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Parallel Languages
User Scheduled

MPI, Pthreads (typical usage)

System Scheduled
Bulk synchronous (data parallel, SPMD)

HPF, ZPL, OpenMP, UPC, CUDA

General (dynamic)
ID, Nesl, Cilk, X10, Fortress

The “general” languages will surely dominate parallel 
programming in the future.
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Example: Quicksort
procedure QUICKSORT(S):

if S contains at most one element then return S
else
begin

choose an element a randomly from S;
let S1, S2 and S3 be the sequences of

elements in S less than, equal to, 
and greater than a, respectively;

return (QUICKSORT(S1) followed by S2

followed by QUICKSORT(S3))
end
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Parallelism

Span = O(lg2 n)

Parallel Partition and Append

Work = O(n log n)
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Quicksort in NESL
function quicksort(S) =
if (#S <= 1) then S
else let

a = S[rand(#S)];
S1 = {e in S | e < a};
S2 = {e in S | e = a};
S3 = {e in S | e > a};
R = {quicksort(v) : v in [S1, S3]};

in R[0] ++ S2 ++ R[1];
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Quicksort in X10
double[] quicksort(double[] S) { 

if (S.length < 2) return S;
double a = S[rand(S.length)];
double[] S1,S2,S3;
finish {

async { S1 = quicksort(lessThan(S,a));}
async { S2 = eqTo(S,a);}
S3 = quicksort(grThan(S,a));

}
append(S1,append(S2,S3));

}
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Quicksort in Multilisp (futures)
(defun quicksort (L) (qs L nil))

(defun qs (L rest)
(if (null L) rest

(let ((a (car L))
(L1 (filter (lambda (b) (< b a)) (cdr L)))
(L3 (filter (lambda (b) (>= b a)) (cdr L)))) 

(qs L1 (future (cons a (qs L3 rest)))))))

(defun filter (f L)
(if (null L) nil

(if (f (car L))
(future (cons (car L) (filter f (cdr L))
(filter f (cdr L))))
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Quicksort in Multilisp (futures)

Span = O(n)

Work = O(n log n)
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Example: Matrix Multiply
for each i in [0:n]
for each j in [0:n]

C[i,j] = ∑k=1
n A[i,k] x B[k,j]
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Example: N-body Tree Code
force(p,c)
if far(p,c) then pointForce(p,center(c))
else force(p,left(c)) + force(p,right(c))

allForces(P,c)
foreach p in P, force(p, root)
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Generally
Much more parallelism than processors
It is all about scheduling

space usage
locality
overheads
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Sidebar: Types of Computation
Assume a way to fork 

Pairwise or multiway
What types of synchronization are allowed

General
Strict and fully strict (fork-join)
Futures
Clocks

The last three can be made deterministic
Can have a large effect on the scheduler and what 
can be proved about the schedules.
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General

Locks
Transactions
Synch variables

Easy to create 
deadlock

Hard to schedule

lock(x)
unlock(x)

lock(x)
unlock(x)
set(y)

wait(y)
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Strict and Fully Strict
Fully strict (fork-join, nested parallel): a task can only 

synchronize with its parent
Strict: a task can only synchronize with an ancestor.   

(X10 recently extended to support strict computations)

fully strict strict
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Futures
Futures or read-write synchronization 

variables can be used for pipelining 
of various forms, e.g. producer 
consumer pipelines.   This 
cannot be supported in strict or 
fully strict computations.

If read always occurs “after” the write 
in sequential order then there is no 
deadlock
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Clocks
Clocks generalize barrier synchronizations.
A new idea in X10 and not well understood yet 

when multiple clocks are used.

red clock created

black clock created
Not registered

barrier
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Scheduling Outline
Theoretical results on scheduling

Graham, 1966
Eager, Zahorjan, Lazowska, 1989
Specific schedules

Breadth First
Work Stealing (Blumofe, Leiserson, 1993)
P-DFS (Blelloch, Gibbons, Matias, 1995)
Hybrid (Narlikar, 2001) 
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Graham
“Bounds on Certain Multiprocessor Anomilies”, 1966
Model:

Processing Units : Pi , 1 ≤ i ≤ n
Tasks : T = {Ti , … , Tm}
Partial order : <T on T
Time function : μ : T -> [0,∞]

(T, <T , μ) : define a weighted DAG 
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Graham: List Scheduling
Task List L : (Tk1 , … , Tkm)
Task is ready when not yet started but all 
predecessors are finished
List scheduling : when a processor finishes a task 
it immediately takes the first ready task from L.  Ties 
broken by processor ID.
Showed that for any L and L’
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Some definitions
Tp : time on P processors
W : single processor time
D : longest path in the DAG

Lower bound on time : Tp ≥ max(W/P, D) 
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Greedy Schedules
“Speedup versus Efficiency in Parallel Systems”, 

Eager, Zahorjan and Lazowska, 1989

For any greedy schedule:

Efficiency =
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Breadth First Schedules
Most naïve schedule.   Used by most 

implementations of P-threads.

O(n3) tasks

Bad space usage, bad locality
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Work Stealing 

push new jobs on “new” end
pop jobs from “new” end
If processor runs out of work, then “steal” from 
another “old” end 

Each processor tends to execute a sequential part of 
the computation.

P1 P2 P3 P4
old

new
Local
work queues
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Work Stealing
Tends to schedule “sequential blocks” of tasks

= steal
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Work Stealing Theory
For strict computations 
Blumofe and Leiserson, 1999

# of steals = O(PD)
Space = O(PS1)      S1 is the sequential space

Acar, Blelloch and Blumofe, 2003
# of cache misses on distributed caches

M1+ O(CPD)   
M1 = sequential misses, C = cache size
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Work Stealing Practice
Used in Cilk Scheduler

Small overheads because common case of 
pushing/popping from local queue can be 
made fast (with good data structures and 
compiler help).
No contention on a global queue
Has good distributed cache behavior
Can indeed require O(S1P) memory

Used in X10 scheduler, and others
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Parallel Depth First Schedules (P-DFS)
List scheduling based on Depth-First ordering
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For strict computations a shared stack
implements a P-DFS
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“Premature task” in P-DFS
A running task is premature if there is an earlier 

sequential task that is not complete
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P-DFS Theory
Blelloch, Gibbons, Matias, 1999
For any computation:

Premature nodes at any time = O(PD)
Space = S1 + O(PD)

Blelloch and Gibbons, 2004
With a shared cache of size C1 + O(PD) we 
have Mp = M1
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P-DFS Practice
Experimentally uses less memory than work 
stealing and performs better on a shared 
cache.
Requires some “coarsening” to reduce 
overheads
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P-DFS Practice
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Hybrid Scheduling
Can mix Work Stealing and P-DFS
Narlikar, 2002

Priority order

P1

P2

P3

X

P4
X

Gives a way to do automatic coarsening while still getting
space benefits of PDF
Also allows suspending a whole Q
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Other Scheduling
Various other techniques, but not much theory
e.g. 

Locality guided work stealing
Affinity guided self-scheduling

Many techniques are for particular form of 
parallelism
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Where to Now
X10 introduces many interesting new problems in 

scheduling
Places  
Asynchronous statements at other places
Futures (allows blocking of local activities)
Clocks – generalization of bulk synchronous model
Atomic sections
Conditional atomic sections
Exceptions

Clean design of X10 makes these issues reasonable
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Places

Some issues:
Could be many more places than nodes
Can you steal from another place?
Do places on the same node share the task queues?
Can one show any interesting theoretical properties

Place 1

P1 P2 P3 P4

Place 2

P5 P6 P7 P8
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Suspension
In X10 suspension can be caused by atomic, futures,

when and by clocks.  None of these are present in Cilk.

NOT WELL STUDIED. e.g.
When you wake up a suspension, where does it go?
When you suspend, do you continue on your own queue?

P1 P2 P3 P4
old

new
Local
work queues
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Conclusions
1. Parallel computing is all about scheduling.
2. Theory matches practice reasonably well
3. Many open questions in both theory and 

practice
4. Even existing results in scheduling are not 

widely understood


