synthetic benchmarks, the sensitivity of active
time to L3 cache misses depends on whether the algorithm
is memory-intensive enough to stress the bandwidth. Matrix
Multiplication, although benefitting from space-bounded sched-
ulers in terms of cache misses, shows no significant improve-
ment in active time at full bandwidth because it is very com-
pute intensive. However, when the machine bandwidth is
reduced to 25%, Matrix Multiplication is bandwidth bound
and the space-bounded schedulers are about 50% faster than
work-stealing. The other three benchmarks—Quicksort, Aware
Samplesort and Quad-tree—are memory intensive and see
improvements of up to 25% in running time at full band-
width (Fig. 8). At 25% bandwidth, the improvement is even
more significant and up to 40% (Fig. 9).

Load balance and the dilation parameter σ. The
choice of σ, determining which tasks are maximal, is an
important parameter affecting the performance of space-
bounded schedulers, especially their ability to load balance.
If σ were set to 1, it is likely that one task that is about
the size of the cache gets anchored to the cache, leaving lit-
tle room for other tasks or strands. This adversely affects
load balance, and we would expect to see greater empty
queue times. On the other hand, if σ were set to a lower
value like 0.5, then each cache can allow more than one task
or strand to be simultaneously anchored, leading to better
load balance. Fig. 10 gives an example algorithm (Quad-
tree) demonstrating this. If σ is too low (closer to 0), then
the number of levels of recursion until the space-bounded
schedulers preserve locality would increase, resulting in less
effective use of shared caches.

Comparison of scheduler variants. Looking at the re-
sults, we find that while PWS can reduce the number of
cache misses by up to 10% compared to standard WS, it
has negligible impact on running times for the benchmarks
studied. Similarly, while SB-D is designed to remove a se-
rial bottleneck in the SB scheduler, the runtime (and cache
miss) performance of the two are nearly identical. This is
because our benchmarks call the scheduler sufficiently infre-
quently so that the performance difference of each invocation
is not noticeable in the overall running time.

6. CONCLUSION
We developed a framework for comparing schedulers, and

deployed it on a 32-core machine with 3 levels of caches.
We used it to compare four schedulers, two each of work-

stealing and space-bounded types. As predicted by the-
ory, we did notice that space-bounded schedulers demon-
strate some, or even significant, improvement over work-
stealing schedulers in terms of cache miss counts on shared
caches for most benchmarks. In memory-intensive bench-
marks with low instruction count to cache miss count ratios,
an improvement in L3 miss count because of space-bounded
schedulers can improve running time, despite their added
overheads. On the other hand, for compute-intensive bench-
marks or benchmarks with highly optimized cache complex-
ities, work-stealing schedulers are slightly faster, because of
their low scheduling overhead. Improving the overhead of
space-bounded schedulers further could make the case for
space-bounded schedulers stronger and is an important di-
rection for future work.

Our experiments were run on an Intel R© multicore with
(only) 8 cores per socket, 32 cores total, and one level of
shared cache (the L3). The experiments make it clear that
as the core count per socket goes up (as is expected with each
new generation), the advantages of space-bounded sched-
ulers should increase due to the increased benefit of avoiding
cache conflicts among the many unrelated threads sharing
the limited on-chip cache capacity. As the core count per
socket goes up, the available bandwidth per core decreases,
again increasing space-bounded schedulers’ advantage. We
also anticipate a greater advantage for space-bounded sched-
ulers over work-stealing schedulers when more cache lev-
els are shared and when the caches are shared amongst a
greater number of cores. Such studies are left to future
work, when such multicores become available. On the other
hand, compute-intensive benchmarks will likely continue to
benefit from the lower scheduling overheads of work-stealing
schedulers, for the next few generations of multicores, if not
longer.
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APPENDIX
A. WORK STEALING SCHEDULER

Fig. 11 provides an example of a work-stealing scheduler
implemented using the scheduler interface presented in Sec-
tion 3.1. The Job* argument passed to the add and done

functions may be instances of one of the derived classes of
Job* that carry additional information helpful to the sched-
uler.

B. MEASURING HARDWARE COUNTERS
Multicore processors based on newer architectures like

Intel R©Nehalem-EX and Sandybridge contain numerous func-
tional components such as cores (which includes the CPU
and lower level caches), DRAM controllers, bridges to the
inter-socket interconnect (QPI) and higher level cache units
(L3). Each component is provided with a performance mon-
itoring unit (PMU)—a collection of hardware registers that
can track statistics of events relevant to the component.

For instance, while the core PMU on Xeon R© 7500 series
(our experimental setup, see Fig. 1(a)) is capable of provid-
ing statistics such as the number of instructions, L1 and L2
cache hit/miss statistics, and traffic going in and out, it is
unable to monitor L3 cache misses (which constitute a sig-
nificant portion of active time). This is because L3 cache is
a separate unit with its own PMU(s). In fact, each Xeon R©
7560 die has eight L3 cache banks on a bus that also con-
nects DRAM and QPI controllers (see Fig. 12). Each L3
bank is connected to a core via buffered queues. The ad-
dress space is hashed onto the L3 banks so that a unique
bank is responsible for each address. To collect L3 statistics
such as L3 misses, we monitor PMUs (called C-Boxes on
Nehalem-EX) on all L3 banks and aggregate the numbers in
our results.

Software access to core PMUs on most Intel R© architec-
tures is well supported by several tools including the Linux
kernel, the Linux perf tool, and higher level APIs such as
libpfm [26]. We use the libpfm library to provide fine-grained
access to the core PMU. However, access to uncore PMUs—
complex architecture-specific components like the C-Box—is
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void WS_Scheduler::add (Job *job, int thread_id) {
_local_lock[thread_id].lock();
_job_queues[thread_id].push_back(job);
_local_lock[thread_id].unlock();

}
int
WS_Scheduler::steal_choice (int thread_id) {

return (int)((((double)rand())/((double)RAND_MAX))
*_num_threads);

}
Job* WS_Scheduler::get (int thread_id) {

_local_lock[thread_id].lock();
if (_job_queues[thread_id].size() > 0) {
Job * ret = _job_queues[thread_id].back();
_job_queues[thread_id].pop_back();
_local_lock[thread_id].unlock();
return ret;

} else {
_local_lock[thread_id].unlock();
int choice = steal_choice(thread_id);
_steal_lock[choice].lock();
_local_lock[choice].lock();
if (_job_queues[choice].size() > 0) {
Job * ret = _job_queues[choice].front();
_job_queues[choice].erase(_job_queues[choice].begin());
++_num_steals[thread_id];
_local_lock[choice].unlock();
_steal_lock[choice].unlock();
return ret;

}
_local_lock[choice].unlock();
_steal_lock[choice].unlock();

}
return NULL;

}
void WS_Scheduler::done (Job *job, int thread_id,

bool deactivate) {}

Figure 11: WS scheduler implemented in scheduler
interface

not supported by most tools. Newer Linux kernels (3.7+)
are incrementally adding software interfaces to these PMUs
at the time of this writing, but we are only able to make
program-wide measurements using this interface rather than
fine-grained measurements. For accessing uncore counters,
we adapt the Intel R© PCM 2.4 tool [19].
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Figure 12: Layout of 8 cores and L3 cache banks on
a bidirectional ring in Xeon R© 7560. Each L3 bank
hosts a performance monitoring unit called C-box
that measures traffic into and out of the L3 bank.

To count L3 cache misses, the uncore counters in the
C-boxes were programmed using the Intel R© PCM tool to
count misses that occur due to any reason (LLC_MISSES -

event code: 0x14, umask: 0b111) and L3 cache fills in
any coherence state (LLC_S_FILLS - event code: 0x16,

umask: 0b1111). Both the numbers concur up to three sig-
nificant digits in most cases. Therefore, only the L3 cache
miss numbers are reported in this paper.
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