
Page 1

Parallel Algorithms Come of Age

Guy Blelloch
Professor and Associate Dean for UG programs

Qatar 2017

Merriam-Webster

Qatar 2017 Page 2

History of Algorithms
Erastosthenes (200 BC)
al-Khwarizmi (800 AD)
FFT (Gauss 1805)
Min-Spanning-Tree (Boruvka 1926)
Effective computability (Church/Turing 1935-37)

Qatar 2017 Page 3

History of Algorithms
Dijkstra’s shortest path algorithm (1956)
Quicksort (1959)
Complexity Theory (Hartmanis/Stearns/Blum 1965)
Knuth volumes 1-3 (1968)
NP completeness (Cook-Levin 1971)
big-O (Hopcroft/Tarjan 1972)
The Design and Analysis of Computer Algorithms

(Aho/Hopcroft/Ullman 1974)

Cost measured in terms of sequential time/number
of steps.

Qatar 2017 Page 4

Algorithms at Universities
Reequired in All CS Undergraduate Programs, e.g.
CMU : 15-210 (..Algorithms), 15-451 (Algorithms)
MIT : 6.006 (Introduction to Algorithms)

6.046 (Design and Analysis of Algorithms)
Berkeley: 61B (Data Structures), 170 (Efficient

Algorithms)
Stanford: 161 (Data Structures and Algorithms)
…

Qatar 2017 Page 5

Algorithms in the “Real World”

Qatar 2017 Page 6

Qatar 2017 Page 7

Trend in Tech

Qatar 2017 Page 8

Qatar 2017 Page 9

Qatar 2017 Page 10

Qatar 2017 Page 11

Qatar 2017 Page 12

Qatar 2017 Page 13

Why are (Sequential) Algorithms
so Successful?

1. Theory exactly predicts runtimes?
2. Are good for highly tuning optimized codes?
3. Will impress our friends?

Qatar 2017 14

Maybe

Why are Sequential Algorithms
so Successful?

1. Teaching abstraction
2. Good for explaining core ideas, and why they are useful
3. Well defined and simple cost model which is “good

enough” for asymptotic comparisons
4. Simple pseudocode and small step to real code that can

be easily compiled and run to get reasonably efficient
code.

5. Sequential algorithms are elegant

Qatar 2017 15

What about “Parallel Algorithms”
Wikipedia: a parallel algorithm is an algorithm which

can be executed a piece at a time on many
different processing devices, and then combined
together again at the end to get the correct
result.[1]

Qatar 2017 Page 16

History of Parallel Algorithms
Matrix Inversion (1977)
Merging: Valiant (1978)
PRAM Model (1980)
NC Algorithms (1983)
Log depth sorting (1985)
Many efficient algorithms (82-90)
Jaja: Parallel Algorithms (1990)

-- Mid 1990s, hibernation of parallel
computing

Qatar 2017 Page 17

Why Parallel Algorithms Now?
1. Almost all computers and devices are now parallel
2. Many applications, from small to large, need the

performance
3. Simple programming + cost models
4. There exist efficient parallel algorithms for most

problems in theory and
5. Availability of reasonable tools and languages
6. Many sequential algorithms are already

parallel.
Not an advanced topic

Qatar 2017 Page 18

Why Parallelism: Machines

Page 19Qatar 2017

Why Parallelism: Machines

Page 20Qatar 2017

64 core blade servers ($6K)
(shared memory)

Page 21

x 4 =

Qatar 2017

Xeon Phi: Knights Landing (64 cores)

Qatar 2017 Page 22

Qatar 2017 Page 23

4992 “cuda” cores

Qatar 2017 24

25Qatar 2017

Up to 300K servers

Qatar 2017 26

Dec 2010

Nov 2012

Qatar 2017 Page 27

May 2015

Sep 2014

Qatar 2017 Page 28

Mar 2017, 12 core

Qatar 2017 29

UDOO

Raspberry
Pi 3

Page 30Andrew Chien, 2008Qatar 2017

Why Parallel Algs.: Applications
Big : Weather prediction, airplane design, genome

sequencing, oil exploration, molecular modeling, sky
survey analysis, social network analysis, traffic
modeling, epistomology, route-scheduling, delivery
optimization, business analytics, high-speed
trading, online advertising, …

Small : signal processing, graphics, encryption,
compression, AI, vision, language understanding,
virtual reality, computer games, search, self-
driving-cars

Most mentioned earlier are actually parallel

Qatar 2017 Page 31

Qatar 2017 32

Tseq/T64
145.0
46.0
69.0
36.0
35.0
86.0
39.0
62.0
19.0

0.0#

16.0#

32.0#

48.0#

64.0#

80.0#

96.0#

So
rt#

Co
nv
ex
#Hu
ll#

Mi
n#S
pa
n#T
ree
#

BF
S#

Ma
x#I
nd
#Se
t#

Re
mo
ve
#Du
ps
#

Se
t#C
ov
er#

Sp
ars
e#M

atV
ec
#

Su
ffix
#So
rt#

T1/T64#
Tseq/T64#

Why Parallel Algs.: Practical Efficiency

64 core Xeon Phi

Why Parallel Algorithms:
Theoretical Efficiency

Cost in terms of:
• Work: total number of operation
• Span: longest chain of dependences
Ratio gives parallelism

Examples:
• Sorting, O(n log n), O(log n)
• Merging O(n), O(log n)
• Spanning Trees O(m), O(log n)
• …

Qatar 2017 Page 33

Why Parallel Algs.: Programming
parallel loops

cilk_for (i=0; i < n; i++)
B[i] = A[i]+1;

Parallel.ForEach(A, x => x+1);

B = {x + 1 : x in A}

#pragma omp for
for (i=0; i < n; i++)

B[i] = A[i] + 1;

Page34

Cilk

Microsoft TPL
(C#,F#)

Nesl, Parallel Haskell

OpenMP

Qatar 2017

Why Parallel Algs.: Programming
fork join
cobegin { S1; S2;}

coinvoke(f1,f2)

cilk_spawn S1;
S2;
cilk_sync;

(e1 || e2)

Page35

Dates back to the 60s. Used in
dialects of Algol, Pascal

Java fork-join framework

Cilk

SML (as used in 210)

Qatar 2017

Why Parallel Algs.: Programming
Tools
• Debuggers
• Race detectors
• Profiling

Qatar 2017 Page 36

What does a
Parallel Algorithm

Look like

Qatar 2017 Page 37

It is not rocket science

except when applied to rocket science

38

Example: summing an array
[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]

[9, 16]
[25]

function sum(A) =
if (#A <= 1) then [0]
else sum({A[2*i] + A[2*i+1] : i in [0:#a/2]})

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)

Qatar 2017

39

Example: scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]
sum

recurse
[0, 3, 9, 13]

[2, 7, 12, 18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18][0, 2, 3, 7, 9, 12, 13, 18]

Qatar 2017

40

Scan code
function addscan(A) =
if (#A <= 1) then [0]
else let
sums = {A[2*i] + A[2*i+1] : i in [0:#a/2]};
evens = addscan(sums);
odds = {evens[i] + A[2*i] : i in [0:#a/2]};

in interleave(evens,odds);

W(n) = W(n/2) + O(n) = O(n)
D(n) = D(n/2) + O(1) = O(log n)

Qatar 2017

Page 41

Example: Quicksort
function quicksort(S) =
if (#S <= 1) then S
else let
a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];

Qatar 2017

Page 42

Quicksort (nested parallelism)
Analyze in terms or Work (W) and Depth (D)

Depth = O(lg2 n)

Qatar 2017

Work = O(n lg n)

Time = W/P + D
P = # processors

Parallelism = W/D = O(n/ lg n)

Why Parallel Algs.:Techniques
Some common themes in “Thinking Parallel”
1. Working with collections.

– map, selection, reduce, scan, collect
2. Divide-and-conquer

– Even more important than sequentially
– Merging, matrix multiply, FFT, …

3. Contraction
– Solve single smaller problem
– List ranking, graph contraction

4. Randomization
– Symmetry breaking and random sampling

Page43Qatar 2017

Why Parallel Algorithms Now?
1. Almost all computers and devices are now parallel
2. Many applications, from small to large, need the

performance
3. Simple programming + cost models
4. There exist efficient parallel algorithms for most

problems in theory, and cool techniques
5. Availability of reasonable tools and languages
6. Many sequential algorithms are already

parallel.
Not an advanced topic

Qatar 2017 Page 44

Algorithms in Education
Reequired in All CS Undergraduate Programs, e.g.
CMU : 15-210 (..Algorithms), 15-451 (Algorithms)
MIT : 6.006 (Introduction to Algorithms)

6.046 (Design and Analysis of Algorithms)
Berkeley: 61B (Data Structures), 170 (Efficient

Algorithms)
Stanford: 161 (Data Structures and Algorithms)
…

Beyond 210, very little parallel algorithms.

Qatar 2017 Page 45

Instead:

Qatar 2017 Page 46

Sequential Algorithms
Parallel Algorithms

Techniques Big-O Data StructsProblems

Algorithms
Techniques Big-O Data StructsProblems

Wrong way to think about it:

Conclusions
Algorithms are very important

Many reasons to use parallel algorithms

Happened so rapidly that a large part of the world
has not yet caught on

Needs to be better integrated with undergraduate
curriculums

Qatar 2017 Page 47

