
IBM Watson, Nov. 2008 1

Parallel Scheduling
Theory and Practice

Guy Blelloch
Carnegie Mellon University

IBM Watson, Nov. 2008 2

Parallel Languages
User Scheduled

MPI, Pthreads (typical usage)

System Scheduled
Bulk synchronous (data parallel, SPMD)

HPF, ZPL, OpenMP, UPC, CUDA

General (dynamic)
ID, Nesl, Cilk, X10, Fortress

The “general” languages will surely dominate parallel
programming in the future.

IBM Watson, Nov. 2008 3

Example: Quicksort
procedure QUICKSORT(S):

if S contains at most one element then return S
else
begin

choose an element a randomly from S;
let S1, S2 and S3 be the sequences of

elements in S less than, equal to,
and greater than a, respectively;

return (QUICKSORT(S1) followed by S2

followed by QUICKSORT(S3))
end

IBM Watson, Nov. 2008 4

Parallelism

Span = O(lg2 n)

Parallel Partition and Append

Work = O(n log n)

IBM Watson, Nov. 2008 5

Quicksort in NESL
function quicksort(S) =
if (#S <= 1) then S
else let

a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];

IBM Watson, Nov. 2008 6

Quicksort in X10
double[] quicksort(double[] S) {

if (S.length < 2) return S;
double a = S[rand(S.length)];
double[] S1,S2,S3;
finish {

async { S1 = quicksort(lessThan(S,a));}
async { S2 = eqTo(S,a);}
S3 = quicksort(grThan(S,a));

}
append(S1,append(S2,S3));

}

IBM Watson, Nov. 2008 7

Quicksort in Multilisp (futures)
(defun quicksort (L) (qs L nil))

(defun qs (L rest)
(if (null L) rest

(let ((a (car L))
(L1 (filter (lambda (b) (< b a)) (cdr L)))
(L3 (filter (lambda (b) (>= b a)) (cdr L))))

(qs L1 (future (cons a (qs L3 rest)))))))

(defun filter (f L)
(if (null L) nil

(if (f (car L))
(future (cons (car L) (filter f (cdr L))
(filter f (cdr L))))

IBM Watson, Nov. 2008 8

Quicksort in Multilisp (futures)

Span = O(n)

Work = O(n log n)

IBM Watson, Nov. 2008 9

Example: Matrix Multiply
for each i in [0:n]
for each j in [0:n]

C[i,j] = ∑k=1
n A[i,k] x B[k,j]

IBM Watson, Nov. 2008 10

Example: N-body Tree Code
force(p,c)
if far(p,c) then pointForce(p,center(c))
else force(p,left(c)) + force(p,right(c))

allForces(P,c)
foreach p in P, force(p, root)

IBM Watson, Nov. 2008 11

Generally
Much more parallelism than processors
It is all about scheduling

space usage
locality
overheads

IBM Watson, Nov. 2008 12

Sidebar: Types of Computation
Assume a way to fork

Pairwise or multiway
What types of synchronization are allowed

General
Strict and fully strict (fork-join)
Futures
Clocks

The last three can be made deterministic
Can have a large effect on the scheduler and what
can be proved about the schedules.

IBM Watson, Nov. 2008 13

General

Locks
Transactions
Synch variables

Easy to create
deadlock

Hard to schedule

lock(x)
unlock(x)

lock(x)
unlock(x)
set(y)

wait(y)

IBM Watson, Nov. 2008 14

Strict and Fully Strict
Fully strict (fork-join, nested parallel): a task can only

synchronize with its parent
Strict: a task can only synchronize with an ancestor.

(X10 recently extended to support strict computations)

fully strict strict

IBM Watson, Nov. 2008 15

Futures
Futures or read-write synchronization

variables can be used for pipelining
of various forms, e.g. producer
consumer pipelines. This
cannot be supported in strict or
fully strict computations.

If read always occurs “after” the write
in sequential order then there is no
deadlock

IBM Watson, Nov. 2008 16

Clocks
Clocks generalize barrier synchronizations.
A new idea in X10 and not well understood yet

when multiple clocks are used.

red clock created

black clock created
Not registered

barrier

IBM Watson, Nov. 2008 17

Scheduling Outline
Theoretical results on scheduling

Graham, 1966
Eager, Zahorjan, Lazowska, 1989
Specific schedules

Breadth First
Work Stealing (Blumofe, Leiserson, 1993)
P-DFS (Blelloch, Gibbons, Matias, 1995)
Hybrid (Narlikar, 2001)

IBM Watson, Nov. 2008 18

Graham
“Bounds on Certain Multiprocessor Anomilies”, 1966
Model:

Processing Units : Pi , 1 ≤ i ≤ n
Tasks : T = {Ti , … , Tm}
Partial order : <T on T
Time function : μ : T -> [0,∞]

(T, <T , μ) : define a weighted DAG

IBM Watson, Nov. 2008 19

Graham: List Scheduling
Task List L : (Tk1 , … , Tkm)
Task is ready when not yet started but all
predecessors are finished
List scheduling : when a processor finishes a task
it immediately takes the first ready task from L. Ties
broken by processor ID.
Showed that for any L and L’

n
n

LT
LT 11

)'(
)(−

+=

IBM Watson, Nov. 2008 20

Some definitions
Tp : time on P processors
W : single processor time
D : longest path in the DAG

Lower bound on time : Tp ≥ max(W/P, D)

IBM Watson, Nov. 2008 21

Greedy Schedules
“Speedup versus Efficiency in Parallel Systems”,

Eager, Zahorjan and Lazowska, 1989

For any greedy schedule:

Efficiency =

Parallel Time =

)1(−+
≥

PDW
PW

T
W

P

D
P
WTP +≤

IBM Watson, Nov. 2008 22

Breadth First Schedules
Most naïve schedule. Used by most

implementations of P-threads.

O(n3) tasks

Bad space usage, bad locality

IBM Watson, Nov. 2008 23

Work Stealing

push new jobs on “new” end
pop jobs from “new” end
If processor runs out of work, then “steal” from
another “old” end

Each processor tends to execute a sequential part of
the computation.

P1 P2 P3 P4
old

new
Local
work queues

IBM Watson, Nov. 2008 24

Work Stealing
Tends to schedule “sequential blocks” of tasks

= steal

IBM Watson, Nov. 2008 25

Work Stealing Theory
For strict computations
Blumofe and Leiserson, 1999

of steals = O(PD)
Space = O(PS1) S1 is the sequential space

Acar, Blelloch and Blumofe, 2003
of cache misses on distributed caches

M1+ O(CPD)
M1 = sequential misses, C = cache size

IBM Watson, Nov. 2008 26

Work Stealing Practice
Used in Cilk Scheduler

Small overheads because common case of
pushing/popping from local queue can be
made fast (with good data structures and
compiler help).
No contention on a global queue
Has good distributed cache behavior
Can indeed require O(S1P) memory

Used in X10 scheduler, and others

IBM Watson, Nov. 2008 27

Parallel Depth First Schedules (P-DFS)
List scheduling based on Depth-First ordering

1

2

3 4

5

6

7 8

9

10

1
2, 6
3, 4
5, 7
8
9
10

2 processor
schedule

For strict computations a shared stack
implements a P-DFS

IBM Watson, Nov. 2008 28

“Premature task” in P-DFS
A running task is premature if there is an earlier

sequential task that is not complete

1

2

3 4

5

6

7 8

9

10

1
2, 6
3, 4
5, 7
8
9
10

2 processor
schedule1

2

3 4

5

6

7 8

9

10

= premature

IBM Watson, Nov. 2008 29

P-DFS Theory
Blelloch, Gibbons, Matias, 1999
For any computation:

Premature nodes at any time = O(PD)
Space = S1 + O(PD)

Blelloch and Gibbons, 2004
With a shared cache of size C1 + O(PD) we
have Mp = M1

IBM Watson, Nov. 2008 30

P-DFS Practice
Experimentally uses less memory than work
stealing and performs better on a shared
cache.
Requires some “coarsening” to reduce
overheads

IBM Watson, Nov. 2008 31

P-DFS Practice

IBM Watson, Nov. 2008 32

Hybrid Scheduling
Can mix Work Stealing and P-DFS
Narlikar, 2002

Priority order

P1

P2

P3

X

P4
X

Gives a way to do automatic coarsening while still getting
space benefits of PDF
Also allows suspending a whole Q

IBM Watson, Nov. 2008 33

Other Scheduling
Various other techniques, but not much theory
e.g.

Locality guided work stealing
Affinity guided self-scheduling

Many techniques are for particular form of
parallelism

IBM Watson, Nov. 2008 34

Where to Now
X10 introduces many interesting new problems in

scheduling
Places
Asynchronous statements at other places
Futures (allows blocking of local activities)
Clocks – generalization of bulk synchronous model
Atomic sections
Conditional atomic sections
Exceptions

Clean design of X10 makes these issues reasonable

IBM Watson, Nov. 2008 35

Places

Some issues:
Could be many more places than nodes
Can you steal from another place?
Do places on the same node share the task queues?
Can one show any interesting theoretical properties

Place 1

P1 P2 P3 P4

Place 2

P5 P6 P7 P8

IBM Watson, Nov. 2008 36

Suspension
In X10 suspension can be caused by atomic, futures,

when and by clocks. None of these are present in Cilk.

NOT WELL STUDIED. e.g.
When you wake up a suspension, where does it go?
When you suspend, do you continue on your own queue?

P1 P2 P3 P4
old

new
Local
work queues

IBM Watson, Nov. 2008 37

Conclusions
1. Parallel computing is all about scheduling.
2. Theory matches practice reasonably well
3. Many open questions in both theory and

practice
4. Even existing results in scheduling are not

widely understood

