
PPoPP, 2/16/2009 1

Parallel Thinking*

Guy Blelloch
Carnegie Mellon University

*PROBE as part of the Center for Computational Thinking

PPoPP, 2/16/2009 2
Andrew Chien, 2008

PPoPP, 2/16/2009 3

Parallel Thinking
How to deal with teaching parallelism?
Option I : Minimize what users have to learn

about parallelism. Hide parallelism in libraries
which are programmed by a few experts

Option II : Teach parallelism as an advanced
subjet after and based on standard material on
sequential computing.

Option III : Teach parallelism from the start
with sequential computing as a special case.

PPoPP, 2/16/2009 4

Parallel Thinking

   If explained at the right level of abstraction

are many algorithms naturally parallel?

   If done right could parallel programming be

as easy or easier than sequential
programming for many uses?

   Are we currently brainwashing students to
think sequentially?

   What are the core parallel ideas that all
computer scientists should know?

PPoPP, 2/16/2009 5

Quicksort from Sedgewick
public void quickSort(int[] a, int left, int right) {
 int i = left-1; int j = right;
 if (right <= left) return;
 while (true) {
 while (a[++i] < a[right]);
 while (a[right]<a[--j])
 if (j==left) break;
 if (i >= j) break;
 swap(a,i,j); }
 swap(a, i, right);
 quickSort(a, left, i - 1);
 quickSort(a, i+1, right); }

Sequential!

PPoPP, 2/16/2009 6

Quicksort from Aho-Hopcroft-Ullman
procedure QUICKSORT(S):
 if S contains at most one element then return S
 else
 begin
 choose an element a randomly from S;
 let S1, S2 and S3 be the sequences of
 elements in S less than, equal to,
 and greater than a, respectively;
 return (QUICKSORT(S1) followed by S2
 followed by QUICKSORT(S3))
end

Two forms of natural parallelism

PPoPP, 2/16/2009 7

Observation 1 and 2

   Natural parallelism is often lost in “low-level”

implementations.

  Need “higher level” descriptions

  Need to revert back to the core ideas of an

algorithm and recognize what is parallel
and what is not

   Lost opportunity not to describe parallelism

PPoPP, 2/16/2009 8

Quicksort in NESL
function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];

PPoPP, 2/16/2009 9

Parallel selection
 {e in S | e < a};

 S = [2, 1, 4, 0, 3, 1, 5, 7]
 F = S < 4 = [1, 1, 0, 1, 1, 1, 0, 0]
 I = addscan(F) = [0, 1, 2, 2, 3, 4, 5, 5]

 where F
 R[I] = S = [2, 1, 0, 3, 1]

Each element gets sum of
previous elements.
Seems sequential?

PPoPP, 2/16/2009 10

Scan

[2, 1, 4, 2, 3, 1, 5, 7]

[3, 6, 4, 12]
sum

recurse
[0, 3, 9, 13]

[2, 7, 12, 18]
sum

interleave
[0, 2, 3, 7, 9, 12, 13, 18]

PPoPP, 2/16/2009 11

Scan code
function scan(A, op) =
if (#A <= 1) then [0]
else let
 sums = {op(A[2*i], A[2*i+1]) : i in [0:#a/2]};
 evens = scan(sums, op);
 odds = {op(evens[i], A[2*i]) : i in [0:#a/2]};
in interleave(evens,odds);,

 A = [2, 1, 4, 2, 3, 1, 5, 7]
 sums = [3, 6, 4, 12]
 evens = [0, 3, 9, 13] (result of recursion)
 odd = [2, 7, 12, 18]
 result = [0, 2, 3, 7, 9, 12, 13, 18]

PPoPP, 2/16/2009 12

Observations 3, 4 and 5

   Just because it seems sequential does not

mean it is

   + When in doubt recurse on a single smaller

problem and use the result to solve larger
problem

   + Transitions can be aggregated (composed)

+ Core parallel idea/technique

PPoPP, 2/16/2009 13

Qsort Complexity

partition append

Span = O(n)

(less than, …)

Sequential Partition
Parallel calls

Work = O(n log n)

Not a very good parallel algorithm

PPoPP, 2/16/2009 14

Quicksort in HPF
subroutine quicksort(a,n)
integer n,nless,less(n),greater(n),a(n)

if (n < 2) return

pivot = a(1)
nless = count(a < pivot)
less = pack(a, a < pivot)
greater = pack(a, a >= pivot)

call quicksort(less, nless)
a(1:nless) = less

call quicksort(greater, n-nless)
a(nless+1:n) = less

end subroutine

PPoPP, 2/16/2009 15

Qsort Complexity
Parallel partition
Sequential calls

Span = O(n) Work = O(n log n)

Still not a very good parallel algorithm

PPoPP, 2/16/2009 16

Qsort Complexity

Span = O(lg2 n)

Parallel partition
Parallel calls

Work = O(n log n)

A good parallel algorithm

PPoPP, 2/16/2009 17

Combining for parallel map:
 pexp = {exp(e) : e in A}

In general all you need is sum (work) and max
(span) for nested parallel computations.

work

span

Complexity in Nesl

PPoPP, 2/16/2009 18

Generally for a DAG

   Any “greedy” schedule for
a DAG with span (depth)
D and work (size) W will
complete in:
 T < W/P + D

   Any schedule will take at
least:
 T >= max(W/P, D)

PPoPP, 2/16/2009 19

Observations 6, 7, 8 and 9

   + Often need to take advantage of both “data

parallelism” and “function parallelism”

   Abstract cost models that are not machine

based are important.

   + Work and span are reasonable measures

and can be easily composed with nested
parallelism. No more difficult to understand
than time in sequential algorithms.

   +’ Many ways to schedule

+’ = advanced topic

Matrix Inversion
Mat invert(mat M) {
 D-1 = invert(D)
 S-1 = A – BD-1C
 S-1 = invert(S)
 E = D-1
 F = S-1BD-1
 G = -D-1CS-1
 H = D-1 + D-1CS-1BD-1
}

PPoPP, 2/16/2009 20

€

M =
A B
C D










€

M−1 =
E F
G H










€

W (n) = 2W (n /2) + 6W*(n /2)
= O(n3)

€

D(n) = 2D(n /2) + 6D*(n /2)
= O(n)

PPoPP, 2/16/2009 21

Quicksort in X10
double[] quicksort(double[] S) {
 if (S.length < 2) return S;
 double a = S[rand(S.length)];
 double[] S1,S2,S3;
 finish {
 async { S1 = quicksort(lessThan(S,a));}
 async { S2 = eqTo(S,a);}
 S3 = quicksort(grThan(S,a));
 }
 append(S1,append(S2,S3));
}

PPoPP, 2/16/2009 22

Quicksort in X10
double[] quicksort(double[] S) {
 if (S.length < 2) return S;
 double a = S[rand(S.length)];
 double[] S1,S2,S3;
 cnt = cnt+1;
 finish {
 async { S1 = quicksort(lessThan(S,a));}
 async { S2 = eqTo(S,a);}
 S3 = quicksort(grThan(S,a));
 }
 append(S1,append(S2,S3));
}

????

PPoPP, 2/16/2009 23

Observation 10

   Deterministic parallelism is important for

easily understanding, analyzing and
debugging programs.

   Functional languages

  Race detectors (e.g. cilkscreen)

  Using non-functional languages in a

functional style (is this safe?)
Atomic regions and transactions don’t solve this problem.

PPoPP, 2/16/2009 24

Example: Merging
Merge(nil,l2) = l2
Merge(l1,nil) = l1
Merge(h1::t1, h2::t2) =
 if (h1 < h2) h1::Merge(t1,h2::t2)
 else h2::Merge(h1::t1,t2)

What about in parallel?

PPoPP, 2/16/2009 25

Merging
Merge(A,B) =
let
 Node(AL, m, AR) = A
 (BL ,BR) = split(B, m)
in
 Node(Merge(AL,BL), m, Merge(AR,BR))

m

AL AR
BL

BR

A B

m

Merge(AL ,BL)
Merge(AR ,BR)

Span = O(log2 n)
Work = O(n)

Merge in parallel

PPoPP, 2/16/2009 26

Merging with Futures
Merge(A,B) =
let
 Node(AL, m, AR) = A
 (BL ,BR) = futureSplit(B, m)
in
 Node(Merge(AL,BL), m, Merge(AR,BR))

m

AL AR
BL

BR

A B

m

Merge(AL ,BL)
Merge(AR ,BR)

Span = O(log n)
Work = O(n)

futures

PPoPP, 2/16/2009 27

Observations 11, 12 and 13

   + Divide and conquer even more useful in

parallel than sequentially

   + Trees are better than lists for parallelism

   +’ Pipelining can asymptotically reduce depth,

but can be hard to analyze

PPoPP, 2/16/2009 28

The Observations
General:
1. Natural parallelism is often lost in “low-level” implementations.
2. Lost opportunity not to describe parallelism
3. Just because it seems sequential does not mean it is
Model and Language:
6. Need to take advantage of both “data” and “function” parallelism
7. Abstract cost models that are not machine based are important.
8. Work and span are reasonable measures
9. Many ways to schedule
10. Deterministic parallelism is important
Algorithmic Techniques
4. When in doubt recurse on a smaller problem
5. Transitions can be aggregated
11. Divide and conquer even more useful in parallel
12. Trees are better than lists for parallelism
13. Pipelining is useful, with care

More algorithmic techniques

   + Graph contraction

   + Identifying independent sets

   + Symmetry breaking

   + Pointer jumping

PPoPP, 2/16/2009 29

0

1
3

2

4

5 6

1

1
1

2

6

1 6

1

2

6

PPoPP, 2/16/2009 30

What else
Non-deterministic parallelism:

   Races and race detection

   Sequential consistency, serializability,

linearizability, atomic primitives, locking
techniques, transactions

   Concurrency models, e.g. the pi-calculus

   Lock and wait free algorithms

Architectural issues

   Cache coherence, memory layout, latency hiding

   Network topology, latency vs. throughput

   …

…

Excersise

   Identify the core ideas in Parallelism

   Ideas that will still be useful in 20 years

  Separate into “beginners” and “advanced”

   See how they fit into a curriculum

  Emphasis on simplicity first

  Will depend on existing curriculum

PPoPP, 2/16/2009 31

Possible course content
Biased by our current sequence
o  211: Fundamental data structures and algorithms
o  212: Principles of programming
o  213: Introduction to computer systems
o  251: Great theoretical ideals in computer science

PPoPP, 2/16/2009 32

211: Intro to Data Structures+Algos
Teach deterministic nested parallelism with

work and depth.
o  Introduce race conditions but don’t allow them.
o  General techniques: divide-and-conquer,

contraction, combining, dynamic programming
o  Data structures: stacks, queues, vectors,

balanced trees, matrices, graphs,
o  Algorithms: scan, sorting, merging, medians,

hashing, fft, graph connectivity, MST

PPoPP, 2/16/2009 33

212: Principles of Programming
o  Recursion, structural induction, currying
o  Folding, mapping : emphasis on trees not lists
o  Exceptions, parallel exceptions, and continuations
o  Streams, futures, pipelining
o  State and interaction with parallelism
o  Nondeterminacy and linearizability
o  Simple concurrent structure
o  Or parallelism

PPoPP, 2/16/2009 34

213: Introduction to Systems
o  Representing integers/floats
o  Assembly language and atomic operations
o  Out of order processing
o  Caches, virtual memory, and memory consistency
o  Threads and scheduling
o  Concurrency, synchronization, transactions and

serializability
o  Network programming

PPoPP, 2/16/2009 35

PPoPP, 2/16/2009 36

Acknowledgements
This talk has been based on 30 years of

research on parallelism by 100s of people.
Many ideas from the PRAM (theory) community

and PL community

PPoPP, 2/16/2009 37

Conclusions/Questions
Should we teach parallelism from day 1 and

sequential computing as a special case?
Could teaching parallelism actually make some

things easier?
Are there a reasonably small number of core

ideas that every undergraduate needs to
know? If so, what are they?

