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Abstract
When designing concurrent algorithms, Load-Link/Store-Conditional (LL/SC) is a very useful
primitive since it avoids ABA problems. The full semantics of LL/SC are not supported in hardware
by any modern architecture, so there has been a significant amount of work on simulations of LL/SC
using CAS. However, all previous algorithms that are constant time either use unbounded sequence
numbers (and thus base objects of unbounded size), or require Ω(MP ) space to implement M LL/SC
objects for P processes.

We present the first constant time implementation of LL/SC from bounded-sized CAS objects
using only constant space overhead per LL/SC variable. In particular, our implementation uses
Θ(M +kP 2) space, where k is the number of outstanding LL operations per process, and only requires
pointer-width CAS operations. In most algorithms that use LL/SC, k is a small constant which
reduces our additive space overhead to Θ(P 2). Our algorithm can also be extended to implement L

word LL/SC objects in Θ(L) time for LL and SC, O(1) time for V L, and Θ((M + kP 2)L) space.
To achieve these bounds, our main technical contribution is implementing a new primitive called

Single-Writer Copy which takes a pointer to a word sized memory location and atomically copies its
contents into another object. The restriction is that only one process is allowed to write/copy into
the destination object at a time. The ability to read from one memory location and write to another
atomically, and in constant-time, is very powerful and we believe this primitive will be useful in
designing other algorithms.
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1 Introduction

In lock-free, shared memory programming, it is well known that the choice of atomic primitives
makes a big difference in terms of ease of programmability, efficiency, and even computability.
Most processors today support a set of basic synchronization primitives such as Compare-
and-Swap, Fetch-and-Add, Fetch-and-Store, etc. However, many useful primitives are not
supported, which motivates the need for efficient software implementations of these primitives.
In this work, we present constant time, space-efficient implementations of a widely used
primitive called Load-Link/Store-Conditional (LL/SC) as well as a new primitive we call
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5:2 LL/SC and Atomic Copy

Single-Writer Copy (swcopy). All our implementations use only pointer-width read, write,
and CAS. In particular, restricting ourselves to pointer-width operations means that we
do not use unbounded sequence numbers, which are often used in other LL/SC from CAS
implementations [27, 26, 22]. Many other algorithms based on CAS also use unbounded
sequence numbers (often alongside double-wide CAS) to get around the ABA problem and
this is sometimes called the IBM tag methodology [24, 18]. Our LL/SC implementation can
be used in these algorithms to avoid unbounded sequence numbers and double-wide CAS.

The Single-Writer Atomic Copy (swcopy) primitive allows processes to atomically read
from one memory location and write the result to another. The memory location being read
can be arbitrary, but the location being written to has to be a special Destination object. A
Destination object supports three operations, read, write, and swcopy and it allows any
process to read from it, but only a single process to write or swcopy into it. This primitive
is very useful in announcement array based algorithms because it removes any delay between
reading a value and announcing that value. A recent paper uses this primitive to solve
various problems related to resource management, such as concurrent reference counting, in
constant (expected) time [12].

In this work, we focus on bounded wait-free solutions. Roughly speaking, bounded
wait-freedom ensures that each process makes progress within a bounded number of its own
steps regardless of how it is scheduled. In particular, algorithms satisfying this property do
not suffer from problems such as deadlock, livelock, and priority inversion. All algorithms
presented in this paper take either O(1) or O(L) time (where L is the number of words
spanned by the implemented object), which makes them also bounded wait-free. The
correctness condition we consider is linearizability, which intuitively means that all operations
appear to take effect at a single point.

In our results below, the time complexity of an operation is the number of instructions
that it executes (both local and shared) in a worst-case execution and space complexity
of an object is the number of words that it uses (both local and shared). Counting local
objects/instructions is consistent with previous papers on the topic [5, 26, 22]. There has
been a significant amount of prior work on implementing LL/SC from CAS [6, 27, 20, 22, 26]
and we discuss them in more detail in Section 2.

Result 1 (Load-Link/Store-Conditional): A collection of M LL/SC objects operating on
L-word values shared by P processes, each performing at most k outstanding LL operations,
can be implemented with:
1. Θ(L) time for LL and SC, O(1) time for VL and CL,
2. Θ((M + kP 2)L) space,
3. single word (at least pointer-width) read, write, CAS.

Our algorithm requires knowing k, the maximum number of outstanding LL/SC opera-
tions, and P in advance. In theory, k could be as large as M , but for most data structures
implemented from LL/SC, such as Fetch-And-Increment [14] and various Universal Con-
struction [16, 10, 1], k is at most 2. Assuming w-bits is enough to store a pointer, given
a data structure implemented from w-bit LL/SC objects, Result 1 implies that it can be
implemented from w-bit CAS objects while maintaining the same time complexities and
using only Θ(kP 2) additional space across all instances of the data structure. In contrast,
using previous approaches [5, 6, 20, 27] to implement the w-bit LL/SC objects from w-bit
CAS objects would require Ω(P ) space per LL/SC object.

Our main technical contribution is in implementing a Destination object supporting
read, write and swcopy with the following bounds.
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Result 2 (Single-Writer Copy): A collection of M Destination objects, each storing
single word values, shared by P processes can be implemented with:
1. O(1) worst-case time for read, write, and swcopy,
2. Θ(M + P 2) space,
3. single word (at least pointer-width) read, write, CAS.

To help implement the Destination objects, we implement a weaker version of LL/SC
which allows the LL operation to fail if it is concurrent with a successful SC. Our version
of weak LL/SC is a little different from what was previously studied [5, 20, 27], and we
compare the two in more detail in Section 2. Our algorithm for weak LL/SC uses several
known techniques which we also cover in Section 2.

Result 3 (Weak Load-Link/Store Conditional): A collection of M weak LL/SC objects
operating on L-word values shared by P processes, each performing at most one outstanding
wLL, can be implemented with:
1. Θ(L) time for wLL and SC, O(1) time for VL and CL,
2. Θ((M + P 2)L) space,
3. single word (at least pointer-width) read, write, CAS.

Our implementations of swcopy and LL/SC are closely connected. We begin in Section
4 by implementing a weaker version of LL/SC (Result 3). Then, in Section 5, we use this
weaker LL/SC to implement swcopy (Result 2), and finally, in Section 6, we use swcopy to
implement the full semantics of LL/SC (Result 1). As we shall see, once we have swcopy,
our algorithm for regular LL/SC becomes almost identical to our algorithm for weak LL/SC.

2 Related Work

LL/SC Implementations. We consider three types of implementations, single-word LL/SC
from single-word CAS, multi-word LL/SC from single-word LL/SC, and multi-word LL/SC
from single-word CAS. Existing implementations of each type are summarized in Table 1.
All the algorithm shown in the table are wait-free and have optimal time bounds. Aghazadeh
and Woelfel [4] do not directly implement multi-word LL/SC from single-word LL/SC, but
their single CAS universal construction (Figure 1 of [4]) can be used to achieve the bounds
shown in Table 1.

All previous implementations of single or multi-word LL/SC from CAS have one of three
drawbacks. They either (1) are not constant time [13, 19], (2) use unbounded sequence
numbers [27, 26, 22, 23], or (3) require Ω(MP ) space even in the common case where k is
constant [6, 20, 27].

The simplest way to implement an LL/SC object is to tag a CAS object with an unbounded
sequence number [27]. To avoid using unbounded sequence numbers, various algorithms were
proposed that recycle these tags [27, 6, 20]. However, all these algorithms are only able to
implement single-word LL/SC, and in some of these algorithms (i.e. [6] and Figures 4 and 7
of [27]), the size of the simulated LL/SC object is smaller than the size of the CAS objects
that they use. Furthermore, these algorithms [27, 6, 20] are unable to efficiently implement
a large number of LL/SC objects as they require at least Ω(PM) space.

To efficiently implement a large number of large LL/SC objects, a common technique
is to use a level of indirection combined with some form of memory management. This
means that the simulated LL/SC object stores a pointer to a buffer which contains the
actual value of the LL/SC object. To perform an SC, the process first allocates a new buffer,
initializes it with the desired value, and then tries to change the LL/SC object to point to
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5:4 LL/SC and Atomic Copy

Table 1 Cost of implementing M LL/SC objects from either LL/SC or CAS, where k represents
the maximum number of outstanding LL/SC operations per process, and L is the number of words
in each simulated LL/SC object.

Single-word LL/SC from CAS
Uses Unbounded
Sequence Numbers

Time Space

Anderson and Moir [6], Figure 1 No O(1) O(P 2M)
Moir [27], Figure 4 Yes O(1) O(P + M)
Moir [27], Figure 7 No O(1) O(P 2 + P M)
Jayanti and Petrovic [20] No O(1) O(P M)
Jayanti and Petrovic [23] Yes O(1) O(P 2 + P M)

Multi-word LL/SC from LL/SC Unbounded Seq. # Time Space
Aghazadeh and Woelfel [4] No O(L) O(MP 5L)
Anderson and Moir [5], Figure 2 No O(L) O(P 2ML)
Jayanti and Petrovic [21] No O(L) O(P ML)

Multi-word LL/SC from CAS Unbounded Seq. # Time Space
Michael [26] Yes O(L)1 O((P 2k + M)L)
Jayanti and Petrovic [22] Yes O(L) O((P 2 + M)L + P k)
This Paper No O(L) O((P 2k + M)L)

the new buffer with a CAS. This technique is used in Michael’s algorithm [26], Jayanti and
Petrovic’s algorithm [22], as well as our algorithm. The general idea has also been used to
implement various other objects such as descriptors [7], writable objects [2], and resetable
TAS objects [3]. The main difference between these algorithms is in how they recycle buffers
to ensure bounded space usage.

In Jayanti and Petrovic’s algorithm, they allow LL operations to read from a buffer that
has already been recycled and they provide a mechanism for the LL to detect if this is the
case. Whenever an LL operation reads from a buffer that has already been recycled, their
helping mechanism ensure that the LL operation is sent a consistent value that is safe to
return. A consequence of reusing buffers prematurely is that the ABA problem could occur
when a process tries to update the buffer pointer with a CAS. To prevent this, they tag each
pointer with an unbounded sequence number.

Another approach is to have each LL operation acquire a hazard pointer [25] to the buffer
before accessing it. The buffer will not be recycled as long as there is a hazard pointer to
it. This approach is used by our algorithm, Michael’s algorithm [26], and others [2, 3]. The
main challenge is in acquiring a hazard pointer in constant time, which requires some form of
helping. Michael’s helping technique [26] makes use of unbounded sequence numbers which
seem difficult to recycle because their relative ordering matters. Unlike other algorithms
which require storing both a pointer and an unbounded sequence number in the same word,
Michael’s algorithm stores the sequence number separately. This reduces the likelihood of
wrap around in practice. Aghazadeh, Golab and Woelfel present a clever helping technique
that avoids unbounded sequence numbers using only registers [2]. However, using their
technique to implement M LL/SC objects would require at least MP space. The helping
technique we use is encapsulated by our swcopy algorithm.

1 Amortized expected time
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There has also been some work on algorithms that do not require knowing the number of
processes in advance, for example Jayanti and Petrovic [23] and Doherty et al. [13]. Michael
mentions that his algorithm from [26] can be extended to not require knowing k and P in
advance by using ideas from Section 3.2 of the hazard pointers paper [25]. Our algorithm
can be extended in the same way, but this extension would not maintain our time bounds as
allocating a new hazard pointer takes Θ(P ) time in the worst case.

Weak LL/SC Implementations. A variant of Weak LL/SC was introduced by Anderson
and Moir [5] and also studied elsewhere [20, 27]. The version we consider is less restrictive
than theirs because they require a failed wLL operation to return the process id of the SC
operation that caused it to fail whereas we do not require failed wLL operations to return
anything. While prior work is able to implement the stronger version of wLL, they either
employ stronger primitives like LL/SC [5], use unbounded sequence numbers [27], require
O(MP ) space for M Weak LL/SC objects [5, 20]. To match the bounds stated in Result 3,
we implement our own version of weak LL/SC that is sufficient for our swcopy algorithm.
Conveniently, the majority of our weak LL/SC algorithm from Section 4 can be reused when
implementing full LL/SC in Section 6.

Atomic Copy. A similar primitive called memory-to-memory move was studied in Her-
lihy’s classic wait-free hierarchy paper [15]. The primitive allows atomic reads and writes to
any memory location and supports a move instruction which atomically copies the value
at one memory location into another. Herlihy showed that this primitive has consensus
number infinity. Our swcopy is a little different because it allows arbitrary atomic operations
(e.g. Fetch-and-Add, Compare-and-Swap, Write, etc) on the source memory location as long
as the source objects supports an atomic read. Another difference is that we restrict the
destination of the copy to be single-writer. Herlihy’s proof that memory-to-memory move
has unbounded consensus number would also work with our swcopy primitive. This means
the Destination objects defined in Section 5.1 also have consensus number infinity.

3 Preliminaries

A Compare-and-Swap (CAS) object stores a value that can be accessed through two operations,
read and CAS. The read operation returns the value that is current stored in the CAS object.
The CAS operation takes a new value and an expected value and atomically writes the new
value into the CAS object if the value that is currently there is equal to the expected value.
The CAS operation returns true if the write happens and false otherwise. We say a CAS
operation is successful if it returns true and unsuccessful otherwise.

A Load-Linked/Store-Conditional (LL/SC) object stores a value and supports three
operations: LL, VL (validate-link), and SC. Sometimes a CL (clear-link) operation is also
supported which has no return value. Let O be an LL/SC object. An LL on O simply returns
the current value of O. An SC on O performed by process pi takes a new value and writes
it into O if there has not been a CL on O or a successful SC on O since the last LL on O

by process pi. We say that an SC is successful if it writes a value into O and unsuccessful
otherwise. Successful SC operations return true and unsuccessful ones return false. A VL
operation by process pi returns true if there has not been a CL on O or a successful SC
on O since the last LL on O by process pi. A weak LL/SC object supports wLL, VL, CL
(optional), and SC, and it behaves like an LL/SC object except a wLL on O is allowed to
return empty if the next SC on O by the same process is guaranteed to be unsuccessful. We
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5:6 LL/SC and Atomic Copy

say that a wLL is unsuccessful if it returns empty. Otherwise, we say the wLL is successful.
When a process performs an LL, the LL is considered to be outstanding until the process
performs a CL or an SC on the same object. Similarly, when a process performs a successful
wLL, the wLL is considered to be outstanding until the process performs a CL or an SC on
the same object.

We work in the standard asynchronous shared memory model [8] with P processes
communicating through base objects that are either registers, or CAS objects. Processes
may fail by crashing. All base objects are word-sized and we assume they are large enough
to store pointers into memory. We do not hide any extra bits in pointers.

In our model, an execution (or equivalently, execution history) is an alternating sequence
of configurations and steps C0, e1, C1, e2, C2, . . . , where C0 is an initial configuration. Each
step is a shared operation on a base object. Configuration Ci consists of the values of every
base object, and the state of every process after the step ei is applied to configuration Ci−1.

If configuration C precedes configuration C ′ in an execution, the execution interval from
C to C ′ is the set of all configurations and steps between C and C ′, inclusive. Similarly,
the execution interval of an operation is the set of all configurations and steps from the
first step of that operation to the last step of that operation. The execution interval for an
incomplete operation is the set of all configurations and steps starting from the first step of
that operation.

We say the implementation of an object is linearizable [17] if, for every possible execution
and for each operation on that object in the execution, we can pick a configuration or step in
its execution interval to be its linearization point, such that the operation appears to occur
instantaneously at this point. In other words, all operations on the object must behave as if
they were performed sequentially, ordered by their linearization points. If multiple operations
have the same linearization point, then an ordering must be defined among these operations.

All implementations that we discuss will be bounded wait-free. This means that we can
give an upper bound on how many steps it takes to complete each operation.

4 Weak LL/SC from CAS

As a subroutine, our swcopy operation makes use of multi-word weak LL/SC objects. Recall
from Section 3 that weak LL/SC supports three operations wLL, VL and SC, and works
the same way as regular LL/SC except that wLL is allowed to return empty.

In this section, we present a constant time algorithm for multi-word weak LL/SC which
works when there is at most one outstanding wLL per process. We support a constant time
CL operation which can be used to limit the number of outstanding wLL operations. Our
algorithm assumes that VL, CL, and SC are only performed on an object if the process
has an outstanding wLL on that object. This version is sufficient to implement the other
algorithms in our paper. To implement M Weak LL/SC objects, each spanning L words, our
algorithm takes O((M + P 2)L) space. The proof of correctness for this algorithm can be
found in the full version of the paper [11]. The high level idea is to use a layer of indirection
and use an algorithm similar to Hazard Pointers [25] to get an upper bound on the memory
usage. Many concurrent algorithms use the same high level idea [24, 2, 3].

Each WeakLLSC object is represented using a pointer, buf, to an L-word buffer storing
the current value of the object. A wLL operation simply reads buf and returns the value that
it points to. To perform an SC, the process first allocates a new L-word buffer, writes the
new value in it, and then tries to write the address of this buffer into buf with a CAS. The
expected value of this CAS is the value that the process read from buf during its previous
wLL. The problem with this algorithm is that it uses an unbounded amount of space.
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Our goal is to recycle buffer objects so that we use at most O(M + P 2) of them. We
recycle buffers with a variant of Hazard Pointers that is worst-case constant time rather
than expected constant time. Before accessing a buffer, a wLL operation has to first protect
it by writing its address to an announcement array. To make sure that its announcement
happened “in time”, the wLL operation re-reads buf and makes sure it is the same as what
was announced. If buf has changed, then the wLL operation can return empty because it
must have been concurrent with a successful SC and it can linearize immediately before the
linearization point of the SC. If buf is equal to the announced pointer, then the buffer has
been protected and the wLL operation can safely read from it.

A VL operation by process pi simply checks if buf is equal to the buffer announced by its
previous wLL operation. If so, it returns true, otherwise, it returns false. A CL operation
by process pi simply clears any buffer announced by pi.

For the purpose of the SC operation, each process maintains two lists of buffers: a free
list (flist) and a retired list (rlist). In an SC operation, the process allocates by removing
a buffer from its local free list. If the CAS instruction performed by the SC is successful,
it adds the old value of the CAS to its retired list. Each process’s free list starts off with
2P buffers and we maintain the invariant that the number of buffers in the free list plus the
number of buffers in the retired list always equals 2P . When the free list becomes empty
and the retired list hits 2P buffers, the process moves some buffers from the retired list to
the free list. To decide which buffers are safe to reuse, the process scans the announcement
array (the scan doesn’t have to be atomic) and moves a buffer from the retired list to the
free list if it was not seen in the array. In a later paragraph, we show how this step can be
performed in worst-case O(P ) time. Since the process sees at most P different buffers in
the announcement array during its scan, its free list’s size is guaranteed to be at least P

after this step. A process performs this expensive step at most once every P SC operations
because the process has at least P free buffers after this step.

Pseudo-code is shown in Listing 1. In the pseudo-code, we use A[i].read and A[i].write to
read from and write to the announcement array A. Since each element of the announcement
array is a pointer type, read and write are trivially implemented using the corresponding
atomic instruction. We wrap these instructions in function calls so that the code can be
reused in Section 6. The argument from the previous paragraph also implies that flist cannot
be empty on line 43, so we do not run the risk of dereferencing an invalid pointer on line
44. In the pseudo-code, we use T* to denote a pointer to an object of type T and Value[L]
to denote an array of L word-sized values. If var is a variable, &var is used to denote the
address of that variable.

Initialization. Each WeakLLSC object starts off pointing to a different Buffer object and
each free list is initialized with 2P distinct Buffers. Buffers in the free lists are not pointed
to by any of the WeakLLSC objects and no Buffer appears in two free lists. This property
is maintained as the algorithm executes.

Linear-time set difference. In the pseudo-code, both rlist and reserved represent lists of
buffers. The operation rlist \ reserved on line 57 computes the difference between the two
lists. What makes the original hazard pointers algorithm expected rather than worst-case
constant time is that it uses a hash table to perform this step. Another approach in the
literature is to have each process maintain an array of size B where B is the number of
buffers [2, 3]. The array is used to keep track of the buffers that appear in reserved. Since
B ∈ Θ(M + P 2), having an array per process requires too much space in our case, so instead,
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5:8 LL/SC and Atomic Copy

Listing 1 Amortized constant time implementation of L-word Weak LL/SC from CAS. Code for
process pi is shown.

1 shared variables:
2 Buffer* A[P]; // announcement array

4 local variables:
5 list<Buffer*> flist;
6 list<Buffer*> rlist;
7 // initial size of flist is 2P
8 // rlist is initially empty

10 struct Buffer {
11 // Member Variables
12 Value[L] val;
13 int pid;
14 bool seen;

16 void init(Value[L] initialV) {
17 copy initialV into val
18 pid = -1; seen = 0; } };

20 struct WeakLLSC {
21 // Member Variables
22 Buffer* buf;

24 // Constructor
25 WeakLLSC(Value[L] val) {
26 buf = new Buffer();
27 buf->init(val); } // non-atomic

29 void CL() { A[i].write(NULL); }

30 optional<Value[L]> wLL() {
31 Buffer* tmp = buf;
32 A[i].write(tmp);
33 if(buf == tmp)
34 return tmp->val; //non-atomic
35 else return empty; }

37 bool VL() {
38 Buffer* old = A[i].read();
39 return buf == old; }

41 bool SC(Value[L] newV) {
42 Buffer* old = A[i].read();
43 Buffer* newBuf = flist.remove();
44 newBuf->init(newV);
45 bool b = CAS(&buf, old, newBuf);
46 if(b) retire(old);
47 else flist.add(newBuf);
48 A[i].write(NULL);
49 return b; }

51 void retire(Buffer* old) {
52 rlist.add(old);
53 if(rlist.size() == 2*P) {
54 list<Buffer*> reserved = [];
55 for(int j = 0; j < P; j++)
56 reserved.add(A[j].read());
57 newlyFreed = rlist \ reserved;
58 rlist.remove(newlyFreed);
59 flist.add(newlyFreed); }}};

we borrow space from the buffers to perform the marking step. This is done by adding
enough space for a process id, pid, and a bit, seen, to each Buffer object. To perform the
set difference rlist \ reserved, the process first visits each buffer B in rlist and prepares the
buffer by setting B.pid to its own process id and setting B.seen to false. Then, the process
loops through reserved and for each buffer, it sets seen to true if pid equals its own process
id. Next, the process loops through rlist again and constructs a list of buffers that have
not been seen. This list is the result of the set difference. Finally, the process has to reset
everything by setting B.pid to ⊥ for each B in rlist.

Deamortization. So far, the algorithm we have described takes amortized constant time.
To deamortize it, each process can maintain two sets of retired list and free lists. Each
time the process removes from one free list, it performs a constant amount of work towards
populating the other. This is a commonly used technique for deamortizing garbage collection
cost [9]. A different deamortization approach was developed by Aghazadeh, Golab and
Woelfel [2] in the context of a different problem.
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Space complexity. The algorithm uses P shared space for the announcement array, O(P 2)
local space for all the retired and free lists, and O((M +P 2)L) shared space for all the buffers
and WeakLLSC objects. Therefore, its total space usage is O((M + P 2)L). In addition, it
only uses pointer-width read, write, CAS as atomic operations, so it fulfills the claims in
Result 3.

5 Single-Writer Atomic Copy

The copy primitive, swcopy, can be used to atomically read a value from some source memory
location and write it into a Destination object. Our Destination objects are single-writer
and we allow the source memory location to be modified by any instruction (e.g. write,
fetch-and-add, swap, CAS, etc). The sequential specifications of swcopy and Destination
objects are given below.

I Definition 1. A Destination object supports 3 operations read, write and swcopy with
the following sequential specifications:

read(): returns the current value in the Destination object (initially ⊥).
write(Value v): sets v as the current value of the Destination object.
swcopy(Value* addr): reads the value pointed to by addr and sets it as the current value
of the Destination object.

Processes can perform read operations at any time, but no two write/swcopy operations can
be concurrent.

Destination objects are very useful in announcement array based algorithms where it is
beneficial to read and announce atomically. Section 5.1 describes our implementation and
we prove correctness in Section 5.2.

5.1 Algorithm for Single-Writer Atomic Copy
In this section, we show how to implement Destination objects that support read, write,
and swcopy in O(1) time and O(M + P 2) space (where M is the number of Destination
objects). Our algorithm only requires pointer-width read, write and CAS instructions.

We represent a Destination object D internally using a triplet, D.val, D.ptr, and D.old.
When there is no swcopy in progress, D.val stores the current value of the Destination
object. When there is a copy in progress, D.ptr stores a pointer to the location that is being
copied from. Operations that see a copy in progress will help complete the copy. Finally,
D.old stores the previous value of the Destination object. The variables D.val and D.ptr
are stored together in a multi-word WeakLLSC object (defined in Section 4). This allows us
to read from and write to them atomically as well as prevent any potential ABA problems.
The downside is that the only way to read D.val or D.ptr is through a wLL operation which
can repeatedly fail due to concurrent SC operations. For this reason, we keep D.old in a
separate word, so that the readers can return D.old if they fail too many times on wLL.
Readers will only perform SC operations that change D.ptr from not NULL to NULL.
Therefore, the writer’s wLL will be successful whenever D.ptr is NULL. We will maintain
the invariant that D.ptr is NULL whenever there is no ongoing swcopy. We also ensure
that D.ptr changes exactly twice during each swcopy. The first change writes a valid pointer
and the second change resets it back to NULL.

A swcopy(Value* src) on Destination object D begins by backing up the current value
from D.val into D.old. At this point, D.ptr is guaranteed to be NULL, so the writer can
successfully read D.val with a wLL. The swcopy proceeds by writing src into D.ptr with
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Listing 2 Atomic copy (single-writer). Code for process pi.

1 struct Data {
2 Value val;
3 Value* ptr;};

5 struct Destination {
6 // Member Variables
7 Value old;
8 WeakLLSC<Data> data;
9 // data is initially 〈⊥, NULL〉

11 void swcopy(Value *src) {
12 // This wLL() cannot fail
13 old = data.wLL().val;
14 data.SC(〈⊥, src〉);
15 Value val = *src;
16 optional<Data> d = data.wLL();
17 if(d != empty && d.ptr != NULL)
18 data.SC(〈val,NULL〉);
19 else if(d != empty)
20 data.CL(); }

21 void write(Value new_val) {
22 // This wLL() cannot fail
23 old = data.wLL().val;
24 data.SC(〈new_val, NULL〉); }

26 Value read() {
27 optional<Data> d = data.wLL();
28 if(d == empty) {
29 d = data.wLL();
30 if(d == empty) return old;}
31 if(d.ptr == NULL) {
32 data.CL();
33 return d.val; }
34 Value v = *(d.ptr);
35 if(data.SC(〈v, NULL〉)) return v;
36 d = data.wLL();
37 data.CL();
38 if(d != empty && d.ptr == NULL)
39 return d.val;
40 return old; } };

an SC. Finally, it reads the value v pointed to by src and tries to write (v, NULL) into
(D.val, D.ptr) with an SC. It is not a problem if the SC fails because that means another
process has helped complete the copy.

To read from D, a process begins by trying to read the pair (D.val, D.ptr) with a wLL.
If it fails on this wLL twice, then it is safe to return D.old because the value of D has
been updated at least once during this read. Now we focus on the case where one of the
wLLs succeed and reads (D.val, D.ptr) into local variables (val, ptr). If ptr is NULL, then
val stores the current value, which the read returns. If ptr is not NULL, then there is a
concurrent swcopy operation and the read tries to help by reading the value v referenced by
ptr and writing (v, NULL) into (D.val, D.ptr) with an SC. If the SC is successful, then
the read returns v. Otherwise, the process performs one last wLL. If it is successful and
sees that D.ptr is NULL, then it returns D.val. Otherwise, it is safe to return D.old.

The write operation is the most straightforward to implement. Since each Destination
object only has a single writer, a write operation simply uses a wLL and an SC to store
the new value into D.val. There cannot be any successful SC operations concurrent with
the wLL because the other processes can only succeed on an SC during a swcopy operation.
Therefore, the wLL and SC performed by the write will both always succeed. The write
operations also needs to keep D.old up to date so it updates it before performing the SC.

Pseudo-code is shown in Listing 2. Calls to CL are inserted appropriately so that there
is at most one outstanding wLL per process. By simple inspection of the pseudo-code, we
can verify that each operation takes constant time. To implement M Destination objects, it
uses M WeakLLSC objects, each spanning two words, and O(M) pointer-width read, write,
CAS objects. Using the algorithm from Result 3 to implement the WeakLLSC objects, we
get an overall space usage of O(M + P 2), which satisfies the properties in Result 2.
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5.2 Correctness Proof
We begin by defining the linearization points of write and swcopy. The linearization point
of read is more complicated, so we will defer its definition until later. Each write operation
is linearized on line 24. For swcopy operations, we will prove in Claim 4 that there exists
exactly one SC instruction S during the swcopy that sets data.ptr to NULL and that this
instruction is either executed by line 18 of the swcopy or line 35 of a concurrent read R. If
S is executed by line 18, then the swcopy is linearized when it executes line 15. Otherwise,
the swcopy is linearized on line 34 of R. We show in Claim 5 that this linearization point
is contained in the execution interval of the swcopy. Note that partially complete swcopy
operations without an SC instruction setting data.ptr to NULL are not linearized.

For the purposes of this proof, we will focus on an execution E consisting of operations on
a single Destination object D. For simplicity, we will write data.ptr instead of D.data.ptr
and swcopy instead of D.swcopy. At each configuration C in E, we define the current value
of D to be the value written by the last modifying operation (either a write or a swcopy)
linearized before C. To show that the algorithm in Listing 2 is correct, it suffices to show
that the value returned by each read operation is the value of D at some step during the
read. The read is linearized at that step.

We first prove two useful claims about the structure of the algorithm. Throughout the
proof, it is important to remember that there can only be one write or swcopy operation
active at any time. We say that a pointer is valid if it is not NULL.

B Claim 2. Suppose the SC performed by a read operation is successful, then data.ptr was
valid at all configurations between line 31 of the read and the SC.

Proof. Let R be a read operation with a successful SC operation S on line 35. Let L be
the successful wLL operation corresponding to S. L was either executed on line 27 of R

or line 29 of R. Since S is successful, data.ptr cannot have changed between L and S. If
data.ptr was NULL in this interval, then the if statement on line 31 would have evaluated to
true, and S would not have been executed. Therefore, data.ptr is valid at all configurations
between L and S, which includes all configurations between line 31 of R and S. C

B Claim 3. Suppose the SC on line 18 of a swcopy operation is successful, then data.ptr is
valid at all configurations between line 14 of the swcopy and the SC.

Proof. Let Y be a swcopy operation with a successful SC operation S on line 18. For S

to be executed, the if statement on line 17 must evaluate to true, which means that the
wLL operation L on line 16 must have been successful. Since S is a successful SC, data.ptr
cannot have changed between L and S. Again, due to the if statement on line 17, data.ptr
is valid in this interval.

It remains to show that data.ptr is valid between lines 14 and 16. Suppose for contradic-
tion that data.ptr is NULL in this interval. The only operation that can change data.ptr
to be valid is on line 14 of swcopy, so data.ptr would have remained NULL until the end of
Y . This contradicts the fact that data.ptr is valid between L and S. Therefore data.ptr is
valid at all configurations between line 14 of Y and S. C

The following two claims show that the linearization points of each swcopy operation is
well-defined and lie within its execution interval.

B Claim 4. There is exactly one successful SC instruction during a swcopy Y that sets
data.ptr to NULL and this SC instruction is either from line 18 of Y or line 35 of some
read. Furthermore, this SC instruction is executed after the first SC of Y .
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Proof. Let Yi be the ith swcopy operation in E. The order is well defined because there can
be only one swcopy operation active at a time. We proceed by induction on i, alternating
between two different propositions. Let Pi be the proposition that data.ptr equals NULL at
the start of Yi. Let Qi be the proposition that Claim 4 holds for Yi. P1 acts as our base case
and for the inductive step, we show that Pi implies Qi and that Qi implies Pi+1.

For the base case, we know that data.ptr is initialized to NULL and it can only be
changed to something that is valid by the first SC of a swcopy operation. Therefore, data.ptr
remains NULL until the first swcopy operation.

To show that Pi implies Qi, we use the same argument to argue that data.ptr is NULL
between the first wLL/SC pair performed by Yi. By Claim 2, no SC operation from a read
can succeed between the first wLL/SC pair of Yi. This means the first SC performed by
Yi (on line 14) is guaranteed to succeed and set data.ptr to something valid. Between the
first SC of Yi and the end of Yi, the only two operations that could possibly change Yi are
the SC on line 18 of Yi and line 35 of a read operation. During this interval, if there are no
successful SC operations from line 35, then the SC on line 18 of Yi is guaranteed to execute
and succeed. This shows that there is at least one successful SC from line 18 or line 35
between the first SC and the end of Yi. By Claim 3, the SC on line 18 cannot succeed if
data.ptr is NULL, and similarly for the SC on line 35 (Claim 2). Since the SCs on lines 18
and 35 both set data.ptr to NULL, at most one such SC can succeed between the first SC
of Yi and the end of Yi. Therefore, Pi implies Qi.

All that remains is to show that Qi implies Pi+1. From Qi, we know that data.ptr gets
set to NULL between the first SC of Yi and the end of Yi. It will remain NULL until the
first SC of Yi+1, which means it is NULL at the beginning of Yi+1. C

B Claim 5. The linearization point of each swcopy operation Y lies between the first SC
and the end of Y .

Proof. A swcopy operation Y is either linearized at line 15 of its own operation or line 34 of
a read operation R. Clearly, this lemma holds in the former case, so we focus on the latter.

By Lemma 4, we know that the SC operation S on line 35 of R happens between the first
SC of Y and the end of Y . This means that the successful wLL operation L corresponding to
S must have happened after the first SC of Y and before S. From the code, we can see that
line 34 of R (which is the linearization point of Y ) happens between L and S. By transitivity,
the linearization point of Y happens between the first SC of Y and the end of Y . C

The next claim is useful for arguing that data.ptr is NULL at all configurations during
a write operation and at all configurations between the beginning and the first SC of a
swcopy.

B Claim 6. data.ptr can only be valid between the first SC of a swcopy and the end of the
swcopy.

Proof. data.ptr is initially NULL and the only instruction that sets data.ptr to something
valid is the first SC of a swcopy instruction. By Claim 4, we know that after this SC
instruction and before the end of the swcopy, data.ptr is set back to NULL. Therefore,
data.ptr can only be valid between the first SC of a swcopy and the end of the swcopy.

C

Finally, we prove the main claim.

B Claim 7. If data.ptr is NULL, then data.val stores the current value of D.
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Proof. We will prove this by induction on the execution history E. The fields of D are
initialized so that data.ptr stores NULL and data.val stores the initial value of D. Therefore
this claim holds for the initial configuration. Suppose, for induction, that this claim holds
for some configuration C, we need to show that it holds for the next configuration C ′. If
D.data.ptr is valid in C ′, then the claim is vacuously true, so suppose D.data.ptr is NULL
at C ′. Let S be the step between C and C ′. There are four cases for S; either (1) S is a
successful SC operation from line 18, (2) S is a successful SC operation from 35, (3) S is a
successful SC operation from line 24, or (4) S is not a successful SC on data.

In the first case, S is executed by a swcopy operation Y , which is linearized on line 15 of
Y . The value written into data.val by S is equal to the value of the source location at the
linearization point of Y . There cannot be any swcopy or write operation linearized between
the linearization point of Y and S, so data.val stores the current value of D at C ′.

For the second case, we first show that S is concurrent with a swcopy operation. Due
to the if statement on line 31, S can only be successful if data.ptr is valid. By Claim 6,
data.ptr can only be valid during a swcopy operation, which means that S must occur
during some swcopy operation Y . By Claim 4, we know that Y is linearized on line 34 of
the read operation that executed S. Since there can only be one swcopy or write at a time,
there cannot be any other swcopy or write operation linearized between the linearization
point of Y and S. Since the value written into data.val by S is equal to the value of the
source location at the linearization point of Y , data.val stores the current value of D at C ′.

For case (3), S is the linearization point of a write operation and S writes the value of
that write operation into data.val. This means data.val stores the current value of D at C ′.

Finally, for the fourth case, suppose S is not a successful SC on data. This means the
value of data.val will remain unchanged between C and C ′. By the inductive hypothesis,
data.val stores the current value of D at C, so it suffices to show that there are no write or
swcopy operation linearized at S. By Claims 2 and 3, data.ptr is valid at the linearization
point of a swcopy operation. Since data.ptr is NULL both before and after S, no swcopy
operation can be linearized at S. To show that no write operations can be linearized at
S, it suffices to show that the SC at the linearization point of a write operation is always
successful. Let W be a write operation by process p. The only SC operations on data that
can be concurrent with W are from read operations. By Claim 6, data.ptr is NULL for
the duration of W , and by Claim 2, no SC from a read operation can succeed during W .
Therefore, both the wLL and the SC performed by W are guaranteed to succeed. C

Suppose R is a completed read operation that returns v. As previously noted, to prove
that Listing 2 is a linearizable implementation of a Destination object, it suffices to show
that there exists a step during R such that the value of the Destination object at that step
is equal to v. We linearize R at that step. If there are multiple operations linearized at the
same step, read operations are always linearized last. Note that there cannot be multiple
write or swcopy operations linearized at the same step.

There are five possible return points for a read operation. If R returns on lines 35 or 39,
then on lines 35 or 36 (respectively), we know that data.val equals v and data.ptr equals
NULL. If R returns on line 33, then either on line 27 or line 29, data.val equals v and
data.ptr equals NULL. By Claim 7, data.val stores the current value of the Destination
object whenever data.ptr is NULL, so for these three return points there exists a step during
R such that v is the current value.

Now suppose R returns on lines 30 or 40 (i.e. the case where R reads and returns the
value in D.old). There must have been two successful SCs, S1 and S2, on D.data during R.
In the case where R returns on line 30, these two successful SC operations occurred during
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the wLLs on lines 27 and 29. In the case where R returns on line 40, S1 was the one that
caused the SC on line 35 to fail and S2 occurred during the wLL on line 36. By Claims 2
and 3, there cannot be two successful SCs from lines 18 or 35 in a row without a successful
SC from line 14 of swcopy or line 24 of write in between. Therefore, there must have been
a successful SC either from line 14 of swcopy or line 24 of write during R. We’ll use S

to denote this SC operation. In both cases, the line immediately before S updates D.old
by first performing a wLL on data. By Claim 6, data.ptr equals NULL during this wLL
operation and since the only SC operations that could potentially cause it to fail are by read
operations, by Claim 2, this wLL is guaranteed to succeed. By Claim 7, data.val stores the
current value v′ at the time of this wLL operation. This value gets written into old, so old
stores the current value immediately after this step. Since there is only a single write or
swcopy at a time, old still contains the current value immediately before S. R reads and
returns the value of old at its last step so there are two cases. Either R reads v′ from old
or it reads something newer. If R reads v′, then it returns the current value of D at the
step immediately before S (which happens during R). If R reads something newer, then old
must have been updated between S and the end of R. This can only happen on line 13 or on
line 23, and we’ve already argued that old stores the current value of D on these two lines.
Therefore, in either case, R returns a value that was the current value of D at some point
during R.

6 LL/SC from CAS

Now we have all the tools to implement LL/SC from CAS (Result 1). In this section, we
present an algorithm that works whenever there is at most one outstanding LL per process.
In the full version of this paper [11], we show how to generalize this to support k outstanding
LLs per process.

This algorithm is almost identical to our algorithm for weak LL/SC from CAS (Section
4). To ensure that the LL operation always succeeds, we use swcopy to atomically read and
announce the current buffer (lines 31 and 32 of Listing 1). This means that the announcement
array needs to be an array of Destination objects (from Section 5.1) rather than raw pointers.
Other than that, the algorithm remains the same. Note that Destination objects internally
use Weak LL/SC objects, which in turn use an announcement array. The announcement
array used by the Weak LL/SC objects is different from the one used by the LL/SC objects.
Listing 3 shows just the difference between this algorithm and the weak LL/SC algorithm
from Listing 1.

This algorithm uses O((M + P 2)L) pointer-width read, write, CAS objects just like in
Listing 1, but it also uses P Destination objects for the announcement array. From Result
2, we know that P Destination objects can be implemented in constant time and O(P 2)
space, so this algorithm achieves the bounds in Result 1.

6.1 LL/SC Correctness Proof (outline)
In the proof of correctness for our WeakLLSC algorithm, the key property is that at the
linearization point of a successful wLL operation on a WeakLLSC object X by process pi,
both A[i] and X.buf point to the same buffer. We linearize our LL operation from Listing 3
so that the same property holds. At the linearization point of the swcopy operation on line
7, A[i] and buf are equal, so we linearize the LL at this point. SC and VL operations are
linearized just as they were in the WeakLLSC algorithm. In the full version of the paper,
we describe how to adapt our WeakLLSC proof to work for this algorithm.
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Listing 3 Amortized constant time implementation of L-word LL/SC from CAS. Code for process
pi is shown. The algorithm is exactly the same as Listing 1 except for the parts that are shown.
Note that the type of the announcement array has changed, so the way we read from and write to
the announcement array is also different.

1 Destination<Buffer*> A[P];

3 struct LLSC {
4 Buffer* buf;
5 ...
6 Value[L] LL() {
7 A[i].swcopy(&buf);
8 Buffer* tmp = A[i].read();
9 return tmp->val; }

10 };

7 Conclusion and Discussion

We introduced a new primitive called swcopy and described how to implement it efficiently.
We used this primitive to implement constant time LL/SC from CAS in a way that is both
space efficient and avoids the use of unbounded sequence numbers. We believe the swcopy
primitive can simplify the design of many other concurrent algorithms and make reasoning
about them more modular.

We restricted the Destination objects in Section 5 to be single-writer because it was
sufficient for the use cases we considered. It’s possible to generalize this interface to support
writes and copy operations that are concurrent with each other. However, it is unclear what
the desired behavior should be in this case. One option would be to give atomic copy “store”
semantics where the value of the Destination object is determined by the last write or copy
to that location. Another option would be to give atomic copy “CAS” semantics where the
copy is only successful if the Destination object stores the expected value. The right choice
of definition will likely depend on the potential application.

Another interesting extension of the atomic copy primitive is to have it apply a function
on the value being copied before writing it into the destination. This is similar to a
Read-Modify-Write instruction except the read and the write are on two different memory
locations.

Composing our LL/SC from CAS algorithm with Jayanti and Petrovic’s multi-word
LL/SC from single-word LL/SC algorithm [21] yields an implementation of multi-word
LL/SC from CAS that uses Θ(P 2k + PML) space. This space complexity is sometimes
better than the space complexity of our algorithm. In particular, If k = M = O(1) and
L = Θ(P ), then the combined algorithm uses only Θ(P 2) space whereas our algorithm uses
Θ(P 3) space.
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