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Abstract. We present new techniques for the construction of uniquely repre-
sented data structures in a RAM, and use them to construct efficient uniquely
represented data structures for orthogonal range queries, line intersection tests,
point location, and 2-D dynamic convex hull. Uniquely represented data struc-
tures represent each logical state with a unique machine state. Such data struc-
tures are strongly history-independent. This eliminates the possibility of privacy
violations caused by the leakage of information about the historical use of the
data structure. Uniquely represented data structures may also simplify the debug-
ging of complex parallel computations, by ensuring that two runs of a program
that reach the same logical state reach the same physical state, even if various
parallel processes executed in different orders during the two runs.

1 Introduction

Most computer applications store a significant amount of information that is hidden
from the application interface—sometimes intentionally but more often not. This infor-
mation might consist of data left behind in memory or disk, but can also consist of much
more subtle variations in the state of a structure due to previous actions or the ordering
of the actions. For example a simple and standard memory allocation scheme that allo-
cates blocks sequentially would reveal the order in which objects were allocated, or a
gap in the sequence could reveal that something was deleted even if the actual data is
cleared. Such location information could not only be derived by looking at the mem-
ory, but could even be inferred by timing the interface—memory blocks in the same
cache line (or disk page) have very different performance characteristics from blocks
in different lines (pages). Repeated queries could be used to gather information about
relative positions even if the cache is cleared ahead of time. As an example of where
this could be a serious issue consider the design of a voting machine. A careless design
might reveal the order of the cast votes, giving away the voters’ identities.

To address the concern of releasing historical and potentially private information var-
ious notions of history independence have been derived along with data structures that
support these notions [14,18,13,7,1]. Roughly, a data structure is history independent if
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someone with complete access to the memory layout of the data structure (henceforth
called the “observer”) can learn no more information than a legitimate user accessing
the data structure via its standard interface (e.g., what is visible on screen). The most
stringent form of history independence, strong history independence, requires that the
behavior of the data structure under its standard interface along with a collection of
randomly generated bits, which are revealed to the observer, uniquely determine its
memory representation. We say that such structures have a unique representation.

The idea of unique representations had also been studied earlier [24,25,2] largely as a
theoretical question to understand whether redundancy is required to efficiently support
updates in data structures. The results were mostly negative. Anderson and Ottmann [2]
showed, for example, that ordered dictionaries require Θ(n1/3) time, thus separating
unique representations from redundant representations (redundant representations sup-
port dictionaries in Θ(log n) time, of course). This is the case even when the representa-
tion is unique only with respect to the pointer structure and not necessarily with respect
to memory layout. The model considered, however, did not allow randomness or even
the inspection of secondary labels assigned to the keys.

Recently Blelloch and Golovin [4] described a uniquely represented hash table that
supports insertion, deletion and queries on a table with n items in O(1) expected time
per operation and using O(n) space. The structure only requires O(1)-wise indepen-
dence of the hash functions and can therefore be implemented using O(log n) random
bits. The approach makes use of recent results on the independence required for lin-
ear probing [20] and is quite simple and likely practical. They also showed a perfect
hashing scheme that allows for O(1) worst-case queries, it although requires more ran-
dom bits and is probably not practical. Using the hash tables they described efficient
uniquely represented data structures for ordered dictionaries and the order maintenance
problem [10]. This does not violate the Anderson and Ottmann bounds as it allows
random bits to be part of the input.

In this paper we use these and other results to develop various uniquely represented
structures in computational geometry. We show uniquely represented structures for
the well studied dynamic versions of orthogonal range searching, horizontal point lo-
cation, and orthogonal line intersection. All our bounds match the bounds achieved
using fractional cascading [8], except that our bounds are in expectation instead of
worst-case bounds. In particular for all problems the structures support updates in
O(log n log log n) expected time and queries in O(log n log log n + k) expected time,
where k is the size of the output. They use O(n log n) space and use O(1)-wise inde-
pendent hash functions. Although better redundant data structures for these problems
are known [15,17,3] (an O(log log n)-factor improvement), our data structures are the
first to be uniquely represented. Furthermore they are quite simple, arguably simpler
than previous redundant structures that match our bounds.

Instead of fractional cascading our results are based on a uniquely represented data
structure for the ordered subsets problem (OSP). This problem is to maintain subsets
of a totally ordered set under insertions and deletions to either the set or the subsets,
as well as predecessor queries on each subset. Our data structure supports updates or
comparisons on the totally ordered set in expected O(1) time, and updates or queries
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to the subsets in expected O(log log m) time, where m is the total number of element
occurrences in subsets. This structure may be of independent interest.

We also describe a uniquely represented data structure for 2-D dynamic convex hull.
For n points it supports point insertions and deletions in O(log2 n) expected time, out-
puts the convex hull in time linear in the size of the hull, takes expected O(n) space,
and uses only O(log n) random bits. Although better results for planar convex hull are
known ([6]) , we give the first uniquely represented data structure. Due to space con-
siderations, the details of our results on horizontal point location and dynamic planar
convex hull appear in the full version of the paper [5].

Our results are of interest for a variety of reasons. From a theoretical point of view
they shed some light on whether redundancy is required to efficiently support dynamic
structures in geometry. From the privacy viewpoint range searching is an important
database operation for which there might be concern about revealing information about
the data insertion order, or whether certain data was deleted. Unique representations
also have potential applications to concurrent programming and digital signatures [4].

2 Preliminaries

Let R denote the real numbers, Z denote the integers, and N denote the naturals. Let [n]
for n ∈ Z denote {1, 2, . . . , n}.

Unique Representation. Formally, an abstract data type (ADT) is a set V of logical
states, a special starting state v0 ∈ V , a set of allowable operations O and outputs Y ,
a transition function t : V × O → V , and an output function y : V × O → Y . The
ADT is initialized to v0, and if operation O ∈ O is applied when the ADT is in state v,
the ADT outputs y(v, O) and transitions to state t(v, O). A machine model M is itself
an ADT, typically at a relatively low level of abstraction, endowed with a programming
language. Example machine models include the random access machine (RAM), the
Turing machine and various pointer machines. An implementation of an ADT A on a
machine model M is a mapping f from the operations of A to programs over the opera-
tions of M. Given a machine model M, an implementation f of some ADT (V, v0, t, y)
is said be uniquely represented (UR) if for each v ∈ V , there is a unique machine state
σ(v) of M that encodes it. Thus, if we run f(O) on M exactly when we run O on
(V, v0, t, y), then the machine is in state σ(v) iff the ADT is in logical state v.

Model of Computation & Memory allocation. Our model of computation is a unit cost
RAM with word size at least log |U |, where U is the universe of objects under consid-
eration. As in [4], we endow our machine with an infinite string of random bits. Thus,
the machine representation may depend on these random bits, but our strong history
independence results hold no matter what string is used. In other words, a computation-
ally unbounded observer with access to the machine state and the random bits it uses
can learn no more than if told what the current logical state is. We use randomization
solely to improve performance; in our performance guarantees we take probabilities
and expectations over these random bits.

Our data structures are based on the solutions of several standard problems. For some
of these problems UR data structures are already known. The most basic structure that



20 G.E. Blelloch, D. Golovin, and V. Vassilevska

is required throughout this paper is a hash table with insert, delete and search. The most
common use of hashing in this paper is for memory allocation. Traditional memory
allocation depends on the history since locations are allocated based on the ordering in
which they are requested. We maintain data structures as a set of blocks. Each block
has its own unique integer label which is used to hash the block into a unique memory
cell. It is not too hard to construct such block labels if the data structures and the basic
elements stored therein have them. For example, we can label points in R

d using their
coordinates and if a point p appears in multiple structures, we can label each copy using
a combination of p’s label, and the label of the data structure containing that copy. Such
a representation for memory contains no traditional “pointers” but instead uses labels
as pointers. For example for a tree node with label lp, and two children with labels l1
and l2, we store a cell containing (l1, l2) at label lp. This also allows us to focus on the
construction of data structures whose pointer structure is UR; such structures together
with this memory allocation scheme yield UR data structures in a RAM. Note that all of
the tree structures we use have pointer structures that are UR, and so the proofs that our
structures are UR are quite straightforward. We omit the details due to lack of space.

Trees. Throughout this paper we make significant use of tree-based data structures.
We note that none of the deterministic trees (e.g. red-black, AVL, splay-trees, weight-
balanced trees) have unique representations, even not accounting for memory layout.
We therefore use randomized treaps [22] throughout our presentation. We expect that
one could also make use of skip lists [21] but we can leverage the elegant results on
treaps with respect to limited randomness. For a tree T , let |T | be the number of nodes
in T , and for a node v ∈ T , let Tv denote the subtree rooted at v, and let depth(x)
denote the length of the path from x to the root of T .

Definition 1 (k-Wise Independence). Let k ∈ Z and k ≥ 2. A set of random variables
is k-wise independent if any k-subset of them is independent. A family H of hash func-
tions from set A to set B is k-wise independent if the random variables in {h(x)}x∈A

are k-wise independent and uniform on B when h is picked at random from H.

Unless otherwise stated, all treaps in this paper use 8-wise independent hash functions
to generate priorities. We use the following properties of treaps.

Theorem 1 (Selected Treap Properties [22]). Let T be a random treap on n nodes
with priorities generated by an 8-wise independent hash function from nodes to [p],
where p ≥ n3. Then for any x ∈ T ,

(1) E[depth(x)] ≤ 2 ln(n) + 1, so access and update times are expected O(log n)
(2) Pr[|Tx| = k] = O(1/k2) for all 1 ≤ k < n
(3) Given a predecessor handle, the expected insertion or deletion time is O(1)
(4) If the time to rotate a subtree of size k is f(k) for some f : N → R≥1, the total

time due to rotations to insert or delete an element is O
(

f(n)
n +

∑
0<k<n

f(k)
k2

)

in expectation. Thus even if the cost to rotate a subtree is linear in its size (e.g.,
f(k) = Θ(k)), updates take expected O(log n) time.
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Dynamic Ordered Dictionaries. The dynamic ordered dictionary problem is to maintain
a set S ⊂ U for a totally ordered universe (U, <). In this paper we consider support-
ing insertion, deletion, predecessor (Pred(x, S) = max{e ∈ S|e < x}) and successor
(Succ(x, S) = min{e ∈ S|e > x}). Henceforth we will often skip successor since it
is a simple modification to predecessor. If the keys come from the universe of integers
U = [m] a simple variant of the Van Emde Boas et. al. structure [26] is UR and supports
all operations in O(log log m) expected time [4] and O(|S|) space. Under the compari-
son model we can use treaps to support all operations in O(log |S|) time and space. In
both cases O(1)-wise independence of the hash functions is sufficient. We sometimes
associate data with each element.

Order Maintenance. The Order-Maintenance problem [10] (OMP) is to maintain a
total ordering L on n elements while supporting the following operations:

• Insert(x, y): insert new element y right after x in L.
• Delete(x): delete element x from L.
• Compare(x, y): determine if x precedes y in L.

In previous work [4] the first two authors described a randomized UR data structure
for the problem that supports compare in O(1) worst-case time and updates in O(1)
expected time. It is based on a three level structure. The top two levels use treaps and
the bottom level uses state transitions. The bottom level contains only O(log log n)
elements per structure allowing an implementation based on table lookup. In this paper
we use this order maintenance structure to support ordered subsets.

Ordered Subsets. The Ordered-Subset problem (OSP) is to maintain a total ordering L
and a collection of subsets of L, denoted S = {S1, . . . , Sq} with m = |L| +

∑q
i=1 |Si|

while supporting the OMP operations on L and the following ordered dictionary oper-
ations on each Sk:

• Insert(x, Sk): insert x ∈ L into set Sk.
• Delete(x, Sk): delete x from Sk.
• Pred(x, Sk): For x ∈ L, return max{e ∈ Sk|e < x}.

Dietz [11] first describes this problem in the context of fully persistent arrays, and gives
a solution yielding O(log log m) expected amortized time operations. Mortensen [16]
describes a solution that supports updates to the subsets in expected O(log log m) time,
and all other operations in O(log log m) worst case time, where m is the total number
of element occurrences in subsets. In section 3 we describe a UR version.

3 Uniquely Represented Ordered Subsets

Here we describe a UR data structure for the ordered-subsets problem. It supports the
OMP operations on L in expected O(1) time and the dynamic ordered dictionary prob-
lems on the subsets in expected O(log log m) time, where m = |L| +

∑q
i=1 |Si|. We

use a somewhat different approach than Mortensen [16], which relied heavily on the
solution of some other problems which we do not know how to make UR. Our solution
is more self-contained and is therefore of independent interest beyond the fact that it is
UR. Furthermore, our results improve on Mortensen’s results by supporting insertion
into and deletion from L in O(1) instead of O(log log m) time.
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Theorem 2. Let m := |{(x, k) : x ∈ Sk}| + |L|. There exists a UR data structure
for the ordered subsets problem that uses O(m) space, supports all OMP operations in
expected O(1) time, and all other operations in expected O(log log m) time.

We devote the rest of this section to proving Theorem 2. To construct the data structure,
we start with a UR order maintenance data structure on L, which we will denote by D
(see Section 2). Whenever we are to compare two elements, we simply use D.

We recall an approach used in constructing D [4], treap partitioning: Given a treap
T and an element x ∈ T , let its weight w(x, T ) be the number of descendants, including
itself. For a parameter s, let Ls[T ] = {x ∈ T : w(x, T ) ≥ s}∪{root(T )} be the weight
s partition leaders of T 1. For every x ∈ T let �(x, T ) be the least (deepest) ancestor of
x in T that is a partition leader. Here, each node is considered an ancestor of itself. The
weight s partition leaders partition the treap into the sets {{y ∈ T : �(y, T ) = x} : x ∈
Ls[T ]}, each of which is a contiguous block of keys from T .

In the construction of D [4] the elements of the order are treap partitioned twice,
at weight s := Θ(log |L|) and again at weight Θ(log log |L|). The partition sets at the
finer level of granularity are then stored in UR hash tables. In the rest of the exposition
we will refer to the treap on all of L as T (D). The set of weight s partition leaders of
T (D) is denoted by L[T (D)], and the treap on these leaders by T (L[D]).

The other main structure that we use is a treap T containing all elements from the
set L̂ = {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (D)]}. Treap T is partitioned by weight
log m partition leaders. These leaders are labeled with the path from the root to their
node (0 for left, 1 for right), so that label of each v is the binary representation of the
root to v path. We keep a hash table H that maps labels to nodes, so that the subtreap of
T on L[T ] forms a trie. It is important that only the leaders are labeled since otherwise
insertions and deletions would require O(log m) time. We maintain a pointer from each
node of T to its leader. In addition, we maintain pointers from each x ∈ L[T (D)] to
(x, 0) ∈ T .

We store each subset Sk in its own treap Tk, also partitioned by weight log m leaders.
When searching for the predecessor in Sk of some element x, we use T to find the
leader � in Tk of the predecessor of x in Sk. Once we have �, the predecessor of x can
easily be found by searching in the O(log m)-size subtree of Tk rooted at �. To guide
the search for �, we store at each node v of T the minimum and maximum Tk-leader
labels in the subtree rooted at v, if any. Since we have multiple subsets we need to
find predecessors in, we actually store at each v a mapping from each subset Sk to the
minimum and maximum leader of Sk in the subtree rooted at v. For efficiency, for each
leader v ∈ T we store a hash table Hv, mapping k ∈ [q] to the tuple (min{u : u ∈
L[Tk] and (u, k) ∈ Tv}, max{u : u ∈ L[Tk] and (u, k) ∈ Tv}), if it exists. Recall Tv

is the subtreap of T rooted at v. The high-level idea is to use the hash tables Hv to find
the right “neighborhood” of O(log m) elements in Tk which we will have to update (in
the event of an update to some Sk), or search (in the event of a predecessor or successor
query). Since these neighborhoods are stored as treaps, updating and searching them
takes expected O(log log m) time. We summarize these definitions, along with some
others, in Table 1.

We use the following Lemma to bound the number of changes on partition leaders.
1 For technical reasons we include root(T ) in Ls[T ] ensuring that Ls[T ] is nonempty.
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Table 1. Some useful notation and definitions of various structures we maintain

H hash table mapping label i ∈ {0, 1}m to a pointer to the leader of T with label i

Hv hash table mapping k ∈ [q] to the tuple (if it exists)
(min{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv}, max{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv})

w(x, T ) number of descendants of node x of treap T

L[T ] weight s = Θ(log m) partition leaders of treap T

�(x, T ) the partition leader of x in T

Tk treap containing all elements of the ordered subset Sk, k ∈ [q]
T (D) the treap on L

T (L[D]) the subtreap of T (D) on the weight s = Θ(log m) leaders of T (D)
Jx for x ∈ L[T (D)], a treap containing {u ∈ L : �(u, T (D)) = x and ∃ i : u ∈ Si}
L̂ the set {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (D)]}
T a treap storing L̂

Ix for x ∈ L, a fast ordered dictionary [4] mapping each k ∈ {i : x ∈ Si} to (x, k) in T

Lemma 1. [4] Let s ∈ Z
+ and let T be a treap of size at least s. Let T ′ be the treap

induced on the weight s partition leaders in T . Then the probability that inserting a
new element into T or deleting an element from T alters the structure of T ′ is c/s for
some absolute constant c.

Note that each partition set has size at most O(log m). The treaps Tk, Jx and T , and
the dictionaries Ix from Table 1 are stored explicitly. We also store the minimum and
maximum element of each L[Tk] explicitly. We use a total ordering for L̂ as follows:
(x, k) < (x′, k′) if x < x′ or x = x′ and k < k′.

OMP Insert & Delete Operations: These operations remain largely the same as in the
order maintenance structure of [4]. We assume that when x ∈ L is deleted it is not in any
set Sk. The main difference is that if the set L[T (D)] changes we will need to update
the treaps {Jv : v ∈ L[T (D)]}, T , and the tables {Hv : v ∈ L[T ]} appropriately.

Note that we can easily update Hv in time linear in |Tv| using in-order traversal of Tv ,
assuming we can test if x is in L[Tk] in O(1) time. To accomplish this, for each k we can
store L[Tk] in a hash table. Thus using Theorem 1 we can see that all necessary updates
to {Hv : v ∈ T } take expected O(log m) time. Clearly, updating T itself requires only
expected O(log m) time. Finally, we bound the time to update the treaps Jv by the total
cost to update T (L[D]) if the rotation of subtrees of size k costs k + log m, which is
O(log m) by Theorem 1. This bound holds because |Jv| = O(log m) for any v, and
any tree rotation on T (D) causes at most 3s elements of T (D) to change their weight s
leader. Therefore only O(log m) elements need to be added or deleted from the treaps
{Jv : v ∈ T (L[D])}, and we can batch these updates in such a way that each takes
expected amortized O(1) time. However, we need only make these updates if L[T (D)]
changes, which by Lemma 1 occurs with probability O(1/ logm). Hence the expected
overall cost is O(1).

Predecessor & Successor: Suppose we wish to find the predecessor of x in Sk. (Finding
the successor is analogous.) If x ∈ Sk we can test this in expected O(log log m) time



24 G.E. Blelloch, D. Golovin, and V. Vassilevska

using Ix. So suppose x /∈ Sk. We will first find the predecessor w of (x, k) in T as
follows. (We can handle the case that w does not exist by adding a special element
to L that is smaller than all other elements and is considered to be part of L[T (D)]).
First search Ix for the predecessor k2 of k in {i : x ∈ Si} in O(log log m) time. If k2
exists, then w = (x, k2). Otherwise, let y be the leader of x in T (D), and let y′ be the
predecessor of y in L[T (D)]. Then either w ∈ {(y′, 0), (y, 0)} or else w = (z, k3),
where z = max{u : u < x and u ∈ Jy ∪Jy′} and k3 = max{i : z ∈ Si}. Thus we can
find w in expected O(log log m) time using fast finger search for y′, treap search on the
O(log m) sized treaps in {Jv : v ∈ L[T (D)]}, and the fast dictionaries {Ix : x ∈ L}.

Once we have found the predecessor w of (x, k) in T , we search for the predecessor
w′ of x in L[Tk]. (If w′ does not exist, we simply use min{u ∈ L[Tk]}). To find w′,
we first use w to search for a node u′, defined as the leader (x, k) would have had in
T , had it been given a priority of −∞. Note that with priority −∞, (x, k) would be the
leftmost leaf of the right subtree of w in T . Hence its leader would either be the leader
of w, or the deepest leader on the leftmost path starting from the right child of w. Hence
u′ can be found in expected O(log log m) time, by binary searching on its label (i.e., if
the label of w is α, then find the maximum k such that α · 1 · 0k is an label in H).

Let P be the path from u′ to the root of T . We use the label of u′ and H to binary
search on P for the deepest node v ∈ P for which min{u : u ∈ L[Tk] and (u, k) ∈
Tv} < x. This takes O(log |P |) = O(log log m) time in expectation. If v 	= u′, then u′

is in the right subtree of v in T , and (w′, k) is in the left subtree of v. So let vl be the left
child of v and note that w′ = max{u : u ∈ L[Tk] and (u, k) ∈ Tvl

}, which we can
look up in O(1) time after finding v by using Hv. Otherwise v = u′. In this case, lookup
a := min{u : u ∈ L[Tk] and (u, k) ∈ Tv} and b := max{u : u ∈ L[Tk] and (u, k) ∈
Tv}, find the least common ancestor c of {a, b} in Tk, and starting from c search Tk for
w′. Since a and b are both descendants of u′, their distance (i.e., one plus the number
of nodes between them in the order) in L̂ is at most s = Θ(log m), and thus their
distance in Tk is at most O(log m). However, in random treaps the expected length
of a path between nodes at distance d is O(log(d)), even if priorities are generated
using only 8-wise independent hash functions [22]. Thus we can find c in expected
O(log log m) time. Note c has at most O(log2 m) descendants between a and b in Tk,
since there are at most O(log m) partition leaders between a and b and each has at most
O(log m) “followers” in its partition set, and we can find w′ in expected O(log log m)
time starting from c. Once we have found w′, the predecessor of x in L[Tk], we can
simply find the successor of w′ in L[Tk], say w′′, via fast finger search, and then search
the subtreaps rooted at w′ and w′′ for the actual predecessor of x in Sk in expected
O(log log m) time.

OSP-Insert and OSP-Delete: OSP-Delete is analogous to OSP-Insert, hence we focus
on OSP-Insert. Suppose we wish to add x to Sk. First, if x is not currently in any sets
{Si : i ∈ [q]}, then find the leader of x in T (D), say y, and insert x into Jy in expected
O(log log m) time. Next, insert x into Tk as follows. Find the predecessor w of x in Sk,
then insert x into Tk in expected O(1) time starting from w to speed up the insertion.

Find the predecessor w′ of (x, k) in T as in the predecessor operation, and insert
(x, k) into T using w′ as a starting point. If neither L[Tk] nor L[T ] changes, then
no modifications to {Hv : v ∈ L[T ]} need to be made. If L[Tk] does not change
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but L[T ] does, as happens with probability O(1/ log m), we can update T and {Hv :
v ∈ L[T ]} appropriately in expected O(log m) time. If L[Tk] changes, we must be
careful when updating {Hv : v ∈ L[T ]}. Let L[Tk] and L[Tk]′ be the leaders of
Tk immediately before and after the addition of x to Sk, and let Δk := (L[Tk] −
L[Tk]′) ∪ (L[Tk]′ − L[Tk]). Then we must update {Hv : v ∈ L[T ]} appropriately for
all nodes v ∈ L[T ] that are descendants of (x, k) as before, but must also update Hv

for any node v ∈ L[T ] that is an ancestor of some node in {(u, k) : u ∈ Δk}. It is
not hard to see that these latter updates can be done in O(|Δk| log m) time. Moreover,
E
[
|Δk| | x ∈ L[Tk]′

]
= O(1), since |Δk| can be bounded by 2(R + 1), where R is

the number of rotations necessary to rotate x down to a leaf node in a treap on L[Tk]′.
Since it takes Θ(R) time to delete x given a handle to it, from Theorem 1 we easily infer
E[R] = O(1). Since the randomness for Tk is independent of the randomness used for
T , these expectations multiply, for a total expected time of O(log m), conditioning on
the fact that L[Tk] changes. Since L[Tk] only changes with probability O(1/ log m),
this part of the operation takes expected O(1) time. Finally, insert k into Ix in expected
O(log log m) time, with a pointer to (x, k) in T .

4 Uniquely Represented Range Trees

Let P = {p1, p2, . . . , pn} be a set of points in R
d. The well studied orthogonal range

reporting problem is to maintain a data structure for P while supporting queries which
given an axis aligned box B in R

d returns the points P ∩ B. The dynamic version
allows for the insertion and deletion of points. Chazelle and Guibas [8] showed how
to solve the two dimensional dynamic problem in O(log n log log n) update time and
O(log n log log n + k) query time, where k is the size of the output. Their approach
used fractional cascading. More recently Mortensen [17] showed how to solve it in
O(log n) update time and O(log n + k) query time using a sophisticated application
of Fredman and Willard’s q-heaps [12]. All of these techniques can be generalized to
higher dimensions at the cost of replacing the first log n term with a logd−1 n term [9].

Here we present a uniquely represented solution to the problem. It matches the
bounds of the Chazelle and Guibas version, except ours are in expectation instead of
worst-case bounds. Our solution does not use fractional cascading and is instead based
on ordered subsets. One could probably derive a UR version based on fractional cas-
cading, but making dynamic fractional cascading UR would require significant work2

and is unlikely to improve the bounds. Our solution is simple and avoids any explicit
discussion of weight balanced trees (the required properties fall directly out of known
properties of treaps).

Theorem 3. Let P be a set of n points in R
d. There exists a UR data structure for the

orthogonal range query problem that uses O(n logd−1 n) space and O(d log n) random
bits, supports point insertions or deletions in expected O(logd−1 n · log log n) time, and
queries in expected O(logd−1 n · log log n + k) time, where k is the size of the output.

If d = 1, simply use the dynamic ordered dictionaries solution [4] and have each ele-
ment store a pointer to its successor for fast reporting. For simplicity we describe the

2 We expect a variant of Sen’s approach [23] could work.
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two dimensional case. The remaining cases with d ≥ 3 can be implemented using
standard techniques [9] if treaps are used for the underlying hierarchical decomposi-
tion trees. The description will be deferred to the full paper. We will assume that the
points have distinct coordinate values; thus, if (x1, x2), (y1, y2) ∈ P , then xi 	= yi for
all i. (There are various ways to remove this assumption, e.g., the composite-numbers
scheme or symbolic perturbations [9].) We store P in a random treap T using the or-
dering on the first coordinate as our BST ordering. We additionally store P in a second
random treap T ′ using the ordering on the second coordinate as our BST ordering, and
also store P in an ordered subsets instance D using this same ordering. We cross link
these and use T ′ to find the position of any point we are given in D. The subsets of D
are {Tv : v ∈ T }, where Tv is the subtree of T rooted at v. We assign each Tv a unique
integer label k using the coordinates of v, so that Tv is Sk in D. The structure is UR as
long as all of its components (the treap and ordered subsets) are uniquely represented.

To insert a point p, we first insert it by the second coordinate in T ′ and using the pre-
decessor of p in T ′ insert a new element into the ordered subsets instance D. This takes
O(log n) expected time. We then insert p into T in the usual way using its x coordinate.
That is, search for where p would be located in T were it a leaf, then rotate it up to
its proper position given its priority. As we rotate it up, we can reconstruct the ordered
subset for a node v from scratch in time O(|Tv| log log n). Using Theorem 1, the over-
all time is O(log n log log n) in expectation. Finally, we must insert p into the subsets
{Tv : v ∈ T and v is an ancestor of p}. This requires expected O(log log n) time per
ancestor, and there are only O(log n) of them in expectation. Since these expectations
are computed over independent random bits, they multiply, for an overall time bound
of O(log n · log log n) in expectation. Deletion is similar.

To answer a query (p, q) ∈ R
2 × R

2, where p = (p1, p2) is the lower left and
q = (q1, q2) is the upper right corner of the box B in question, we first search for
the predecessor p′ of p and the successor q′ of q in T (i.e., with respect to the first
coordinate). We also find the predecessor p′′ of p and successor q′′ of q in T ′ (i.e., with
respect to the second coordinate). Let w be the least common ancestor of p′ and q′ in T ,
and let Ap′ and Aq′ be the paths from p′ and q′ (inclusive) to w (exclusive), respectively.
Let V be the union of right children of nodes in Ap′ and left children of nodes in Aq′ ,
and let S = {Tv : v ∈ V }. It is not hard to see that |V | = O(log n) in expectation, that
the sets in S are disjoint, and that all points in B are either in W := Ap′ ∪ {w} ∪ Aq′

or in ∪S∈SS. Compute W ’s contribution to the answer, W ∩ B, in O(|W |) time by
testing each point in turn. Since E[|W |] = O(log n), this requires O(log n) time in
expectation. For each subset S ∈ S, find S ∩ B by searching for the successor of p′′

in S, and doing an in-order traversal of the treap in D storing S until reaching a point
larger than q′′. This takes O(log log n + |S ∩ B|) time in expectation for each S ∈ S,
for a total of O(log n · log log n + k) expected time.

5 Horizontal Point Location and Orthogonal Segment Intersection

Let S = {(xi, x
′
i, yi) : i ∈ [n]} be a set of n horizontal line segments. In the horizon-

tal point location problem we are given a point (x̂, ŷ) and must find (x, x′, y) ∈ S
maximizing y subject to the constraints x ≤ x̂ ≤ x′ and y < ŷ. In the related
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orthogonal segment intersection problem we are given a vertical line segment s =
(x, y, y′), and must report all segments in S intersecting it, namely {(xi, x

′
i, yi) : xi ≤

x ≤ x′
i and y ≤ yi ≤ y′}. In the dynamic version we must additionally support updates

to S. As with the orthogonal range reporting problem, both of these problems can be
solved using fractional cascading and in the same time bounds [8] (k = 1 for point lo-
cation and is the number of lines reported for segment intersection). Mortensen [15] im-
proved orthogonal segment intersection to O(log n) updates and O(log n + k) queries.

We extend our ordered subsets approach to obtain the following results for horizontal
point location and range reporting.

Theorem 4. Let S be a set of n horizontal line segments in R
2. There exists a uniquely

represented data structure for the point location and orthogonal segment intersection
problems that uses O(n log n) space, supports segment insertions and deletions in ex-
pected O(log n·log log n) time, and supports queries in expected O(log n·log log n+k)
time, where k is the size of the output. The data structure uses O(log n) random bits.

6 Uniquely Represented 2-D Dynamic Convex Hull

Using similar techniques we obtain a uniquely represented data structure for maintain-
ing the convex hull of a dynamic set of points S ⊂ R

2. Our approach builds upon
the work of Overmars & Van Leeuwen [19]. Overmars & Van Leeuwen use a standard
balanced BST T storing S to partition points along one axis, and likewise store the
convex hull of Tv for each v ∈ T in a balanced BST. In contrast, we use treaps in both
cases, together with the hash table in [4] for memory allocation. Our main contribution
is then to analyze the running times and space usage of this new uniquely represented
version, and to show that even using only O(log n) random bits to hash and generate
treap priorities, the expected time and space bounds match that of the original version
up to constant factors. Specifically, we prove the following.

Theorem 5. Let n = |S|. There exists a uniquely represented data structure for 2-D
dynamic convex hull that supports point insertions and deletions in O(log2 n) expected
time, outputs the convex hull in O(k) time, where k is the size of the convex hull, requires
O(n) space in expectation, and uses only O(log n) random bits.

7 Conclusions

We have introduced uniquely represented data structures for a variety of problems in
computational geometry. Such data structures represent every logical state by a unique
machine state and reveal no history of previous operations, thus protecting the privacy
of their users. For example, our uniquely represented range tree allows for efficient or-
thogonal range queries on a database containing sensitive information (e.g., viral load in
the blood of hospital patients) without revealing any information about what order the
current points were inserted into the database, whether points were previously deleted,
or what queries were previously executed. Uniquely represented data structures have
other benefits as well. They make equality testing particularly easy. They may also sim-
plify the debugging of parallel processes by eliminating the conventional dependencies
upon the specific sequence of operations that led to a particular logical state.
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