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History of Algorithms
Erastosthenes (200 BC)
al-Khwarizmi (800 AD)
FFT (Gauss 1805)
Min-Spanning-Tree (Boruvka 1926)
Effective computability (Church/Turing 1935-37)
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History of Algorithms
Dijkstra’s shortest path algorithm (1956)
Quicksort (1959)
Complexity Theory (Hartmanis/Stearns/Blum 1965)
Knuth volumes 1-3 (1968)
NP completeness (Cook-Levin 1971)
big-O (Hopcroft/Tarjan 1972)
The Design and Analysis of Computer Algorithms 

(Aho/Hopcroft/Ullman 1974)

Cost measured in terms of sequential time/number 
of steps.
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Algorithms at Universities
Reequired in All CS Undergraduate Programs, e.g.
CMU : 15-210 (..Algorithms), 15-451 (Algorithms)
MIT : 6.006 (Introduction to Algorithms)

6.046 (Design and Analysis of Algorithms)
Berkeley: 61B (Data Structures), 170 (Efficient 

Algorithms)
Stanford: 161 (Data Structures and Algorithms)
…
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Algorithms in the “Real World”
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Trend in Tech
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Why are (Sequential) Algorithms 
so Successful?

1. Theory exactly predicts runtimes?
2. Are good for highly tuning optimized codes?
3. Will impress our friends? 
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Why are Sequential Algorithms 
so Successful?

1. Teaching abstraction
2. Good for explaining core ideas, and why they are useful
3. Well defined and simple cost model which is “good 

enough” for asymptotic comparisons
4. Simple pseudocode and small step to real code that can 

be easily compiled and run to get reasonably efficient 
code.

5. Sequential algorithms are elegant
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What about “Parallel Algorithms”
Wikipedia: a parallel algorithm is an algorithm which 

can be executed a piece at a time on many 
different processing devices, and then combined 
together again at the end to get the correct 
result.[1]
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History of Parallel Algorithms
Matrix Inversion (1977)
Merging: Valiant (1978)
PRAM Model (1980)
NC Algorithms (1983)
Log depth sorting (1985)
Many efficient algorithms (82-90)
Jaja: Parallel Algorithms (1990)

-- Mid 1990s, hibernation of parallel
computing
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Why Parallel Algorithms Now?
1. Almost all computers and devices are now parallel
2. Many applications, from small to large, need the 

performance
3. Simple programming + cost models
4. There exist efficient parallel algorithms for most 

problems in theory and 
5. Availability of reasonable tools and languages
6. Many sequential algorithms are already 

parallel.
Not an advanced topic
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Why Parallelism: Machines
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Why Parallelism: Machines
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64 core blade servers ($6K)
(shared memory)
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Xeon Phi: Knights Landing (64 cores)
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4992 “cuda” cores

Qatar 2017 24



25Qatar 2017

Up to 300K servers
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Mar 2017, 12 core
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UDOO

Raspberry
Pi 3
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Why Parallel Algs.: Applications
Big : Weather prediction, airplane design, genome 

sequencing, oil exploration, molecular modeling, sky 
survey analysis, social network analysis, traffic 
modeling, epistomology, route-scheduling, delivery 
optimization, business analytics, high-speed 
trading, online advertising, …

Small : signal processing, graphics, encryption, 
compression, AI, vision, language understanding, 
virtual reality, computer games, search, self-
driving-cars

Most mentioned earlier are actually parallel
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Why Parallel Algs.: Practical Efficiency

64 core Xeon Phi



Why Parallel Algorithms: 
Theoretical Efficiency

Cost in terms of:
• Work: total number of operation
• Span: longest chain of dependences
Ratio gives parallelism

Examples:
• Sorting, O(n log n), O(log n)
• Merging O(n), O(log n)
• Spanning Trees O(m), O(log n)
• …
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Why Parallel Algs.: Programming
parallel loops

cilk_for (i=0; i < n; i++) 
B[i] = A[i]+1;

Parallel.ForEach(A, x => x+1);

B = {x + 1 : x in A}

#pragma omp for 
for (i=0; i < n; i++) 

B[i] = A[i] + 1;
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Cilk

Microsoft TPL 
(C#,F#)

Nesl, Parallel Haskell

OpenMP
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Why Parallel Algs.: Programming
fork join
cobegin { S1; S2;}

coinvoke(f1,f2)

cilk_spawn S1;
S2;
cilk_sync;

(e1 || e2)
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Dates back to the 60s.  Used in 
dialects of Algol, Pascal

Java fork-join framework

Cilk

SML (as used in 210)
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Why Parallel Algs.: Programming
Tools
• Debuggers 
• Race detectors
• Profiling
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What does a 
Parallel Algorithm

Look like
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It is not rocket science

except when applied to rocket science
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Example: summing an array
[2, 1, 4, 2, 3, 1, 5, 7]

[3,    6,     4,    12]

[9,       16]
[25]

function sum(A) =
if (#A <= 1) then [0]
else sum({A[2*i] + A[2*i+1] : i in [0:#a/2]})

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)
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Example: scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3,    6,     4,    12]
sum

recurse
[0,    3,     9,    13]

[2,    7,    12,   18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18][0, 2, 3, 7, 9, 12, 13, 18]
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Scan code
function addscan(A) =
if (#A <= 1) then [0]
else let
sums = {A[2*i] + A[2*i+1] : i in [0:#a/2]};
evens = addscan(sums);
odds = {evens[i] + A[2*i] : i in [0:#a/2]};

in interleave(evens,odds);

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)
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Example: Quicksort
function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];
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Quicksort (nested parallelism)
Analyze in terms or Work (W) and Depth (D)

Depth = O(lg2 n)
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Work = O(n lg n)

Time = W/P + D
P = # processors

Parallelism = W/D = O(n/ lg n)



Why Parallel Algs.:Techniques
Some common themes in “Thinking Parallel”
1. Working with collections.

– map, selection, reduce, scan, collect
2. Divide-and-conquer

– Even more important than sequentially
– Merging, matrix multiply, FFT, …

3. Contraction
– Solve single smaller problem
– List ranking, graph contraction

4. Randomization
– Symmetry breaking and random sampling
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Why Parallel Algorithms Now?
1. Almost all computers and devices are now parallel
2. Many applications, from small to large, need the 

performance
3. Simple programming + cost models
4. There exist efficient parallel algorithms for most 

problems in theory, and cool techniques
5. Availability of reasonable tools and languages
6. Many sequential algorithms are already 

parallel.
Not an advanced topic
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Algorithms in Education 
Reequired in All CS Undergraduate Programs, e.g.
CMU : 15-210 (..Algorithms), 15-451 (Algorithms)
MIT : 6.006 (Introduction to Algorithms)

6.046 (Design and Analysis of Algorithms)
Berkeley: 61B (Data Structures), 170 (Efficient 

Algorithms)
Stanford: 161 (Data Structures and Algorithms)
…

Beyond 210, very little parallel algorithms.
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Instead:
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Sequential Algorithms
Parallel Algorithms

Techniques Big-O Data StructsProblems

Algorithms
Techniques Big-O Data StructsProblems

Wrong way to think about it:



Conclusions
Algorithms are very important

Many reasons to use parallel algorithms

Happened so rapidly that a large part of the world 
has not yet caught on

Needs to be better integrated with undergraduate 
curriculums
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