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Parallel Thinking 
How to deal with teaching parallelism? 
Option I : Minimize what users have to learn 

about parallelism.   Hide parallelism in libraries 
which are programmed by a few experts 

Option II : Teach parallelism as an advanced 
subjet after and based on standard material on 
sequential computing. 

Option III : Teach parallelism from the start 
with sequential computing as a special case. 
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Parallel Thinking 

   If explained at the right level of abstraction 

are many algorithms naturally parallel? 

   If done right could parallel programming be 

as easy or easier than sequential 
programming for many uses? 


   Are we currently brainwashing students to 
think sequentially? 


   What are the core parallel ideas that all 
computer scientists should know? 
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Quicksort from Sedgewick  
public void quickSort(int[] a, int left, int right) { 
    int i = left-1;  int j = right;  
    if (right <= left) return;  
    while (true) { 
      while (a[++i] < a[right]); 
      while (a[right]<a[--j])  
        if (j==left) break;  
      if (i >= j) break; 
      swap(a,i,j); } 
    swap(a, i, right);  
    quickSort(a, left, i - 1);  
    quickSort(a, i+1, right); } 

Sequential! 
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Quicksort from Aho-Hopcroft-Ullman 
procedure QUICKSORT(S): 
  if S contains at most one element then return S 
  else 
    begin 
      choose an element a randomly from S; 
      let S1, S2 and S3 be the sequences of 
           elements in S less than, equal to,  
           and greater than a, respectively; 
      return (QUICKSORT(S1) followed by S2  
         followed by QUICKSORT(S3)) 
end 

Two forms of natural parallelism 
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Observation 1 and 2 

   Natural parallelism is often lost in “low-level” 

implementations. 

  Need “higher level” descriptions 

  Need to revert back to the core ideas of an 

algorithm and recognize what is parallel 
and what is not 


   Lost opportunity not to describe parallelism 
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Quicksort in NESL 
function quicksort(S) = 
if (#S <= 1) then S 
else let 
  a = S[rand(#S)]; 
  S1 = {e in S | e < a}; 
  S2 = {e in S | e = a}; 
  S3 = {e in S | e > a}; 
  R = {quicksort(v) : v in [S1, S3]}; 
in R[0] ++ S2 ++ R[1]; 
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Parallel selection 
           {e in S | e < a}; 

   S                    =  [2, 1, 4, 0, 3, 1, 5, 7] 
   F = S < 4        =  [1, 1, 0, 1, 1, 1, 0, 0] 
   I = addscan(F) =  [0, 1, 2, 2, 3, 4, 5, 5] 

   where  F 
        R[I] = S      = [2, 1, 0, 3, 1] 

Each element gets sum of 
previous elements. 
Seems sequential? 
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Scan 

[2, 1, 4, 2, 3, 1, 5, 7] 

[3,    6,     4,    12] 
sum 

recurse 
[0,    3,     9,    13] 

[2,    7,    12,   18] 
sum 

interleave 
[0, 2, 3, 7, 9, 12, 13, 18] 



PPoPP, 2/16/2009 11 

Scan code 
function scan(A, op) = 
if (#A <= 1) then [0] 
else let 
  sums = {op(A[2*i], A[2*i+1]) : i in [0:#a/2]}; 
  evens = scan(sums, op); 
  odds = {op(evens[i], A[2*i]) : i in [0:#a/2]}; 
in interleave(evens,odds);, 

    A =  [2, 1, 4, 2, 3, 1, 5, 7] 
    sums = [3, 6, 4, 12] 
    evens = [0, 3, 9, 13]    (result of recursion)  
    odd = [2, 7, 12, 18] 
    result = [0, 2, 3, 7, 9, 12, 13, 18] 
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Observations 3, 4 and 5 

   Just because it seems sequential does not 

mean it is 

   + When in doubt recurse on a single smaller 

problem and use the result to solve larger 
problem 


   + Transitions can be aggregated (composed) 

+ Core parallel idea/technique 
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Qsort Complexity  

partition append 

Span = O(n) 

(less than, …) 

Sequential Partition 
Parallel calls 

Work = O(n log n) 

Not a very good parallel algorithm 
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Quicksort in HPF 
subroutine quicksort(a,n) 
integer n,nless,less(n),greater(n),a(n) 

if (n < 2) return 

pivot = a(1) 
nless = count(a < pivot) 
less = pack(a, a < pivot) 
greater = pack(a, a >= pivot) 

call quicksort(less, nless) 
a(1:nless) = less  

call quicksort(greater, n-nless) 
a(nless+1:n) = less 

end subroutine 
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Qsort Complexity 
Parallel partition 
Sequential calls  

Span = O(n) Work = O(n log n) 

Still not a very good parallel algorithm 
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Qsort Complexity 

Span = O(lg2 n) 

Parallel partition 
Parallel calls 

Work = O(n log n) 

A good parallel algorithm 



PPoPP, 2/16/2009 17 

Combining for parallel map: 
       pexp = {exp(e) : e in A} 

In general all you need is sum (work) and max 
(span) for nested parallel computations. 

work 

span 

Complexity in Nesl 
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Generally for a DAG 


   Any “greedy” schedule for 
a DAG with span (depth) 
D and work (size) W will 
complete in: 
   T < W/P + D  


   Any schedule will take at 
least: 
   T >= max(W/P, D)  
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Observations 6, 7, 8 and 9 

   + Often need to take advantage of both “data 

parallelism” and “function parallelism” 

   Abstract cost models that are not machine 

based are important. 

   + Work and span are reasonable measures 

and can be easily composed with nested 
parallelism.   No more difficult to understand 
than time in sequential algorithms. 


   +’ Many ways to schedule 

+’ = advanced topic 



Matrix Inversion 
Mat invert(mat M) { 
  D-1 = invert(D)  
  S-1 = A – BD-1C 
  S-1 = invert(S) 
  E = D-1 
  F = S-1BD-1   
  G = -D-1CS-1 
  H = D-1 + D-1CS-1BD-1 
} 

PPoPP, 2/16/2009 20 

€ 

M =
A B
C D
 

 
 

 

 
 

€ 

M−1 =
E F
G H
 

 
 

 

 
 

€ 
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Quicksort in X10 
double[] quicksort(double[] S) {  
  if (S.length < 2) return S; 
  double a = S[rand(S.length)]; 
  double[] S1,S2,S3; 
  finish { 
     async { S1 = quicksort(lessThan(S,a));} 
     async { S2 = eqTo(S,a);} 
     S3 = quicksort(grThan(S,a)); 
  } 
  append(S1,append(S2,S3)); 
} 
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Quicksort in X10 
double[] quicksort(double[] S) {  
  if (S.length < 2) return S; 
  double a = S[rand(S.length)]; 
  double[] S1,S2,S3; 
  cnt = cnt+1; 
  finish { 
     async { S1 = quicksort(lessThan(S,a));} 
     async { S2 = eqTo(S,a);} 
     S3 = quicksort(grThan(S,a)); 
  } 
  append(S1,append(S2,S3)); 
} 

???? 
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Observation 10 

   Deterministic parallelism is important for 

easily understanding, analyzing and 
debugging programs. 

   Functional languages 

  Race detectors (e.g. cilkscreen) 

  Using non-functional languages in a 

functional style (is this safe?) 
Atomic regions and transactions don’t solve this problem. 
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Example: Merging 
Merge(nil,l2) = l2 
Merge(l1,nil) = l1 
Merge(h1::t1, h2::t2) = 
    if (h1 < h2) h1::Merge(t1,h2::t2) 
    else h2::Merge(h1::t1,t2) 

What about in parallel? 
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Merging 
Merge(A,B) = 
let 
  Node(AL, m, AR) = A 
  (BL ,BR) = split(B, m) 
in 
  Node(Merge(AL,BL), m, Merge(AR,BR))   

m 

AL AR 
BL 

BR 

A B 

m 

Merge(AL ,BL) 
Merge(AR ,BR) 

Span = O(log2 n) 
Work = O(n) 

Merge in parallel 
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Merging with Futures 
Merge(A,B) = 
let 
  Node(AL, m, AR) = A 
  (BL ,BR) = futureSplit(B, m) 
in 
  Node(Merge(AL,BL), m, Merge(AR,BR))   

m 

AL AR 
BL 

BR 

A B 

m 

Merge(AL ,BL) 
Merge(AR ,BR) 

Span = O(log n) 
Work = O(n) 

futures 
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Observations 11, 12 and 13 

   + Divide and conquer even more useful in 

parallel than sequentially 

   + Trees are better than lists for parallelism 

   +’ Pipelining can asymptotically reduce depth, 

but can be hard to analyze 



PPoPP, 2/16/2009 28 

The Observations 
General: 
1. Natural parallelism is often lost in “low-level” implementations. 
2. Lost opportunity not to describe parallelism 
3. Just because it seems sequential does not mean it is 
Model and Language: 
6. Need to take advantage of both “data” and “function” parallelism 
7. Abstract cost models that are not machine based are important.  
8. Work and span are reasonable measures 
9. Many ways to schedule 
10. Deterministic parallelism is important 
Algorithmic Techniques 
4. When in doubt recurse on a smaller problem 
5. Transitions can be aggregated 
11. Divide and conquer even more useful in parallel  
12. Trees are better than lists for parallelism 
13. Pipelining is useful, with care 



More algorithmic techniques 

   + Graph contraction 

   + Identifying independent sets 

   + Symmetry breaking 

   + Pointer jumping 
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What else 
Non-deterministic parallelism: 


   Races and race detection 

   Sequential consistency, serializability, 

linearizability, atomic primitives, locking 
techniques, transactions 


   Concurrency models, e.g. the pi-calculus 

   Lock and wait free algorithms 

Architectural issues 

   Cache coherence, memory layout, latency hiding 

   Network topology, latency vs. throughput 

   … 

… 



Excersise 

   Identify the core ideas in Parallelism 


   Ideas that will still be useful in 20 years 

  Separate into “beginners” and “advanced” 


   See how they fit into a curriculum 

  Emphasis on simplicity first 

  Will depend on existing curriculum 
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Possible course content 
Biased by our current sequence 
o  211: Fundamental data structures and algorithms 
o  212: Principles of programming 
o  213: Introduction to computer systems 
o  251: Great theoretical ideals in computer science 

PPoPP, 2/16/2009 32 



211: Intro to Data Structures+Algos 
Teach deterministic nested parallelism with 

work and depth.  
o  Introduce race conditions but don’t allow them. 
o  General techniques: divide-and-conquer, 

contraction, combining, dynamic programming 
o  Data structures: stacks, queues, vectors, 

balanced trees, matrices, graphs, 
o  Algorithms: scan, sorting, merging, medians, 

hashing, fft, graph connectivity, MST 
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212: Principles of Programming 
o  Recursion, structural induction, currying 
o  Folding, mapping : emphasis on trees not lists 
o  Exceptions, parallel exceptions, and continuations 
o  Streams, futures, pipelining 
o  State and interaction with parallelism 
o  Nondeterminacy and linearizability 
o  Simple concurrent structure 
o  Or parallelism 
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213: Introduction to Systems 
o  Representing integers/floats 
o  Assembly language and atomic operations 
o  Out of order processing 
o  Caches, virtual memory, and memory consistency 
o  Threads and scheduling 
o  Concurrency, synchronization, transactions and 

serializability 
o  Network programming 
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Conclusions/Questions 
Should we teach parallelism from day 1 and 

sequential computing as a special case? 
Could teaching parallelism actually make some 

things easier? 
Are there a reasonably small number of core 

ideas that every undergraduate needs to 
know?   If so, what are they? 


