JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 21, 4-14 (1994)

Implementation of a Portable Nested Data-Parallel Language™:t

Guy E. BLELLOCH,$'§9 JoNATHAN C. HARDWICK,T JAY SIPELSTEIN,i MARCO ZAGHA,i
AND SIDDHARTHA CHATTERJEE]|

tSchool of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; and |RIACS, Muil Stop T045-1, NASA Ames
Research Center, Moffett Field, California 94035

This paper gives an overview of the implementation of NEgsL, a
portable nested data-parallel language. This language and its im-
plementation are the first to fully support nested data structures as
well as nested data-parallel function calls. These features allow
the concise description of parallel algorithms on irregular data,
such as sparse matrices and graphs. In addition, they maintain
the advantages of data-parallel languages: a simple programming
model and portability. The current NesL implementation is based
on an intermediate language called Vcopk and a library of vector
routines called Cvi. It runs on the Connection Machines CM-2
and CM-5, the Cray Y-MP C90, and serial workstations. We
compare initial benchmark results of NesL with those of machine-
specific code on these machines for three algorithms: least-squares
line-fitting, median finding, and a sparse-matrix vector product.
These results show that NesL’s performance is competitive with
that of machine-specific codes for regular dense data, and is often
superior for irregular data. © 1994 Academic Press, Inc.

1. INTRODUCTION

The high cost of rewriting parallel code has resulted in
significant effort directed toward developing high-level
languages that are efficiently portable among parallel and
vector supercomputers. A common approach has been to

* This research was sponsored by the Avionics Laboratory, Wright
Research and Development Center, Aeronautical Systems Division
(AFSC), U.S. Air Force, Wright—Patterson AFB, Ohio 45433-6543 un-
der Contract F33615-90-C-1465, ARPA Order 7597. Cray Y-MP C90
and Connection Machine CM-2 time was provided by the Pittsburgh
Supercomputing Center (Grant ASC890018P). Connection Machine
CM-5 time was provided by the National Center for Supercomputing
Applications (Grant TRA930102N). The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or im-
plied, of the U.S. government.

t A preliminary version of this paper appeared in the Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Diego, California, May 1993.

§ Partially supported by a Finmeccanica chair and an NSF Young
Investigator award.

9 To whom correspondence should be addressed at School of Com-
puter Science, Carnegie Mellon University, 5000 Forbes Avenue, Pitts-
burgh, Pennsylvania 15213. E-mail address: blelloch@cs.cmu.edu.

0743-7315/94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

add data-parallel operations to existing languages, as ex-
emplified by the High Performance Fortran (HPF) effort
[28] and various extensions to C (such as C* [40, 39], UC
[5], and C** [33]). Such data-parallel extensions offer
fine-grained parallelism and a simple programming
model, while permitting efficient implementation on
SIMD, MIMD, and vector machines. On the other hand,
it is generally agreed that although these language exten-
sions are well suited for computations on dense matrices
or regular meshes, they are not as well suited for algo-
rithms that operate on irregular structures, such as un-
structured sparse matrices, graphs, or trees [24]. Lan-
guages with control-parallel constructs are often better
suited for such problems, but unfortunately these con-
structs do not port well to vector machines, SIMD ma-
chines, or MIMD machines with vector processors.

Nested data-parallel languages [8] combine aspects of
both data-parallel and control-parallel languages. Nested
data-parallel languages provide hierarchical data struc-
tures in which elements of an aggregate data structure
may themselves be aggregates, and support the parallel
application of parallel functions to multiple sets of data.
For example, a sparse array can be represented as a se-
quence of rows, each of which is a subsequence contain-
ing the nonzero elements in that row (each subsequence
may be a different length). A parallel function that sums
the elements of a sequence can be applied in parallel to
sum each row of this sparse matrix. Because the calls are
to the same parallel function, a technique called flatten-
ing nested parallelism [14] allows a compiler to convert
them into a form that runs efficiently on vector and SIMD
machines. Nested data-parallel languages therefore, in
theory, maintain the advantages of data-parallel lan-
guages (fine-grained parallelism, a simple programming
model, and portability) while being better suited for de-
scribing algorithms on irregular data structures. Their effi-
cient implementation, however, has not previously been
demonstrated.

As part of the Carnegie Melion SCAL project, we have
completed a first implementation of a nested data-parallel
language called NEsL. This implementation is based on
an intermediate language called VcobE and a library of
vector routines called CvL. The implementation runs on

IMPLEMENTATION OF NESL 5

0.059

Alpha C90 CM-2CM-S
Sparse MxV

Alpha C90 CM-2CM-§
Median

Alpha C90 CM-2CM-§
Linefit

FIG. 1. Performance summary for the three benchmarks. The num-
bers given are the relative performance of NEsL and native code ver-
sions of the benchmark (smaller numbers are therefore better) on large
data sets. Full performance results are given in Section §.

the Connection Machines CM-2 and CM-5, the Cray C90,
and serial workstations. (We are currently working on a
version for clusters of workstations.) In this paper we
describe the language and its implementation, provide
benchmark numbers, and analyze the benchmark results.
These results demonstrate that it is possible to get both
efficiency and portability on a variety of parallel ma-
chines with a nested data-parallel language.

The three benchmarks described in this paper are a
least-squares line-fitting algorithm, a median-finding algo-
rithm, and a sparse-matrix vector product. Figure 1 sum-
marizes the benchmark timings. For each machine we
give direct comparisons to well-written native code com-
piled with full optimization. All the NEsL benchmark
times given in this paper use the interpreted version of
our intermediate language (as discussed in Section 5, a
compiled version is likely to be significantly faster). The
line-fitting benchmark measures the interpretive over-
head in our implementation: it contains no nested paral-
lelism and therefore the vectorizing FORTRAN 77 and CM
Fortran compilers generate near-optimal code. The me-
dian-finding results show the benefit of NESL’s dynamic
memory allocation and dynamic load balancing on the
Connection Machines. Finally, the sparse-matrix
benchmark demonstrates the efficiency of NEsL’s nested
parallel functions on the Cray C90.

The paper is organized as follows: Section 2 describes
NEsL and illustrates how nested parallelism can be ap-
plied to some simple algorithms on sparse matrices. (A
description of how NESL can be used for a wide variety of
algorithms, including computing the minimum spanning
tree of sparse graphs, searching for patterns in strings,
and finding the convex hull of a set of points, is given
elsewhere [13].) Section 3 outlines the different compo-
nents of the current NESL implementation. Section 4 de-
scribes our benchmarks and Section 5 discusses the run-
ning times of the benchmarks.

2. Nes. AND NESTED PARALLELISM

NEsL is a high-level language designed to allow simple
and concise descriptions of nested data-paraliel programs

[9]. It is strongly typed and applicative (free of side ef-
fects). Sequences are the primitive data type and the lan-
guage provides a large set of built-in sequence operations
having efficient parallel implementations. Nested paral-
lelism is achieved through the ability to apply functions in
parallel to each element of a sequence. NEsL’s apply-to-
each form is specified using a set-like notation similar to
set-formers in SETL [42]. For example, the NESL expres-
sion
{negate(a): a in [3,-4,-9,5] | a < 4}

is read as ‘‘in parallel, for each a in the sequence [3,
—4, —9, 5] such that ais less than 4, negate a”’. The
expression returns [—3, 4, 9]. Parallelism is available
both in the evaluation of the expression to the left of the
colon (:) and in the subselection to the right of the pipe
(]). This parallel subselection can be implemented with
packing techniques [6]. NESL also supplies a set of paral-
le] functions that operate on sequences as a whole. Fig-
ure 2 lists several of these functions; a full list can be
found in the NEsSL manual [9]. These are similar to opera-
tions found in other data-parallel languages.

NESL supports nested parallelism by allowing se-
quences as elements of a sequence and by permitting the
parallel sequence functions to be used in the apply-to-
each construct. For example, a sparse matrix can be rep-
resented as a sequence of rows, each of which is a se-
quence of (column-number, value) pairs. The matrix

20 —-1.0
m=1]-1.0 20 -1.0
-1.0 2.0
is represented with this technique as
m= [[(0, 2.0), (1, -1.0)],
[0, =1.0), (1, 2.0), (2, -1,0)],
[(1, -1.0), (2, 2.0)]].

This representation can be used for matrices with arbi-
trary patterns of nonzero elements. Figure 3 shows ex-
amples of some useful operations on matrices. In these
operations there is parallelism both within each row and
across the rows. The available parallelism is therefore

Operation | Description

#a Lé‘héi}i‘ﬂf sequence a T T
alil 1" element of sequence a.

sum(a) Sum of sequence a.

Parallel prefix with addition.

Permute elements of sequence a 1o positions given in sequence i.
Get values from sequence a based on indices in sequence i.
Append sequences a and b.

plus_scan(a)
permute{a,i)
get(a,i)

a ++ b

FIG. 2. Seven of NEsL's sequence functions.

6 BLELLOCH ET AL.

Sum values in each row:

{sum{{v : {(i,v) in row)}): row in m};

Delete elements less than eps:
{{(i,v) in row | v >= eps}: row in m};

Append a column j of all 1's:

{[(j,1.0)] ++ row : row in m};

Permute the rows to new positions p:
permute (m,p);

FIG. 3. Some simple operations on sparse matrices. Note that the
last operation permutes whole rows.

proportional to the total number of nonzero elements,
rather than the number of rows (outer parallelism) or
average row size (inner parallelism). Graphs can be rep-
resented analogously, using subsequences to store adja-
cency lists.

Nested parallelism is also very useful in divide-and-
conquer algorithms. As an example, consider a parallel
quicksort algorithm (Fig. 4). The three assignments for
les, eql, and grt select the elements less than, equal
to, and greater than the pivot, respectively. The expres-
sion
{gsort(v):v in [les, grt]}
puts the sequences les and grt together into a nested
sequence and applies gsort in parallel to the two ele-
ments of this sequence. The result is a sequence with two
sorted subsequences. The concatenation function ++ is
then used to append the three sequences. In this algo-
rithm, there is parallelism both within the selection of
each of the three intermediate sequences and in the
nested parallel execution of the recursive calls. A flat
data-parallel language would not permit the recursive
calls to be made in parallel.

We decided to define a new language instead of adding
nested parallel constructs to an existing language for two
main reasons. First, we wanted a small core language, to
allow us to guarantee that everything that is expressed in
parallel compiles into a parallel form. Second, we wanted
a side-effect-free language because of the difficulty of
implementing (and defining consistent semantics for)
nested data-parallelism when nested function calls can
interact with each other through side effects.

function gsort{s) =

if {(#s < 2} then s
else
let pivot = s[rand{#s)];
les = {e in s| e < pivot};
eql = {e in s} e = pivot};
grt = {e in s| e > pivot};
result = {gsort(v):v in [les, grtl}

in result (0] ++ eql ++ result(l];

FIG. 4. A nested data-parallel quicksort in NEsL.

Although we feel that it would be possible to add
nested data-parallelism to an imperative language, we
doubt that nested data-parallelism could be added to C or
FORTRAN in such a way that the resulting language would
be both clean and efficient. For C it is likely that one
would have to limit the type of objects permitted in the
parallel data structure in order to get good efficiency. In
particular, allowing arbitrary pointers in a parallel struc-
ture, while highly desirable, would also be very hard to
implement. For FORTRAN 77, the static memory require-
ments would severely limit the usefulness of a nested
data-parallel language. The additional data management
features in FORTRAN 90 could reduce these limitations,
but the large number of features of the language are so
delicately balanced that permitting nested structures
would likely topple it.

3. SYSTEM OVERVIEW

The full implementation of NESL consists of an inter-
mediate language called VcopEe [10], an interpreter for
VCODE, and a portable library of parallel routines called
CvL [12]. We also have an experimental VCODE com-
piler, described elsewhere [16, 17]. Figure S illustrates
the roles of the different components of the implementa-
tion. This section gives an overview of each of these
components.

The NESL execution times reported in this paper are
for interpreted VCcoDE. Use of an interpreted intermedi-
ate language allows us to port our system very quickly to
new machines; the only component that needs to be re-

NESL

NESL
Compiler

Nested data-parallel language
Strongly typed, polymorphic
First-order functional

Flatten nested parallelism
Type inference

Type specialization

Mark ast use of variables

Stack-based
intermediate language

Length inference
Access inference
Instruction clustering [
Storage optimizations

[

Memory management
VCODE VCODE . .

; Runtime length checking
Comlpller]nter[})reter ‘* Serial /O
Multi-threaded C library of
C CVL parallel functions

_I 1
Serial Cray CM-2 CM-5
CVL CVL CVL CVL
Codedin CodedinC Coded in

Coded inC Coded in

Cand CAL C-PARIS and CMMD Cand PVM

FIG. 5. The parts of the SCAL project and how they fit together.
CAL stands for Cray Assembly Language, C-PARIS is the C interface
to the CM-2 Parallel Instruction Set, and CMMD is the CM-5 message-
passing library. Cluster CvL is under development.

IMPLEMENTATION OF NESL 7

written is a library of vector routines called by the inter-
preter. There is an efficiency loss from using an inter-
preter; this loss depends on the particular machine and
on the problem size. One portion of the overhead is a
fixed cost per executed VCODE instruction (a single
VCODE instruction operates on an entire sequence). This
constant overhead is amortized over the per-element cost
of executing a sequence operation, so the system attains
higher efficiency if longer sequences are used. Our tech-
nique for compiling nested parallelism (flattening) allows
us to achieve the efficiency of operating on single long
sequences instead of several shorter sequences in the
nested parallel calls. These efficiency tradeoffs are ana-
lyzed quantitatively in Section 5.

3.1. VCODE

VCODE is a stack-based intermediate language where
the objects on the stack are vectors of atomic values
(integers, floats, or booleans). VCODE instructions act on
these vectors as a whole, performing such operations as
elementwise adding two vectors, summing the elements
of a vector, or permuting the order of elements within a
vector. To provide support for nested parallelism,
VcoDE supplies the notion of segment descriptors [8].
These objects, also kept on the stack, describe how vec-
tors are partitioned into segments. For example, the seg-
ment descriptor [2, 3, 1] specifies that a vector of
length 6 should be considered as 3 segments of lengths 2,
3 and 1, respectively (segments are contiguous and non-
overlapping). The VCODE representation of the segment
descriptor is machine-dependent: our serial implementa-
tion uses a sequence of the lengths of each segment,
while our implementations on the Cray and the Connec-
tion Machines CM-2 and CM-5 also use flags to mark
boundaries between segments. Most of the non-ele-
mentwise VCODE instructions require both vector and
segment descriptor arguments. Each instruction then op-
erates independently over each segment of the vector.
For example, the +_scan instruction performs a parallel
prefix operation on each segment, starting from zero on
each segment boundary. The segmented versions of the
instructions are critical for the implementation of nested
parallelism (see Section 3.2 below). The notion of seg-
ments also appears in some of the library routines of the
Connection Machines CM-2 [47] and CM-5 {49] and has
been adopted in the PREFIX and SUFFIX operations of
High Performance Fortran [28].

3.2. NesL Compiler

The NEsL compiler translates NESL code into VCODE,
The most import compilation step is the use of a tech-
nique called flattening nested parallelism [8, 14). This
process converts nested sequences into sets of flat vec-
tors and translates the nested operations into segmented
VCODE operations on the flattened representation. The

flattening of nested sequences is achieved by converting
each sequence into a pair: a value vector and a set of
segment descriptors. For example, the sequence |2,
9, 1, 5, 6, 3, 8] would be represented by the pair

segdes
value =

(7]

(2, 9, 1, 5, 6, 3, 8]
and the nested sequence [[2,
{4]] would be represented as

1],

segdesl = [3])
segdes2 = [2, 3, 1]
value = (2, 1, 7, 0, 3, 4].

In these examples, a segdes with only one value speci-
fies that the whole vector is one segment (the use of this
seemingly redundant datum is critical when nested ver-
sions of user-defined functions are implemented). In the
second example, segdes1 describes the segmentation of
segdes2, not of value. Sequences that are nested
deeper are represented by additional segment descrip-
tors. Sequences of fixed-sized structures (such as pairs)
are represented by multiple vectors (one for each slot in
the structure) that share a common segment descriptor.

Using this representation, nested versions of NESL op-
erations with VCODE counterparts can be directly con-
verted into the corresponding segmented VCODE instruc-
tions. Nested versions of user-defined functions are
implemented by using program transformations called
stepping-up and stepping-down. These transformations
convert all the substeps of a nested call into segmented
operations or into calls to other functions that have al-
ready been transformed. With these transformations,
when a user function is used in an apply-to-each form,
the data for each subcall are in a separate segment, and
computations on each segment can proceed indepen-
dently.

The most complex part of flattening nested paralielism
is transforming conditional statements. There are two
main parts of this transformation. The first part inserts
code for packing out all the data in subcalls that do not
take a branch, and for reinserting these data when the
branch is complete. This guarantees that work is only
done on the subcalls that take the branch, and is similar
to techniques used by vectorizing compilers to vectorize
loops with conditionals [51, section 3.6]. It also results in
proper load balancing on parallel machines. The second
part inserts code to test if any of the subcalls are taking
the branch and to skip the branch if none are. This is
important for guaranteeing termination. The communica-
tion costs involved in doing the packing and unpacking
can be quite high, and one area of our ongoing research is
to see how the communication can be reduced by only
packing when there is a significant load imbalance among
processors [43].

8 BLELLOCH ET AL.

3.3. CvL

To enable rapid porting of VCODE to new machines, we
designed CvL (C Vector Library), a library of low-level
segmented vector routines callable from C. These are
used by a VCoDE interpreter, described in Section 3.4
below. Our implementations of CvL on the Connection
Machine CM-2, Cray C90, and serial workstations are
highly optimized. We originally tried to implement the
CvL operations in a high-level language, but to attain high
efficiency, we were forced to use Cray Assembly Lan-
guage (CAL) on the Cray and the Parallel Instruction Set
(PARIS) on the Connection Machine CM-2. Using CAL
was particularly important on the Cray, since we could
not get the C or FORTRAN compilers to vectorize the
functions that operate on segmented data (some of the
issues involved are discussed in [18]). We might have
achieved better performance on the Connection Machine
CM-2 by going one level closer to the machine and using
CMIS, but time did not permit this. Our implementation
of CvL on workstations uses ANSI C and can therefore
be ported easily to most serial machines. Our current
implementation on the Connection Machine CM-5 is an
initial release that uses C and CMMD 3.0 [49], and does
not exploit the vector units. Cluster CvL is being written
using C and PVM [25]). Faith ef al. [22] at the University
of North Carolina have ported CvL to the Maspar MP-2
using the MPL programming language.

3.4. VCODE Interpreter

The two main requirements for the VCODE interpreter
are portability and efficient management of vector mem-
ory. The interpreter is written in ANSI C to ease portabil-
ity, and contains little machine-dependent code (most
stemming from operating system differences). The typi-
cal sequence of operations performed by the interpreter
to execute a vector operation is as follows: a table lookup
is performed to find the number of stack arguments an
operation uses and the length and type of the operation’s
result; optionally, a check is made that any length and
type constraints on the arguments are satisfied; memory
for the result is allocated, as explained below; the associ-
ated CvL function is called; after completion, the argu-
ments are popped off the stack. All this results in a con-
stant interpretive overhead time per executed VCODE
instruction.

The most novel aspect of the interpreter is its memory
management. VCODE creates and destroys vectors of dif-
fering and dynamically determined sizes. Most memory
management and garbage collection literature (for exam-
ple, [3]) assume large numbers of small objects and a
large (virtual) memory. VCODE programs do not behave
in this manner. In particular, there are usually few large
data structures (vectors) active at any one time, and we
want to operate on the largest possible problem size that
available memory can support. The supercomputers on

stack vector block list vector memory
I’ {
4 I
4 v
’ /’
’ 4
I A TS 1. 11
0 free list 3z
pointers
FIG. 6. Internal structure of the VCODE interpreter. The dark en-

tries in the vector block list refer to active regions of vector memory.
The light ones correspond to free regions. Entries to free regions of
similar size are linked together in the same free list structure. There are
32 free lists, each one referring to regions at most twice the size of the
previous.

which VcobEe runs typically provide no virtual memory
facilities, so there is a hard limit on the amount of mem-
ory a program may use. Therefore we must be very
thrifty with the amount of memory used by a VCODE
program.

Figure 6 shows the internal data structures for memory
management. Each entry in the vector stack is really a
pointer to an entry in a vector block list. VCODE stack
modification operations are implemented via pointer ma-
nipulations; no action is taken on vector memory.

Entries in the vector block list describe how vector
memory is currently partitioned. The vector block list
maintains an order-preserving 1-1 map to regions of vec-
tor memory (in terms of Fig. 6, the arrows from the list to
vector memory never cross). Each region of vector mem-
ory is either active or free, as indicated by a flag in the
corresponding vector block entry. Each vector block en-
try has a reference count, giving the number of times it
occurs on the stack. When this number reaches zero, the
vector stored in the region can no longer be referenced.
The interpreter frees the associated region of memory,
merges it with any adjacent free regions (destroying the
vector block entry of the merged region), and putsitona
free-list. There are several free-lists, each corresponding
to a different range of region sizes (currently, each list
has regions a factor of two larger than the previous list).
Use of multiple free-lists for different sized regions al-
lows us to examine fewer regions to find one of the appro-
priate size.

To allocate space for a new vector of known memory
size, the interpreter tries to find a large enough free re-
gion of vector memory by doing a first-fit on the appropri-
ate free-list. If no block in that free-list is big enough, the
free-lists of larger region sizes are checked in a first-fit
manner and if none is found, the garbage compacting

IMPLEMENTATION OF NESL 9

rCommunicalion Dynamic Structures | Nested Parallelism 1
Line Fit Low No No
Median High Yes No
Sparse MxV High No Yes

FIG. 7. The properties of the benchmarks.

routine is called. This routine pushes all vectors as far as
possible to the front of vector memory, creating one large
region of free memory at the end. If this region is not
large enough, the interpreter signals an out-of-memory
error. When a large enough region has been found, the
interpreter divides it into two pieces: one for the vector
and one that is returned to the free-list appropriate for
that region’s size.

The reference counts in the vector block list also en-
able the interpreter to perform simple copy elimination
optimizations [23, 26]. To enforce the applicative seman-
tics of VCoDE the implementation of an operation that
changes only a single element of a vector must copy the
entire vector before making any alteration. If the refer-
ence count indicates that this is the last reference to the
“*old”” version of the vector, we may avoid the copy and
implement the operation in a (more efficient) destructive
manner.

4. BENCHMARKS

This section describes three benchmarks: a least-
squares line-fit, a generalized median find, and a sparse-
matrix vector product. The particular benchmarks were
selected for their diverse computational requirements
(summarized in Fig. 7). They are each simple enough that
the reader should be able to fully understand what the
algorithm is doing, but are more complex than bare ker-
nels such as the Livermore Loops [36]. The performance
of these benchmarks demonstrate many of the advan-

function linefit(x, y) =

let
n = float (#x);
xa = sum(x)/n;
ya = suml(y)/n:
stt = sum{{(x - xa)"2: x});:
b = sum({(x ~ xa)*y: x; y})/Stt;
a = ya - xa*b;
chi2 = sum({(y-a-b*x)"2: x; y}):
siga = sqrt((1.0/n + xa~2/Stt)*chi2/n);
sigb = sqrt((1.0/Stt}*chi2/n)
in
(a, b, siga, sigb);

FIG. 8. NEsL code for fitting a line using a least-square fit. The
function takes sequences of x and y coordinates and returns the inter-
cept (a) and slope (b) and their respective probable uncertainties (siga
and sigb).

tages and disadvantages of our system. The results of
these benchmarks will be analyzed in Section 5,

Our first benchmark is a least-squares line-fitting rou-
tine using the algorithm described in Press er al. [38,
section 14.2]. The version we use assumes that all points
have equal measurement errors. This is a straightforward
algorithm that requires very little communication and has
no nested parallelism. Furthermore, all vectors are of
known size at function invocation and can be allocated
statically. It is therefore well suited for languages such as
ForRTRAN 90. We use this benchmark to measure the
overhead incurred by our interpreter-based implementa-
tion. The NEsSL code for the benchmark is given in Fig. 8.

Our second benchmark is a median-finding algorithm,
To implement median-finding we use a more general algo-
rithm that finds the kth smallest element in a set. The
algorithm is based on the quickselect method [29]. This
method is similar to quicksort, but calls itself recursively
only on the partition containing the result (the recursion
was removed in the FORTRAN version). This algorithm
requires dynamic memory allocation (also removed in the
FORTRAN version) since the sizes of the less-than-pivot
and greater-than-pivot sets are data dependent. In order
to obtain proper load balancing, the data must be redis-
tributed on each iteration. The NEsSL code for the algo-
rithm is shown in Fig. 9. This algorithm was selected to
demonstrate the utility and efficiency of NgsL's dynamic
allocation.

Our third benchmark multiplies a sparse matrix by a
dense vector and demonstrates the power and efficiency
of nested parallelism. Sparse-matrix vector multiplica-
tion is an important supercomputer kernel that is difficult
to vectorize and parallelize efficiently because of its ir-
regular data structures and high communication require-
ments. While there are many algorithms for special
classes of sparse matrices, we are interested in support-
ing operations for arbitrary sparse matrices. This is a
challenge since the matrices used in a number of different
scientific and engineering disciplines often have average
row lengths of less than 10. These row lengths are signifi-

function select._kth(s, k) =
let pivot = s(#s/2);
les = {e in s | e < pivot}
in
if (k < #les) then
select kth(les, k)
else
let grt = {e in s | e > pivot}
in if (k >= #s - #grt} then
select kth(grt, k - (#s -~ #grt))
else pivot;

function median(s) = select_kth(s, #s5/2);

FIG. 9. NEesL code for median finding. The function select_kth
returns the kth smallest element of s. This is used by median to find
the middle element.

10

3000 10 30

0020 20§ _ 60

4 002 30 | 7] 120

3100 40 50
Vect = [10 20 30 40]
Midx = [0 2 0 3 0 1]
Vect->Midx= [10 30 10 40 10 20]
Mval = 13 2 4 2 3 1]
p= {30 60 40 80 30 20]
Mlen = [1 1 2 2]
nest(p,Mlen)= [[30] [60] [40 80} (30 20]]
rowsums = [30 60 120 50}

FIG. 10. An example of sparse-matrix vector product.

cantly less than the start-up overhead for vector ma-
chines (n,,) and are far too small to divide among proces-
sors in an attempt to parallelize row by row. On the other
hand, dividing rows among processors makes load bal-
ancing difficult since each row can have a different length
and the longest rows could be very much longer than the
shortest. Our implementations (in NEsL, C, and Fogr-
TRAN) use a compressed row format containing the num-
ber of nonzero elements in each row, and the values of
each nonzero matrix element along with its column index
[21]. Figure 10 shows an example of a sparse-matrix vec-
tor product using this format and Fig. 11 shows the NEsL
implementation.

5. RESULTS

Running times for all benchmarks with a variety of data
sizes are given in Table 1. Times are given both for inter-
preted NESL code and for native code. For native code
we used FORTRAN 77 on the Cray C90, CM Fortran [48]
on the Connection Machines CM-2 and CM-5, and C on
the DEC Alpha workstation. In all cases we used full

BLELLOCH ET AL.

function MxV(Mval, Midx, Mlen, Vect) =

let v = Vect -> Midx;
p ={a * b: a in Mval; b in v}
in
{sum(row) row in nest(p, Mlen)};

FIG. 11. Sparse-matrix vector product. Mval holds the matrix val-
ues, Midx holds the column indices, M1 en holds the length of each row,
and Vect is the input vector. The function nest takes the flat sequence
p and nests it using the lengths in Mlen (the sum of the values in Mlen
must equal the length of p).

optimization, and in the case of the median-finding code
on the Cray we had to include compiler directives
(ivdep) to force vectorization. The full listing of the na-
tive code we used is given in [11]. NESL timings are for
the code shown in Section 4 run using the Vcobe inter-
preter. All Alpha benchmarks were run on a DEC 3000
AXP Model 400 with 32 Mbytes of memory. All Cray C90
benchmarks were run on one processor of a C90/16 with
256 Mwords of memory. All Connection Machine CM-2
benchmarks were run on 32K processors of a CM-2 with
1 Gbyte of memory. All Connection Machine CM-5
benchmarks were run on 256 processors of a CM-5 with 8
Gbytes of memory.

The CM-5 CM Fortran benchmarks did not use the
vector units, to allow a better comparison with the cur-
rent implementation of CvL on that machine. When the
vector units are used, the CM Fortran line-fit benchmark
runs 1-40 times faster (depending on problem size), the
CM Fortran median benchmark runs 2-5 times faster,
and the CM Fortran sparse-matrix vector product
benchmark runs 1-1.5 times faster. It is expected that a
future version of CM-5 CvL will exploit the vector units
and will therefore achieve similar speedups.

We now discuss three main issues exhibited by the

TABLE 1
Running Times in (Seconds) of the Benchmarks for NesL. and Native Code
Alpha Alpha C90 C90 CM-2 CM-2 CM-5 CM-5
n C NEsL F77 NESL CMF NESL CMF NESL
Line fit
210 0.0007 0.0029 0.0001 0.0012 0.0018 0.0061 0.0008 0.0063
214 0.0137 0.0468 0.0004 0.0018 0.0019 0.0061 0.0011 0.0063
218 0.2869 0.9506 0.0058 0.0122 0.0037 0.0133 0.0057 0.0095
P 0.0927 0.1551 0.0322 0.1283 0.1473 0.1658
Median
210 0.0004 0.0059 0.0001 0.0059 0.0293 0.1017 0.0086 0.0376
2M14 0.0068 0.0273 0.0005 0.0092 0.0623 0.1442 0.0215 0.0544
218 0.1347 0.4070 0.0080 0.0233 0.2667 0.2163 0.2146 0.0945
P 0.1276 0.2099 3.7810 0.8389 8.2092 0.6564
Sparse-matrix vector product
210 0.0002 0.0009 0.0002 0.0003 0.0043 0.0142 0.0012 0.0012
21 0.0049 0.0088 0.0037 0.0006 0.0063 0.0152 0.0020 0.0035
218 0.1503 0.2186 0.0589 0.0038 0.0295 0.0451 0.0175 0.0259
22 0.9436 0.0557 0.4098 0.6436 0.2791 0.2929

Note. The sparse-matrix vector product uses a row length of 5 and randomly selected column indices. CM-5 NEsL results are preliminary.

IMPLEMENTATION OF NESL 11

Z o030,
[
8
& 025f
N
E \
£ 020} '\
A\
015t \\ Cray Fortran
\\
N
0.10 N
Y
~
~
0.05 S
Cray NESL T~
0.00 s) ral ===
4 16 64 256 1024
Average Row Length

FIG. 12. Running times of the sparse-matrix vector product for

varying levels of sparsity. The number of nonzero entries in each sparse
matrix is fixed at 10%.

timings: the advantage of nested parallelism in the imple-
mentation of the sparse-matrix vector product, the over-
head incurred by our interpreter, and the need for dy-
namic load-balancing in the median-finding code on the
Connection Machine CM-2.

Nested Parallelism. The sparse-matrix vector prod-
uct benchmark demonstrates the advantages and effi-
ciency of nested data parallelism. Figure 12 gives running
times on the Cray for a variety of degrees of sparsity. For
very sparse matrices, the NESL version outperforms the
native version by over a factor of 10. We get this perfor-
mance gain because the compilation of nested data paral-
lelism described in Section 3.2 generates code with run-
ning time essentially independent of the size of the
sub-sequences. The nested code achieves full efficiency
(vectorization on the Cray and high data-to-processor ra-
tio on the CM-2 and CM-5) by executing on the full input
data. The result is consistently high performance regard-
less of the sparsity of the matrix. Note, however, that as
the matrix density increases, the Cray FORTRAN perfor-
mance improves. Eventually, FORTRAN achieves supe-
rior performance because of NESL’s extra per-element
cost of interpretation relative to compilation.

Interpretive Overhead. The main source of ineffi-
ciency in our system is the interpretation of the VCobpE
generated by the NEsL compiler. The cost of interpreta-
tion can be analyzed by studying the line-fitting
benchmark, since this benchmark requires very little
communication and the native-code implementations
compile to almost perfect code.

There are two main sources of interpretive overhead in
our system. First, there is the cost of executing the inter-
preter itself. For the line-fitting benchmark, this is con-
stant, independent of input size (since the interpreter ex-
ecutes a fixed number of VCODE steps), and so may be
computed by examining the running times for small in-
put. Figure 13 shows the percentage of run time ac-
counted for by this overhead for varying input sizes, as
well as the n,» value at which the implementations attain

half of their asymptotic efficiency. As the figure shows,
NESL sometimes requires fairly large input in order to
attain close to its peak efficiency. This overhead is not a
problem on the CM-2; here, since there are 32K proces-
sors, the loss of efficiency when working with small vec-
tors (n < 32 K) overwhelms the interpretive overhead.

The second major deficiency of an interpreter-based
system is that the granularity of the operations performed
by the library is too fine. Each operation on a collection
of data is performed by a distinct call to the CvL library.
In a compiled system, the loops performing the separate
parallel operations could be fused together. This optimi-
zation would result in much better memory locality
(quantities could be kept in registers and reused, instead
of being loaded from memory, acted on, and written
back) and would also allow chaining on the Cray. These
loop fusion operations are performed by the VCoObDE com-
piler [16, 17]. With the interpreter these inefficiencies
adversely affect the peak performance of NESL pro-
grams, and their effects can be seen in the performance of
line-fitting for large data sizes (see Table I). On the CM-2
there is an additional important source of inefficiency:
CM-2 CvL is built on top of the Paris instruction set [47].
Although working with Paris has many advantages, it
forces use of the older ‘‘fieldwise’” representation of
data, instead of the more efficient ‘‘slicewise’’ represen-
tation generated by the CM Fortran compiler.

Dynamic Load Balancing. We now consider why the
native code for the median algorithm does poorly com-
pared to the NEsSL code on the CM-2. The median algo-
rithm reduces the number of active elements on each
step. In our CM Fortran implementation, as these ele-
ments get packed to the bottom of an array, they become
more imbalanced across the processors. Although it is
possible to pack the elements into a smaller array, this
would require dynamically allocating a new vector on
each step, which is awkward in CM Fortran. In NESL,

CM-2 Fortran
CM-2NESL &——

———a

Percent Run-time Overhead

....... ——
IM 4M 16M
Problem size

16K 64K

1K 4K

FIG. 13. Interpreter overhead for the line-fitting benchmark. The
vertical lines indicate the points at which overhead accounts for 509 of
the running time. The percentage overhead for the CM-2 NEsL imple-
mentation is comparable to that for the CM Fortran implementation.
The Cray ForTRAN overhead is insignificant for the data sizes in the
graph and is not shown.

[
[\

160
14.0 P
120+
100 }
8.0}
6.0

Time per element (usec)

CM-2 NESL

40} ~.

20l S _— CM-2 Fortran

0.0 N N N L N ..—.___:___.___......_.,
8K 16K 32K 64K 128K 256K 512K IM 2M 4M 8M

Problem size

FIG. 14. CM-2 median: NesL vs CM Fortran.

vectors are dynamically allocated with the data automati-
cally balanced across the processors. The NESL imple-
mentation of the median algorithm only requires a total of
O(n) work because on each of the O(log n) steps the
amount of data processed is cut by a constant factor.
Since the CM Fortran implementation requires O(n)
work on each step, it is a factor of O(log n) slower, as
illustrated in Fig. 14.

6. COMPARISON TO OTHER SYSTEMS

Numerous flat data-parallel languages have been pro-
posed for portable parallel programming, such as C* [40],
MPP-Pascal {7], *Lisp [34], UC [5], and ForTRAN 90 [2].
Section 2 explained some of the expressibility and effi-
ciency limitations imposed by flat languages. These prob-
lems are also discussed elsewhere [8, 9, 24, 27, 44].

Two existing parallel languages permit the user to de-
scribe nested data-parallel operations: Connection Ma-
chine Lisp [50] and Paralation Lisp [41]. However, the
implementations of these languages only exploit the bot-
tom level of parallelism; for the sparse-matrix example,
this results in a parallel sum for each row, and a serial
loop over the rows. Both these languages are data-paral-
lel extensions to Common Lisp [45]. The large number of
features in Common Lisp, and the difficulty of extending
their semantics to parallel execution, preclude the imple-
mentation of full nested data parallelism. This is strong
motivation for a simple core language.

The parallel languages ID [37}, SISAL [35], and Crys-
tal [19], although not explicitly data-parallel, do support
fine-grained parallelism. They also support nested data
structures, although there has been little research on im-
plementing nested parallelism for these languages. There
are also several serial languages that supply data-parallel
primitives and nested structures. These include SETL
[42], APL2 [32], J [31], and FP [4]. Sipelstein and Blel-
loch [44] discuss these languages from the perspective of
supporting data parallelism.

Another approach to architecture-independent parallel
programming is control-parallel languages that provide
asynchronous communicating serial processes. Exam-

BLELLOCH ET AL.

ples include CSP [30], Linda [15], Actors [1], and PVYM
[46]. These languages are well suited for problems (in-
cluding irregular problems) that can be specified in terms
of coarse-grained subtasks. Unfortunately, high imple-
mentation overhead makes efficiency too dependent on
finding a decomposition into reasonably sized blocks
[15]. As a result, these systems are not well suited for
exploiting fine-grained parallelism. The large grain size
renders programs less likely to be efficient on most paral-
lel supercomputers because they will not vectorize well
and do not expose enough parallelism to take advantage
of large numbers of processors. Extending these models
to capture fine-grained parallelism is an area of active
research [20].

7. CONCLUSIONS

The purpose of nested data-parallel languages is to pro-
vide the advantages of data parallelism while extending
their applicability to algorithms that use ‘‘irregular’’ data
structures. The main advantages of data parallelism that
should be preserved are the efficient implementation of
fine-grained parallelism and the simple synchronous pro-
gramming model.

We have described the implementation of a nested
data-parallel language called NesL. NEsL was designed to
allow the concise description of paralle! algorithms on
both structured and unstructured data. It has been used
in a course on parallel algorithms and has allowed stu-
dents to quickly implement a wide variety of programs,
including systems for speech recognition, ray-tracing,
volume rendering, parsing, maximum-flow, singular
value decomposition, mesh partitioning, pattern match-
ing, and big-number arithmetic [13]. (A full implementa-
tion of NEsL is available from nesl-request@cs.
cmu. edu.)

The benchmark results in this paper have shown that it
is possible to get good efficiency with a nested data-paral-
lel language, across a variety of different parallel ma-
chines. NEsL runs within a local interactive environment
that allows the user to execute programs remotely on any
of the supported architectures. This portability depends
crucially on the organization of the system and the use of
an intermediate language.

The efficiency of NESL on large applications still re-
quires further study. Some other issues that we plan to
examine are (1) getting good efficiency on nested parallel
code with many conditionals, (2) the specification of data
layout for irregular structures, (3) tools for profiling
nested parallel code, (4) the interaction of higher-order
functions with nested parallelism, and (5) porting the sys-
tem to other architectures.

REFERENCES

1. Agha, G. Concurrent object-oriented programming. Comm. ACM
33, 9 (Sept. 1990), 125-141.

2. ANSI. ANSI Fortran Draft 58, Version 111.

20.

21.

22.

23.

IMPLEMENTATION OF NESL 13

. Appel, A. W. Garbage collection. In Lee, P. (Ed.), Topics in Ad-

vanced Language Implementation, MIT Press, Cambridge, MA,
1991, Chap. 4.

. Backus, J. Can programming be liberated from the von Neumann

style? A functional style and its algebra of programs. Comm. ACM
21, 8 (Aug. 1978), 613-641.

. Bagrodia, R., and Mathur, S. Efficient implementation of high-level

parallel programs. Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems. 1991, pp. 142-152.

. Batcher, K. E. The flip network of STARAN. Proc. International

Conference on Parallel Processing. 1976, pp. 65-71.

. Batcher, K. E. The massively parallel processor system overview.

In Potter, J. L. (Ed.), The Massively Parallel Processor. Cam-
bridge, MA, MIT Press, 1985, pp. 142-149.

. Blelloch, G. E. Vector Models for Data-Parallel Computing. MIT

Press, Cambridge, MA, 1990.

. Blelloch, G. E. NESL: A nested data-parallel language (version

2.6). Tech. Rep. CMU-CS-93-129, School of Computer Science,
Carnegie Mellon University, Apr. 1993,

. Blelloch, G. E., and Chatterjee, S. VCODE: A data-parallel inter-

mediate language. In Proc. Frontiers of Massively Parallel Compu-
tation. 1990, pp. 471-480.

. Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Sipelstein, J., and

Zagha, M. Implementation of a portable nested data-parallel lan-
guage. Tech. Rep. CMU-CS-93-112, School of Computer Science,
Carnegie Mellon University, 1993.

. Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Sipelstein, J., and

Zagha, M. CVL: A C vector library. Tech. Rep. CMU-C5-93-114,
School of Computer Science, Carnegie Mellon University, 1993.

. Blelloch, G. E., and Hardwick, J. C. Class notes: Programming

parallel algorithms. Tech. Rep. CMU-CS-93-115, School of Com-
puter Science, Carnegie Mellon University, 1993.

. Blelloch, G. E., and Sabot, G. W. Compiling collection-oriented

languages onto massively parallel computers. J. Paralle! Distrib.
Comput. 8, 2 (Feb. 1990), 119-134,

. Carriero, N., and Gelernter, D. How to write parallel programs: A

guide to the perplexed. ACM Comput. Surv. 21, 3 (Sept. 1989),
323-357.

. Chatterjee, S. Compiling data-parallel programs for efficient execu-

tion on shared-memory multiprocessors. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University, 1991.

. Chatterjee, S. Compiling nested data-parallel programs for shared

memory multiprocessors. ACM Trans. Programming Languages
Systems. 15, 3 (July 1993), 400-462.

. Chatterjee, S., Blelloch, G. E., and Zagha, M. Scan primitives for

vector computers. In Proceedings Supercomputing '90. 1990, pp.
666-675.

. Chen, M., Choo, Y., and Li, J. Crystal: Theory and pragmatics of

generating efficient parallel code. In B. K. Szymanski (Ed.), Paral-
lel Functional Languages and Compilers. Addison—-Wesley, Read-
ing, MA, 1991, Chap. 7.

Chien, A. A., and Dally, W. J. Experience with concurrent aggre-
gates (CA): Implementation and programming. In Proceedings of
the Fifth Distributed Memory Computers Conference. SIAM, 1990,
pp. 1040-1049.

Duff, 1. S., Grimes, R. G., and Lewis, J. G. Sparse matrix test
problems. ACM Trans. Math. Software 15 (1989), 1-14.

Faith, R. E., Hoffman, D. L., and Stahl, D. G. UnCvl: The Univer-
sity of North Carolina C Vector Library. Version 1.1, May 1993,
Feo,J. T., Cann, D. C., and Oldehoeft, R. R. A Report on the Sisal
Language Project. J. Parallel Distrib. Comput. 10, 4 (Dec. 1990),
349-366.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37

38.

39,

40.

41.

42,

43.

44.

45.

46.

Fox, G. C. The architecture of problems and portable parallel soft-
ware systems. Tech. Rep. SCCS-134, Syracuse Center for Compu-
tational Science, Syracuse University, 1991.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and
Sunderam, V. PVM 3.0 User’s Guide and Reference Manual. 1993,

Gopinath, K., and Hennessy, J. L. Copy elimination in functional
languages. In Sixteenth Annual ACM Symposium on Principles of
Programming Languages. 1989, pp. 303-314.

Hatcher, P., Tichy, W. F., and Philippsen, M. A critique of the
programming language C*. Comm. ACM 35, 6 (June 1992), 21-24.
High Performance Fortran Forum. High Performance Fortran Lan-
guage Specification, May 1993,

Hoare, C. A. R. Algorithm 63 (partition) and algorithm 65 (find).
Comm. ACM 4, 7 (1961), 321-322.

Hoare, C. A. R. Communicating sequential processes. Comm.
ACM 21, 8 (Aug. 1978), 666-677.

Hui, R. K. W., Iverson, K. E., McDonnell, E. E., and Whitney,
A. T. APL\? APL 90 Conference Proceedings. 1990, pp. 192-200.
IBM. APL2 Programming: Language Reference, first ed., 1984.
[Order Number SH20-9227-0].

Larus, J. R., Richards, B., and Viswanathan, G. C**: A large-
grain, object-oriented, data-parallel programming language. Tech.
Rep. UW Technical Report #1126, Computer Science Department,
University of Wisconsin-Madison, Nov, 1992,

Lasser, C. The Essential *Lisp Manual. Thinking Machines Corpo-
ration, Cambridge, MA, 1986.

McGraw, J., Skedzielewski, S., Allan, S., Oldehoeft, R., Glauert,
J., Kirkham, C., Noyce, B., and Thomas, R. SISAL: Streams and
Iteration in a Single Assignment Language, Language Reference
Manual Version 1.2. Lawrence Livermore National Laboratory,
Mar. 1985.

McMahon, F. H. The Livermore Fortran kernels: A computer test
of the numerical performance range. Tech. Rep. UCRL.-53745,
Lawrence Livermore National Laboratory, Dec. 1986.

Nikhil, R. S. ID Version 90.0 Reference Manual. Computation
Structures Group Memo 284-1, Laboratory for Computer Science,
Massachusetts Institute of Technology, July 1990.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling,
W. T. Numerical Recipes. Cambridge Univ. Press, Cambridge,
1986.

Quinn, M. J., and Hatcher, P. J. Data-parallel programming on
multicomputers. IEEE Software 7, 5 (Sept. 1990), 69-76.

Rose, J. R., and Steele, Jr., G. L. C*: An extended C language for
data parallel programming. Proceedings, Second International
Conference on Supercomputing. 1987, Vol. 2, pp. 2-16.

Sabot, G. W. The Paralation Model: Architecture-Independent
Parallel Programming. MIT Press, Cambridge, Massachusetts,
1988.

Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., and Schonberg. E.
Programming with Sets: An Introduction 10 SETL. Springer-
Verlag, New York, 1986.

Sipelstein, J. Data representation optimizations for collection-ori-
ented languages. Ph.D. thesis, School of Computer Science, Carne-
gie Mellon University, to appear.

Sipelstein, J., and Blelloch, G. E. Collection-oriented languages.
Proc. IEEE 79, 4 (Apr. 1991), 504-523.

Steele, G. L., Jr., Fahlman, S. E., Gabriel, R. P., Moon, D. A., and
Weinreb, D. L. Common LISP: The Language. Digital Press,
Burlington, MA, 1984.

Sunderam, V. S. PVM: A framework for parallel distributed com-
puting. Concurrency: Practice Experience 2, 4 (Dec. 1990), 315~
339.

14 BLELLOCH ET AL.

47. Thinking Machines Corporation. Paris Reference Manual. Cam-
bridge, MA, 1991.

48. Thinking Machines Corporation. CM Fortran Reference Manual,
Cambridge, MA, 1992.

49. Thinking Machines Corporation. CMMD Reference Manual. Cam-
bridge, MA, 1993.

50. Wholey, S., and Steele G. L., Jr., Connection Machine Lisp: A
dialect of Common Lisp for data parallel programming. Proceed-
ings, Second International Conference on Supercomputing. 1987.

51. Wolfe, M. Optimizing Supercompilers for Supercomputers. The
MIT Press, Cambridge, MA, 1989.

GUY BLELLOCH is an associate professor in the School of Com-
puter Science at Carnegie Mellon University. His research is concerned
with practical issues in the design and implementation of parallel algo-
rithms for highly parallel computers. Issues of interest include paralle]
primitives, languages, compilers and implementation techniques. Blel-
loch received his B.A. (1983) in physics from Swarthmore College. and
his M.S. (1986) and Ph.D. (1988) in computer science from the Massa-
chusetts Institute of Technology.

SIDDHARTHA CHATTERIEE is a Postdoctoral Scientist at the
Research Institute for Advanced Computer Science (RIACS) in Moffett
Field, California. He has published papers in the areas of compilers for

Received March 10, 1993; accepted October 26, 1993

parallel languages, computer architecture, and parallel algorithms. His
research interests include the design and implementation of parallel
programming languages, high performance parallel architectures, and
parallel algorithms and applications. Chatterjee received his B. Tech.
(1985) in electronics and electrical communications engineering from
the Indian Institute of Technology, Kharagpur, and his M.S. (1988) and
Ph.D. (1991) in computer science from Carnegie Mellon University.

JONATHAN HARDWICK is a doctoral candidate in the School of
Computer Science at Carnegie Mellon University. His research inter-
ests include the implementation of parallel languages on loosely coupled
parallel machines. Hardwick received his B.A. (1989) in computer sci-
ence from the University of Cambridge.

JAY SIPELSTEIN is a doctoral candidate in the School of Computer
Science at Carnegie Mellon University. His research is focused on the
development of compiler optimizations for collection-oriented lan-
guages. Sipelstein received his B.S. (1987) in mathematics from Yale
University.

MARCO ZAGHA is a doctoral candidate in the School of Computer
Science at Carnegie Mellon University. His research interests include
parallel algorithms for unstructured and combinatorial problems (such
as sparse matrix computation and sorting) and parallel language imple-
mentation. Zagha received his B.S. (1988) in computer science and
engineering from the University of California at Los Angeles and his
M.S. (1991) in computer science from Carnegie Mellon University.

