
Parallel Shortest Paths Using Radius Stepping

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu
Carnegie Mellon University
yan.gu@cs.cmu.edu

Yihan Sun
Carnegie Mellon University
yihans@cs.cmu.edu

Kanat Tangwongsan˚
Mahidol University

International College
kanat.tan@mahidol.edu

ABSTRACT
The single-source shortest path problem (SSSP) with nonnegative
edge weights is notoriously difficult to solve efficiently in parallel—
it is one of the graph problems said to suffer from the transitive-
closure bottleneck. Yet, in practice, the ∆-stepping algorithm of
Meyer and Sanders (J. Algorithms, 2003) often works efficiently but
has no known theoretical bounds on general graphs. The algorithm
takes a sequence of steps, each increasing the radius by a user-
specified value ∆. Each step settles the vertices in its annulus but
can take Θpnq substeps, each requiring Θpmq work (n vertices and
m edges).

Building on the success of∆-stepping, this paper describes Radius-
Stepping, an algorithm with one of the best-known tradeoffs between
work and depth bounds for SSSP with nearly-linear (rOpmq) work.
The algorithm is a ∆-stepping-like algorithm but uses a variable
instead of a fixed-size increase in radii, allowing us to prove a bound
on the number of steps. In particular, by using what we define as a
vertex k-radius, each step takes at most k`2 substeps. Furthermore,
we define a pk , ρq-graph property and show that if an undirected
graph has this property, then the number of steps can be bounded by
Opn{ρ ¨ log ρLq, for a total of Opkn{ρ ¨ log ρLq substeps, each par-
allel. We describe how to preprocess a graph to have this property.
Altogether, for an arbitrary input graph with n vertices and m edges,
Radius-Stepping, after preprocessing, takes Oppm`nρq log nq work
and Opn{ρ ¨ log n logpρLqq depth per source. The preprocessing
step takes Opm log n ` nρ2q work and Opρ log ρq depth, adding no
more than Opnρq edges.

1. INTRODUCTION
The single-source shortest path problem (SSSP) is a fundamental

graph problem that is extremely well-studied and has numerous
practical and theoretical applications. For a weighted graph G “

pV , E ,wq with n “ |V | vertices and m “ |E| edges, and a source
vertex s P V , the SSSP problem with nonnegative edge weights
is to find the shortest (i.e., minimum weight) path from s to every
v P V , according to the weight function w : E Ñ R`, which assigns
˚Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA

© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935765

to every edge a real-valued nonnegative weight (“distance”). We
assume without loss of generality that the lightest nonzero edge
has weight 1, i.e, mine:wpeqą0 wpeq “ 1. Throughout, we let
L “ maxe wpeq denote the heaviest edge in the graph.

In the sequential setting, Dijkstra’s algorithm [8] implemented
with the Fibonacci heap [10] solves this problem in Opm ` n log nq
time. This is the best theoretical running time for general nonnega-
tive edge weights although faster algorithms exist for certain special
cases. Thorup [27], for example, gives an Opm` nq-time algorithm
for undirected graphs when the edge weights are positive integers.

In the parallel setting, the holy grail of parallel SSSP is an al-
gorithm with Dijkstra’s work bound (i.e., work efficient) that runs
in small depth. Although tens of algorithms for the problem have
been proposed over the last several decades, none of the existing
algorithms that take the same amount of work as Dijkstra’s have
polylogarithmic or even opnq depth. This has led Karp and Ra-
machandran to coin the term transitive closure bottleneck [15].

Apart from the theoretical quest for a polylogarithmic-depth,
work-efficient algorithm, one could aim for an algorithm with a high
degree of parallelism (P “ W{D) that is work efficient or nearly
work-efficient. From a performance standpoint, both factors are
important because work efficiency is a prerequisite for the algorithm
to quickly gain speedups over the sequential algorithm, and the
parallelism factor P indicates how well it will scale with processors.

This observation has fueled the design of SSSP algorithms with
substantial parallelism that are nearly work-efficient. Spencer [26]
shows that SSSP can be solved in Opn{ρ ¨ log n logpρLqq depth and
Oppnρ2 log ρ` mq logpnρLqq work, using limited path-doubling to
determine the shortest-path distances to about ρ vertices in each
round. Later, by precomputing about ρ closest neighbors of every
vertex, Shi and Spencer [25] solve SSSP in Opn{ρ ¨ log nq depth,
and Opnρ2 log n log ρ ` m log nq or Oppρ3 ` mρq log nq work; the
preprocessing takesOpnρ2 log n log ρ`mqwork andOplog n log ρq
depth. We further discuss these results, as well as other related
algorithms, in Section 6.

On the empirical side, the ∆-stepping algorithm of Meyer and
Sanders [19] works well on many kinds of graphs. The algorithm
has been analyzed for random graphs, but no theoretical guarantees
are known for the general case. ∆-stepping is a hybrid of Dijkstra’s
algorithm and the Bellman-Ford algorithm. It determines the correct
distances from s in increments of ∆, settling in step i all the vertices
whose shortest-path distances are between i∆ and pi ` 1q∆. Within
each step, the algorithm resorts to running Bellman-Ford as substeps
to determine the distances to such vertices. Altogether, the algorithm
performs up to a total of LK{∆ rounds of substeps, where K is the
shortest-path distance to the farthest vertex from s.

Our Contributions
In this paper, we investigate the single-source shortest-path problem
for weighted, undirected graphs. We begin by introducing the notion
of a pk , ρq-graph to capture structural properties that enable com-
puting SSSP in a few parallel steps. Informally, a pk , ρq-graph is a
graph in which every vertex can reach its ρ closest vertices within k

hops. Based on this notion, our main results are as follows:

Theorem 1.1 (Shortest Path). There is an algorithm, Radius-
Stepping, that on input a pk , ρq-graph with m edges and n vertices
and a source vertex, computes the shortest path to every vertex in
Opkm log nq work and Opkn{ρ ¨ log n logpρLqq depth.

However, not all graphs are pk , ρq-graphs as given. We prove that
by adding a small number of extra edges (“shortcuts”), every graph
can be turned into a p1, ρq-graph at a modest cost:

Theorem 1.2 (Preprocessing). There is an algorithm that on
input an undirected, weighted graph G with n vertices and m edges,
computes a p1, ρq-graph out of G in Opm log n ` nρ2q work and
Opρ log ρq depth by adding at most nρ extra edges.

Together, this means that given as input an arbitrary undirected,
weighted graph with n vertices and m edges, we can make it a
p1, ρq-graph in Opm log n ` nρ2q work and Opρ log ρq depth. The
graph then has m1 “ m ` nρ edges, whose weight is at most ρL
each. Hence, after preprocessing, the shortest path from any given
source can be computed in Oppm ` nρq log nq work and Opn{ρ ¨
log n logpρLqq depth1.

Compared to a standard Dijkstra’s implementation, the algorithm,
excluding preprocessing, is work-efficient up to only a log n factor.
Using ρ “ polylogpnq, the algorithm offers at least polylogarithmic
parallelism. Using ρ “ Ωpnεq, the algorithm has sublinear depth.
As far as we know, this is one of the best tradeoffs between work
and depth for the problem and has the potential to perform better on
real graphs than what the theoretical bounds suggest.

In broad strokes, our algorithm Radius-Stepping (Section 3) can
be seen as a hybrid variant of ∆-stepping and Spencer’s algorithm,
though simpler. It also bears some similarity to Shi and Spencer’s al-
gorithm but is again simpler. Like ∆-stepping, it performs Dijkstra’s-
like steps in the outer loop, finding and settling multiple vertices
at a time using (restricted) Bellman-Ford as substeps. Unlike ∆-
stepping, however, the algorithm judiciously picks a new step size
(∆) every time. The step size is chosen so that, like in Spencer’s al-
gorithm, about ρ new vertices are settled in every step, or otherwise
it doubles the distance explored. Yet, unlike Spencer’s algorithm,
Radius-Stepping does not perform path doubling in every iteration,
leading to a conceptually simpler algorithm with fewer moving parts.
Ultimately, the steps of Radius-Stepping mirror Dijkstra’s execution
steps, and the only invariant necessary is a natural generalization of
Dijkstra’s invariant.

Provided that the input is a pk , ρq-graph, Radius-Stepping runs in
Op nρ logpρLqq steps, each running up to Opkq substeps, leading to
the bounds in Theorem 1.1. For unweighted graphs, it only takes
Opkpm ` nqq work and Opk n

ρ log ρ log˚ ρq depth.
As not all graphs are pk , ρq-graphs as given, Section 4 describes

preprocessing strategies to make a graph a pk , ρq-graph. They in-
volve running restricted Dijkstra’s to discover the ρ-closest vertices
for all vertices in parallel. To derive a p1, ρq-graph, the preprocess-
ing step effectively adds up to nρ shortcut edges to the input graph.
The number of shortcut edges can be reduced if we use a larger

1The heaviest edge is technically heavier by a ρ-factor, affecting the
logpρLq term only by a constant.

k. Although this saves some memory, Radius-Stepping will have
to do slightly more work when computing the shortest paths. For
k ą 1, it is less trivial to generate a pk , ρq-graph that adds only a
small number of edges. We present some heuristics in Section 4 and
empirically study their quality in Section 5.

Our experiments study the number of edges added by preprocess-
ing and the number of steps taken by Radius-Stepping. This is a
good proxy for measuring the depth of the algorithm experimen-
tally. The results confirm our theory: the number of steps taken
(that is, roughly the depth) is inversely proportional to ρ for both
the weighted and unweighted cases. They further show that with
an appropriate heuristic (such as the dynamic programming heuris-
tic from Section 4.2) and choice of parameters, preprocessing will
add a reasonably small number of edges (at most Opmq), thereby
increasing the total work by at most a constant.

2. PRELIMINARIES
Let G “ pV , E ,wq be an undirected, simple, weighted graph.

We assume without loss of generality that G is a connected, simple
graph (i.e., no self-loops nor parallel edges). For S Ď V , define
NpSq “ YuPStv | pu, vq P Eu to be the neighbor set of S. During
the execution of standard breadth-first search (BFS) or Dijkstra’s
algorithm, the frontier is the neighbor set of all visited vertices.
Let dpu, vq denote the shortest-path distance in G between two
vertices u and v. The enclosed ball of a vertex u is Bpu, rq “ tv P
V | dpu, vq ď ru.

A shortest-path tree rooted at vertex u is a spanning tree T of G
(a subtree if disconnected) such that the path distance from the root
u to any other vertex v P T is the shortest-path distance from v to u

in G. A graph is unweighted if wpeq “ 1 for all e P E (so L “ 1).
We assume the standard PRAM model that allows for concurrent

reads and writes, and analyze the performance of our parallel al-
gorithms in terms of work and depth [14], where work W is equal
to the total number of operations performed and depth (span) D is
equal to the longest sequence of dependent operations. Nonetheless,
all of our algorithms can also be implemented on machines with
exclusive writes. An algorithm is work efficient if it does the same
amount of work as the best sequential counterpart, up to constants.

Consider two ordered sets A and B stored in balanced BSTs
with |A| ď |B|. Recent research work shows that set union and
set difference can be computed either in Op|A| log |B|q work and
Oplog |B|q depth [24, 22, 23], or in Op|A| log |B|{|A|q work and
Oplog |A| log |B|q depth [3, 2]. For this paper, it suffices that both
set operations take Op|A| log |B|q work and Oplog |B|q depth. Also,
to split a tree A by a certain key costs Oplog |A|q work and depth [2].

Finally, we need a few definitions for our algorithms:

Definition 1 (Hop Distance). Let d̂pu, vq be the number of edges
on the shortest (weighted) path between u and v that uses the fewest
edges.

Definition 2 (k-radius). For u P V , the k-radius of u, denoted
by r̄k puq, is min

vPV,d̂pu ,vqąk
dpu, vq—that is, the closest distance

to u which is more than k hops away.

The k-radii of vertices are widely used in our algorithm analysis.
However, computing them can be costly, so instead, we provide the
concepts of ρ-nearest distance and pk , ρq-graph, and our algorithm
is based on both the k-radius and ρ-nearest distance of each vertex.

Definition 3 (ρ-nearest distance). For v P V , the ρ-nearest
distance of v, denoted by rρpvq, is the distance from v to the ρ-th
closest vertex to v.

Algorithm 1: The Radius-Stepping Algorithm.
Input: A graph G “ pV , E ,wq, vertex radii rp¨q, and a source

vertex s.
Output: The graph distances δp¨q from s.

1 δp¨q Ð `8, δpsq Ð 0
2 foreach v P Npsq do δpvq Ð wps, vq S0 Ð tsu, i Ð 1
3 while |Si´1| ă |V | do
4 di Ð minvPV zSi´1tδpvq ` rpvqu

5 repeat
6 foreach u P VzSi´1 s.t . δpuq ď di do
7 foreach v P NpuqzSi´1 do
8 δpvq Ð mintδpvq, δpuq ` wpu, vqu

9 until no δpvq ď di was updated
10 Si “ tv | δpvq ď diu

11 i “ i ` 1
12 return δp¨q

source

di

di-1

vi
r(v)i

Figure 1: Illustration of a step of Radius-Stepping: For all vertices whose
neighbors are within di , we pick vi , the lead node in the i-th step, that
minimizes the tentative distance plus the vertex radius of this vertex. The
step distance di is set to δpvi q ` rpvi q.

Definition 4 (pk , ρq-ball and pk , ρq-graph). We say that a ver-
tex v P V has a pk , ρq-ball if rρpvq ď r̄k pvq. A graph is a pk , ρq-
graph if each vertex in the graph forms a pk , ρq-ball.

The following lemma then follows directly from these definitions:

Lemma 2.1. For a graph G, if we let rpvq “ rρpvq for all v P V
and G is a pk , ρq-graph, then rpvq ď r̄k pvq and |Bpv, rpvqq| ě ρ.

3. THE RADIUS-STEPPING ALGORITHM
This section describes our algorithm for parallel SSSP called

Radius-Stepping and discusses its performance analysis. We begin
with a high-level description, which we analyze for the number of
steps. Following that, we give a detailed implementation, which we
analyze for work and depth.

The Radius-Stepping algorithm is presented in Algorithm 1. At
a high level, it works as follows: The input to the algorithm is a
weighted, undirected graph, a source vertex, and a target radius
value for every vertex, given as a function r : V Ñ R`. In the
algorithm we use δp¨q to denote the tentative distance. The algorithm
has the same basic structure as the ∆-stepping algorithm; both are
effectively a hybrid of Dijkstra’s algorithm and the Bellman-Ford
algorithm. Like Dijkstra’s algorithm, they visit vertices in increasing
distance from the source s, settling each vertex v—i.e., determining
its correct distance dps, vq. However, instead of visiting one vertex
at a time, the algorithms visit vertices in steps (the while loop in
Line 5–11). In each step i, Radius-Stepping increments the radius

centered at s from di´1 to di , and settles all vertices v in the annulus
di´1 ă dps, vq ď di . This is illustrated in Figure 1.

Settling these vertices involves multiple substeps (the do loop in
Lines 5–9) of what is effectively Bellman-Ford’s algorithm. Each
substep is easily parallelized. In ∆-stepping, the step distance di “

di´1 ` ∆ increases the radius by a fixed amount on each step. This
can require Θpnq substeps in the worst case, which is not efficient
since each substep will process the same set of vertices and their
edges. In the worst case, it could take Opnmq work.

In the Radius-Stepping algorithm, a new step distance di is de-
cided on each step with the goal of bounding the number of substeps.
The algorithm takes a radius rpvq for each vertex and selects a di
on step i by taking the minimum of δpvq ` rpvq over all v in the
frontier (Line 4). Lines 5–9 then run the Bellman-Ford substeps
until all vertices with radius less than di are settled. Vertices within
di are then added to the visited set Si .

The algorithm is correct for any radii rp¨q, but by setting it appro-
priately, it can be used to control the number of substeps per step and
the number of steps. If rpvq “ 0, then the algorithm is effectively
Dijkstra’s, and the inner step is run only once. It may, however, visit
multiple vertices with the same distance. If rpvq “ 8, then the al-
gorithm is effectively the Bellman-Ford algorithm, and the substeps
will run until all vertices are settled, and hence there will be a single
step. If rpvq “ ∆, then the algorithm is almost ∆-stepping, but not
quite since ∆ is added to the distance of the nearest frontier vertex
instead of to di´1.

In this paper, we aim to set rpvq to be close, but no more, than
the k-radius r̄k pvq. By making rpvq no more than the k-radius, it
guarantees that the algorithm will run at most pk ` 2q Bellman-Ford
substeps. For our theoretical bounds, we set k “ 1 so the algorithm
only does constant substeps.

In addition to bounding the number of substeps, we want to bound
the number of steps. To do this, we can make use of properties of
the input graph. In particular, if every vertex v has ρ vertices that are
within a distance rpvq, i.e. rρpvq ď rpvq (indicating |Bpv, rpvqq| ě
ρ), then we can bound the number of steps by Op nρ logpρLqq, where
L is the longest edge in the graph.

Theorem 3.1 (Correctness). After the i-th step of Radius-Stepping,
each vertex v with di´1 ă dps, vq ď di will have δpvq “ dps, vq
and will be included in Si .

Correctness of the algorithm is straightforward since it is essen-
tially the ∆-stepping algorithm with a variable step size: At the end
of the inner loop, all vertices within the step distance are settled,
and all of their direct neighbors are relaxed.

To analyze the parallelism of this algorithm, we observe that the
inner-most loops for each Bellman-Ford step (Lines 6 and 7) are
readily parallelizable, so the longest chain of dependencies (i.e., the
depth) is bounded by the number of steps (Line 5) and substeps
(Line 5), as given below:

Theorem 3.2 (The number of substeps). The repeat-until loop
(Lines 5–9) runs at most k ` 2 times provided that rpvq ď r̄k pvq for
all v P V .

Theorem 3.3 (The number of steps). The while loop (Lines 5–
11) requires no more than

R

n

ρ

V

p1` rlog2 ρLsq “ O

ˆ

n

ρ
logpρLq

˙

steps provided that rρpvq ď rpvq for all v P V .

We prove these theorems in Sections 3.1 and 3.2 that follow, and
give implementation details of the algorithm in Section 3.3.

In the following analysis, we define the lead node in step i as the
vertex v that attains di in Line 4 and denote it by vi .

3.1 Number of Substeps
Let k be such that rpvq ď r̄k pvq for all v P V . To bound the

number of substeps, we use the fact that vertices with distances
no more than the step distance in the previous step pdi´1q are all
correctly computed, as given by Theorem 3.1. Observe that their
neighbors are also relaxed, since the distances to none of these
vertices are updated in the last substep of the previous step (the
termination condition in Line 9).

Lemma 3.4. For a vertex v P V , if di´1 ă dps, vq ď di , then its
distance is correctly computed after k ` 1 substeps of the i-th step,
i.e. δpvq “ dps, vq.

Proof. Consider the shortest path from s to v that uses the fewest
hops. Let u be the first vertex on this path with distance larger than
di´1. By Theorem 3.1, we have that δpuq is relaxed to dps, uq at
the end of the pi ´ 1q-th step.

Now we prove that v must be within pk`1q hops from u. Assume
to the contrary that the hop distance d̂pu, vq ą k ` 1. Let v1 be
the vertex on the shortest path from s to v which appears right
before v, then dpu, v1q ă dpu, vq ď di ´ δpuq ď rpuq ď r̄k puq,
which contradicts the condition that d̂pu, v1q “ d̂pu, vq´1 ą k (the
definition of k-radius r̄k puq prevents this from happening). Hence,
we have d̂pu, vq ď k ` 1, and the distance of v can be computed
within k ` 1 substeps along the shortest path from u to v.

By Lemma 3.4, all vertices with distances no more than di can
be computed within k ` 1 substeps. We need an extra substep to
relax all of their direct neighbors, and to ensure no δpvq ď di was
updated. This proves Theorem 3.2.

3.2 Number of Steps
Let ρ ą 0 be such that the condition rpvq ě rρpvq (or Bpv, rpvqq ě

ρ) holds for all v P V . We prove Theorem 3.3 by showing the fol-
lowing lemma:

Lemma 3.5. In any t “ 1` rlog2 ρLs consecutive steps, except
possibly in the last step of the algorithm, we have |Si`t ´ Si | ě ρ.

The lemma says that Radius-Stepping will visit at least ρ vertices
in any t “ 1 ` rlog ρLs consecutive steps, except perhaps in the
last one. Hence, all vertices will be visited in no more than rn{ts “

rn{ρsp1` rlog2 ρLsq steps.
To prove this lemma, we show that in a step j, i ă j ď i`t , either

ρ vertices have already been visited in the j-step (i.e. |S j`1´ Si | ě

ρ), or the difference in the step distance doubles (i.e. d j ´ di ě

2pd j´1 ´ diq). In the latter case, if that happens for t consecutive
steps, then dt ´ di ě 2t´1 ą ρL, which has at least ρ nodes in
this range.We begin the proof by showing some basic facts about
the algorithm: The lemma below shows a property of the enclosed
ball of the lead node v j .

Lemma 3.6. Let i ă j. For a lead node v j , if rpv j q ă dps, v j q´
di , then Bpv j , rpv j qq Ď pS j ´ Siq.

Proof. Consider a vertex v P Bpv j , rpv j qq. First, v cannot be
visited after the j-th step, since dps, vq ď dps, v j q ` dpv j , vq ď
δpv j q`rpv j q “ d j . Similarly, v cannot be visited in the first i steps
since dps, vq ě dps, v j q ´ dpv j , vq ą di ` rpv j q ´ dpv j , vq ě
di .

The next property states that starting from the i-th step, either we
reach ρ vertices, or the distance we explore in each step doubles.

Lemma 3.7. Let i be given. If |Bpv j , rpv j qq| ě ρ, then @ j ą i,
either |S j ´ Si | ě ρ, or d j ´ di ě 2pd j´1 ´ diq ě 2 j´i´1.

Proof. Lemma 3.6 already shows that if rpv j q ă dps, v j q ´ di
then we have |S j ´ Si | ě |Bpv j , rpv j qq| ě ρ. Otherwise, since
δpv j q ě dps, v j q,

d j ´ di “ δpv j q ` rpv j q ´ di

ě dps, v j q `
`

dps, v j q ´ di
˘

´ di

“ 2pdps, v j q ´ diq ě 2pd j´1 ´ diq,

where the last step used the fact that dps, v j q ě d j´1 (Line 4).
Since the minimum edge weight is 1, we have that di`1 ´ di ě 1
and further that d j ´ di ě 2 j´i´1.

With Lemma 3.7, we now prove Lemma 3.5, which is equivalent
to proving Theorem 3.3.

Proof of Lemma 3.5. If |Bpv j , rpv j qq| ě ρ and |Si`t ´ Si | ă ρ,
then based on Lemma 3.7, di`t ´ di ě 2t´1 ě ρL. Consider the
node u˚ “ arg minuPV zSi`t

dps, uq. Let tu1 “ s, u2 , ¨ ¨ ¨ , uk “

u˚u be the ancestors to reach u˚ on the shortest-path tree. From
the definition of u˚ we have tu1 “ s, u2 , ¨ ¨ ¨ , uk´1u Ď Si`t .
Meanwhile, since the longest edge in G has edge weight L, for any j

that k´ ρ ď j ď k´1, the shortest-path distance to u j satisfies that
dps, u j q ě dps, u˚q´pk´ jqL ě dps, u˚q´ρL ą di`t´ρL ě di ,
which means u j R Si . Therefore, tuk´ρ , uk´ρ`1 , ¨ ¨ ¨ , uk´1u P
Si`t ´ Si , and |Si`t ´ Si | ě ρ.

3.3 Work and Depth
We now analyze the work and depth of Radius-Stepping. Algo-

rithm 1 is a high-level description, and an efficient implementation
with priority queues is shown in Algorithm 2. Throughout the com-
plexity analysis, we assume rρpvq ď rpvq ď r̄k pvq for all v P V

(we show how to prepare the graph to guarantee this property in the
next section).

There are mainly two steps in Algorithm 1 that are costly and
require efficient solutions: the calculation of the step distance di
(Line 4) and the discovery of all unvisited vertices with tentative
distances less than di (Line 6).

To efficiently support these two types of queries, we use two
ordered sets Q and R, implemented as balanced binary search trees
(BSTs) to store the tentative distance (δpuq) for each unvisited vertex
and the tentative distance plus the vertex radius (δpuq ` rpuq). With
these BSTs, the selection of step distance corresponds to finding
the minimum in the tree R, and picking vertices within a certain
distance is a split operation on the BST Q. Both operations require
Oplog nq work.

Let Ai be the active set that contains the elements visited in the i-
th step (all vertices u in line 6 in Algorithm 1). This can be computed
by splitting the BST Q (Line 7 in Algorithm 2). To maintain the
priority queues sequentially, we relax all neighbors of vertices in Ai

for k ` 2 substeps. Other than updating the tentative distance, we
update each neighbor vertex (referred to as v) as follows:

(1) if the previous distance of v is already no more than di , v is
already removed from Q and R earlier in this step, so we do
nothing;

(2) if the previous distance is larger than di while the updated
value is no more than di , we remove v from Q and R, and add
v to the active set Ai ; and

(3) if the updated distance is still larger than di , we decrease the
keys corresponding to v in Q and R.

It can be checked that the efficient implementation with BSTs Q
and R (Algorithm 2) visits the same vertices in each step as Algo-
rithm 1 and hence computes the shortest-path distances correctly.

The key step to parallelize Algorithm 2 is to handle the inner
loop (Line 9), which can be separated into two parts: (1) update the
tentative distances and (2) update the BSTs. We process these two
steps in turn. To update the tentative distances, we just use priority-
write (WriteMin) to relax the other endpoints for all edges that
have endpoints in Ai . After all tentative distances are updated, each
edge checks whether the relaxation (priority-write) is successful. If
successful, the edge will own this vertex (called u), and create a
BST node that contains a pair of keys (lexicographical ordering): the
current tentative distance of u as the first key, and the vertex label of
u as the second key. Then, we create a BST that contains all these
nodes using standard parallel packing and sorting process. With
this BST, we first apply set difference to remove out-of-date keys
in Q, then we split this BST into two parts by di , and union each
part separately with Ai and Q. It is easy to see that in this parallel
version, we apply asymptotically the same number of operations
to Q compared to the sequential version. We can maintain R in a
similar way.

Let us now analyze the work and depth of the parallel version.
Each vertex is in the active set in only one step, so each of its
neighbors is relaxed k ` 2 times, once in each substep. In the
worst case (all the relaxation succeeded), there are Opmq updates
for Q and R; each can be done for no more than Opkq times when
rpvq ď r̄k pvq.

Suppose there are t steps and the number of updates in step
i is ai . Then, we have

řt
i“1 ai “ m, and t “ Op nρ log ρLq

as rρpvq ď rpvq. The work and depth for set difference and
union are Opp log qq and Oplog qq for two sets with size p and
q, q ě p. The overall work W for all set operations is no more than
řt

i“1 ai ¨ k log n “ Opkm log nq. The depth D is no larger than

O

˜

t
ÿ

i“1
k log n

¸

“ O

ˆ

k
n

ρ
log ρL log n

˙

All other steps in Algorithm 2 are dominated by the cost to main-
tain the BSTs. The total work and depth can be summarized in the
following lemma.

Lemma 3.8. Assuming rρpvq ď rpvq ď r̄k pvq for all v P V , the
Radius-Stepping algorithm computes single-source shortest paths
in Opkm log nq work and O

´

k n
ρ log n log ρL

¯

depth.

3.4 Unweighted Cases
The implementation we just discussed also works on unweighted

graphs. But the performance can be further improved in this case.
A special property of the unweighted case is that all vertices in the
frontier have the same tentative distances. This means that we do
not need search trees or priority queues to maintain the ordering.
Hence, a similar approach to parallel BFS can be directly used
here, and each step takes Opn1q work and Oplog˚ n1q depth on the
CRCW PRAM model 2 where n1 is the number of vertices and their
associated edges in each step. The additional step to compute the
step distance uses one priority-write. Because of concavity, the
worst case appears when n1 is the same in every step.

Lemma 3.9. The Radius-Stepping algorithm computes single-
source shortest paths on unweighted graph in Opm ` nq work and
Opn{ρ ¨ log ρ log˚ ρq depth.

2The bound changes with different models, and a more practical
solution is to use semisort [12].

Algorithm 2: The Shortest-path Algorithm.
Input: A graph G “ pV , E ,wq, vertex radii rp¨q and a source

node s.
Output: The graph distances δp¨q from s.

1 δp¨q Ð `8, δpsq Ð 0
2 i Ð 1
3 Q “ twps, uq | u P Npsqu

4 R “ twps, uq ` rpuq | u P Npsqu

5 while |Q| ą 0 do
6 di Ð R.extract-minpq
7 tAi ,Qu “ Q.splitpdiq
8 foreach u P Ai do R.removepuq repeat
9 foreach u P Ai , v P Npuq do

10 if δpvq ą δpuq ` wpu, vq then
11 if δpvq ą di and δpuq ` wpu, vq ď di then
12 R.removepvq
13 Q.removepvq
14 Ai .insertpvq

15 δpvq “ δpuq ` wpu, vq
16 if δpvq ą di then
17 Q.decrease-keypv, δpvqq
18 R.decrease-keypv, δpvq ` rpvqq

19 until no δpvq that v P Ai is updated
20 i “ i ` 1
21 return δp¨q

4. SHORTCUTS AND PREPROCESSING
This section describes how to prepare an arbitrary undirected

graph so that Radius-Stepping can run efficiently afterward. As
shown earlier, the cost of Radius-Stepping is a function of k and
ρ provided that the input to the algorithm is a pk , ρq-graph. But
not every graph as given meets this condition with k and ρ that one
desires. Our aim here is to prepare the input graph by adding a small
number of edges (shortcuts) to satisfy the condition for k and ρ
that the user chooses. The process will also generate an appropriate
vertex radius rpvq for every v P V .

Any graph can be turned into a pk , ρq-graph by adding up to nρ
edges (put shortcut edges from every vertex to its ρ-nearest vertices).
For k “ 1, this strategy adds the minimum number of edges possible.
For k ą 1, however, one can usually do better. Below, we discuss
efficient preprocessing strategies and their cost.

4.1 Heuristics for p1, ρq-graph
The simplest case of a pk , ρq-graph is k “ 1. In this case, we

have to ensure that every vertex is a p1, ρq-ball, so all the ρ-closest
vertices from a vertex u are added to u’s neighbor list with edge
weight dpu, ¨q. To do so for all the vertices, we can, in parallel, start
n Dijkstra’s execution (or BFS for unweighted graphs) and compute
the ρ-closest vertices in each run.

Lemma 4.1. Given a graph G, generating p1, ρq-balls for all
vertices takes Opm log n ` nρ2q work and Opρ log ρq depth.

Proof. Initially, we sort all edges from each vertex by their
weights, requiringOpm log nq work andOplog nq depth. This can be
skipped if the edges are presorted or the graph is unweighted. Then,
run parallel Dijkstra’s [4] from each vertex for ρ rounds. For each
vertex, we only consider the lightest ρ edges as only these edges
may be needed to reach the ρ-closest vertices. So, the search from
each vertex explores no more than ρ2 edges (ρ2 Decrease-keys
in the Fibonacci Heap) and visits ρ vertices (ρ Delete-mins in the

d

d

Figure 2: Example of a sparse graph that requires BFS to look at Opd2q
edges from any vertex to reach 3d vertices.

Fibonacci Heap), leading to Opρ2q work for each source node—or
in total, Opρ log ρq depth and Opnρ2q work.

We can then add ρ shortcut edges from the source to all these
vertices. When the algorithm stops in the ρ-th round, we also have
the value of rρpvq, the distance from the source to ρ-th nearest
neighbor. Clearly, we have rρpvq ď r̄1pvq at this time.

For the unweighted case, a parallel BFS from the source vertex to
reach ρ-nearest neighbors takes Opρ2q work and Opρ log˚ ρq depth.

Combining Lemmas 4.1, 2.1, and 3.9 proves the main theorems.
Notie that after preprocessing, the graph now has Opm ` nρq edges.

It is worth mentioning that even when the given graph is un-
weighted and sparse, we may still need to look at Opρ2q edges to
reach ρ vertices. We give an example of a carefully-constructed
graph with that behavior in Figure 2. If d “ tρ{3u´1, then the BFS
search from any vertex has to visit Opd2q edges to reach ρ ą 3d
vertices. However, Section 5.3 shows empirically that this scenario
is not common in real-world graphs. Furthermore, if the input graph
has constant-bounded degrees, the work for this step is Opnρq.

4.2 Heuristics for pk , ρq-graphs
The construction of a p1, ρq-graph can add up to nρ extra edges,

potentially too many to be useful for many graphs in practice. Using
a small k ą 1 creates an opportunity to add fewer shortcut edges,
by taking better advantange of the original edges.

To construct a pk , ρq-graph, we will still run the algorithm in
Lemma 4.1. But for each vertex s, instead of adding a shortcut
edge for each of the ρ closest vertices, we derive a shortest-path tree
Ts (at no additional cost) from s that reaches out to its ρ nearest
vertices. We then work with these trees with the goal of adding as
few edges as possible while ensuring that every v P V pTsq can be
reached within k hops using the combination of the original edges
and the added edges E1.

We propose two heuristics below, both relying on the following
claim, which shows that from the perspective of a single source
vertex, the most beneficial shortcut edge goes directly from the
source itself. The proof is straightforward and is omitted.

Claim 4.2. Let s be a source vertex. A shortcut edge pu, vq,
u ‰ s, can be exchanged for ps, vq with an appropriate weight
without increasing the overall hop count.

Shortcut using Greedy: The greedy heuristic eliminates vertices
that are more than k hops away in Ts by adding edges from s to
all pki ` 1q-th hop vertices for i P Z`. It is simple and easy to
implement, but may end up adding far too many edges. For example,
consider a shortest-path tree that first forms a chain of length k from
the source, then the remaining ρ´k´2 vertices all lie in the pk`1q-
st level. The greedy heuristic will shortcut to all these ρ ´ k ´ 2
vertices, while we can only add one edge from the source to the
node in the k-th layer to include all vertices in k hops.

Shortcut using Dynamic Programming (DP): The DP heuristic
solves a dynamic program that adds the optimal number of edges
from the perspective of one vertex. Consider, among all shortest-
path trees from s, one where for every v P Ts , the path s Ñ v on T

has the smallest hop count possible. The optimal number of edges
needed for a certain node can be computed using the following
dynamic program. Let Fpu, tq be the number of edges into the
subtree of Ts rooted at u so that every node in the subtree is at most
k hops away from s provided that parentpuq is at t hops away from
s. Then, for all u ‰ s, Fpu, tq is given by
$

’

’

’

&

’

’

’

%

1`
ř

wPN`puq

Fpw, 1q if t “ k

min

˜

1`
ř

wPN`puq

Fpw, 1q,
ř

wPN`puq

Fpw, t ` 1q

¸

if t ă k

The number of edges needed in the end is
ř

uPN`psq Fpu, 0q.
The actual edges to add can be traced from the recurrence. We note
that this dynamic program can be solved in Opkρq (as |Ts | “ ρ)
work and Opρ log nq depth by resolving the recurrence bottom up.
We apply this to all n vertices in parallel, requiring Opnkρq work
and Opρ log nq depth overall.

Note that although the dynamic programming solution gives an
optimal solution for each shortest-path tree individually, the over-
all solution is not necessary the global optimal. Adding globally
smallest number of edges to construct pk , ρq-ball appears to be
much more involved. Yet, we show empirically in Section 5 that
the dynamic programming (DP) heuristic performs very well on a
wide variety of graphs—and even the greedy heuristic does well on
well-structured graphs.

5. EXPERIMENTAL ANALYSIS
This section empirically investigates how the settings of k and ρ,

and the choice of shortcutting heuristics affect the number of short-
cut edges added, as well as the number of steps Radius-Stepping re-
quires. These quantities provide insights into how a well-engineered
implementation would perform in practice and how much paral-
lelism Radius-Stepping is able to derive.

5.1 Experiment Setup
We use graphs of various types from the SNAP datasets [18],

including the road networks in Pennsylvania and Texas (real-world
planer graphs) and the web graphs of the University of Notre Dame
and Stanford University (real-world networks). In the case of web
graphs, each edge represents a hyperlink between two web pages.
We also use synthetic graphs of 2D and 3D grids (structured and
unstructured grids). For each of the graphs used, the number of
vertices and the number of edges are given in the table below.

Graph # Vertices # Edges

Road map: Pennsylvania 1.09M 3.08M
Road map: Texas 1.39M 3.84M
Web graph: Notre Dame 325K 2.20M
Web graph: Stanford 281K 3.98M
Grid: 2D 1M 2.00M
Grid: 3D 1M 5.94M

In practical applications, such graphs are used both in the weighted
and unweighted settings. In the weighted setting, for instance, the
distances in road networks and grids can represent real distances,
while the edge weights in network graphs (e.g., social networks)
also have real-world meanings, such as the time required to pass a
message between two users, or (the logarithm of) the probability

to pass a message. In our experiments, if a graph does not come
equipped with weights, we assign to every edge a random integer
between 1 and 10, 000.

We construct pk , ρq-balls using the heuristics described in Sec-
tion 4.2, except that the implementation has the following modi-
fications: instead of breaking ties arbitrarily and taking exactly ρ
neighbors, we continue until all vertices with distance rρp¨q are vis-
ited. This has the same implementation complexity as the theoretical
description but is more deterministic. Using this, our results are a
pessimistic estimate of the original heuristics as more than ρ edges
may be found for some sources. However, in all our experiments,
we found the difference to be negligible in most instances.

To improve our confidence in the results, two of the authors have
independently implemented and conducted the experiments, and
arrived at the same results, even without introducing a tie-breaker.

5.2 The Number of Shortcut Edges
Of the heuristics in Section 4.2 for making a pk , ρq-graph, how

many extra edges are generated by each heuristic? To answer this
question, we use 3 representative graphs in our analysis: (1) road net-
works in Pennsylvania, (2) a webgraph of Stanford University, and
(3) a synthetic 1000-by-1000 2D grid. All these graphs have about
1 million vertices, and between 2 and 3 million edges. We show
experimental results for unweighted graphs since the performance
of the heuristics is independent of edge weights.

Figure 3 shows the number of added edges in terms of the fraction
of the original edges for k “ 3 as the value of ρ is varied between
10 and 1, 000. More detailed results are given in Tables 8 and 9.
Evidently, both heuristics achieve similar results on the road map
and 2D grid. This is because road maps and grids are relatively
regular, in fact almost planar. Thus, even naïvely shortcutting to the
pki ` 1q-hop performs well: for small k , both heuristics add only a
small number of edges. As k becomes larger, the gap between the
greedy and the DP heuristic increases. When ρ reaches 1000, both
DP and greedy add a large number of edges (more than 100x edges).
This is because in road maps and grids, the degree of a vertex is
usually a small constant, making the shortest-path tree deep.

On web graphs, which is less regular, DP only adds 4x the number
of original edges even when ρ is as large as 1000 while greedy still
adds 100x the original edges. This is because web graphs not only
are far more irregular but also have a very skewed degree distribution.
As a known scale-free network [1], it has some “super stars” (or
more precisely, the “hubs”) in the network. In this case, the bad
example in Section 4.2 occurs frequently when these hubs are not
at the exact pki ` 1q-th layer in the shortest-path tree, while the
DP heuristic can discover the hubs accurately. This also explains
the phenomena that only a few edges are added on web graphs
by the DP heuristic even when ρ is large, since the hubs already
significantly reduce the depth of the shortest path tree, and it only
takes a few edges to shortcut to the hubs. This property holds for
many kinds of real-world graphs such as social networks, airline
networks, protein networks, and so on. In such graphs, a relatively
optimal heuristic is necessary to construct the enclosed balls; a naïve
method often has bad performance. As can be seen, the DP solution
achieves satisfactory performance on web graphs, adding only about
10% more edges with k “ 3 and ρ “ 100.

5.3 The Number of Visited Edges
Theoretically, the preprocessing step has to examine Opρ2q edges

per source vertex (Section 4.1). This bound is indeed tight even on
sparse unweighted graphs (Figure 2). In practice, the number of
visited edges tends to be much smaller: on all real-world graphs

ρ
Road Maps Web Graphs Grids

Penn Texas Notre
Dame

Stanford 2D 3D

10 1.47 1.47 1.06 1.18 1.24 1.20
20 1.72 1.71 1.10 1.27 1.84 1.66
50 1.99 1.96 1.20 1.52 2.61 2.32
100 2.16 2.12 1.29 1.70 2.94 2.90
200 2.29 2.24 1.35 1.72 3.26 3.45
500 2.43 2.38 1.34 1.97 3.52 4.00

1000 2.51 2.46 1.73 1.98 3.66 4.40

Table 1: The average number of edges visited from each source node divided
by nρ for different unweighted graphs.

ρ
Road Maps Web Graphs Grids

Penn Texas Notre
Dame

Stanford 2D 3D

10 1.69 1.68 1.49 1.74 1.76 1.84
20 2.01 1.99 1.80 2.00 2.19 2.20
50 2.31 2.28 2.29 2.73 2.72 2.63
100 2.47 2.44 2.67 2.85 3.04 2.95
200 2.59 2.55 2.99 3.20 3.28 3.27
500 2.69 2.66 3.41 3.89 3.51 3.68

1000 2.75 2.72 4.02 4.73 3.64 3.97

Table 2: The average number of edges visited from each source node divided
by nρ for different weighted graphs.

studied, we find that the number of visited edges appears propor-
tional to ρ for ρ ď 1000.

For the unweighted case, our implementation of preprocessing
is just a standard BFS, and it terminates as soon as ρ vertices are
added to the visited set. For the weighted case, it is slightly more
complex, and we use a BST to maintain the priority queue with size
no more than ρ. Then, a standard Dijkstra’s is run from every source
node. Since the edges from each vertex are sorted by weights, if the
current relaxed distance is larger than the ρ-th nearest node from
the source (can be checked in Op1q cost), then we can skip all the
remaining edges. Therefore, it is possible that even fewer edges are
visited in the preprocessing for the weighted case, compared to the
unweighted case on the same graph.

Tables 1 and 2 show the average number of edges visited from
each source node divided by ρ on both unweighted and weighted
cases. We can see that on all input instances, the average number
of visited edges is never more than 5x compared to ρ, so it is much
closer to Opρq than Opρ2q. The ratio slightly increases with larger
ρ, but the growth is much slower.

5.4 The Number of Steps
How many steps does Radius-Stepping take for each setting of

ρ? We ran our Radius-Stepping on both weighted and unweighted
graphs and counted the number of steps as we change ρ. Notice that
the number of steps is independent of k and is only affected by ρ.
(The value of k only affects the number of substeps within a step.)
We discuss the performance of our algorithm on all six graphs after
preprocessing the graphs with the corresponding ρ. Since the cost of
SSSP potentially varies with the source and we cannot afford to try
all possible sources, we take 1000 random sample sources for each
graph. We use the same 1000 sources for all our experiments for
both the weighted and unweighted cases. We report the arithmetic
mean over the sampled sources.

 0.01

 0.1

 1

 10

 100
 200

10 20 50 100 200 500 1000

Greedy
DP

(a) Road map of Pennsylvania

 0.01

 0.1

 1

 10

 100
 200

10 20 50 100 200 500 1000

Greedy
DP

(b) Web graph of Stanford

 0.01

 0.1

 1

 10

 100
 200

10 20 50 100 200 500 1000

Greedy
DP

(c) 2D-grid
Figure 3: The ratio of extra edges to the original edges (y-axis) to generate pk “ 3, ρq-graph using greedy and dynamic programming (DP) for different types
of graphs as ρ (x-axis) is varied.

ρ
Road Maps Web Graphs Grids

Penn Texas Notre
Dame

Stanford 2D 3D

1 619.12 761.06 28.09 108.92 1504.00 223.50
2 309.32 380.31 13.77 54.23 751.76 111.50
5 308.47 379.34 13.44 43.27 751.74 111.50

10 206.30 253.71 13.32 31.29 501.14 74.50
20 165.73 196.30 13.17 21.67 375.62 74.48
50 123.01 151.13 12.38 14.13 250.32 55.48

100 101.41 124.07 9.78 10.63 187.46 44.08
200 78.61 96.92 8.47 8.56 136.24 36.48
500 58.44 70.75 6.63 7.30 87.86 27.36
1000 45.95 55.39 5.69 7.18 64.88 21.74
2000 35.66 42.58 5.27 6.72 44.82 17.94
5000 24.95 29.17 4.14 5.84 28.82 12.50

10000 18.54 21.33 3.83 5.76 20.18 10.00

Table 3: The average number of steps with different settings of ρ for differ-
ent unweighted graphs.

Unweighted Graphs (BFS): Figure 4 shows, for the unweighted
case, the average number of steps taken by Radius-Stepping as ρ is
varied. More results appear in Tables 3 and 4, which compare the
number of steps taken by Radius-Steppingwith that of a conventional
BFS implementation.

Several things are clear: on a log-log scale3, the trends are down-
ward linear as ρ increases except for the Notre Dame web graph (not
completely regular but shows a similar trend). This suggests that
the average number of steps is inversely proportional to ρ, which is
consistent with our theoretical analysis.

The web graph has a relatively smoother slope. The reason is
that once the “super stars” are included in the enclosed balls, which
usually only need a few hops, then most of the vertices will be
visited in a few steps (20–100 steps vs. 200–1, 500 steps on the
other graphs when ρ “ 1). However, we will later see that in the
weighted case, the performances on these graphs are even better
than the other graphs. For the road maps and grids, the number
of steps reduces steadily. Furthermore, the number of steps shown
in the experiments is much less than the theoretical upper bound
(nρ log ρ) because most real-world graphs tend to have a hop radius
that is much smaller than n.

On all the graphs studied, ρ can be as small as 10 and already
reduces the number of steps by 3x. When ρ “ 100, the reduction is
about 10x. As the results show, we can obtain more than 20x reduc-

3The vertical axis is drawn on a log scale and the horizontal axis
closely approximates a log scale.

ρ
Road Maps Web Graphs Grids

Penn Texas Notre
Dame

Stanford 2D 3D

2 2.00 2.00 2.04 2.01 2.00 2.00
5 2.01 2.01 2.09 2.52 2.00 2.00

10 3.00 3.00 2.11 3.48 3.00 3.00
20 3.74 3.88 2.13 5.03 4.00 3.00
50 5.03 5.04 2.27 7.71 6.01 4.03

100 6.11 6.13 2.87 10.25 8.02 5.07
200 7.88 7.85 3.32 12.72 11.04 6.13
500 10.59 10.76 4.24 14.92 17.12 8.17
1000 13.47 13.74 4.94 15.17 23.18 10.28
2000 17.36 17.87 5.33 16.21 33.56 12.46
5000 24.81 26.09 6.79 18.65 52.19 17.88

10000 33.39 35.68 7.33 18.91 74.53 22.35

Table 4: The number steps required by Radius-Stepping unweighted graphs
divided by the number of BFS steps.

tion when thousands of vertices are in the balls. This experimentally
supports our theoretical analysis.

What should an unweighted graph look like so that Radius-
Stepping can significantly reduce the steps after adding no more than
m edges? At first thought, the answer might be a grid or a road map
with a large diameter, so that there is more space to be reduced. How-
ever, our experiments give the opposite answer: Radius-Stepping,
in fact, performs better on web graphs with smaller diameters. On
web graphs, Radius-Stepping can reduce the number of steps by 15x
by adding no more than m edges (choosing ρ “ 1000 and k “ 3),
while on road maps and grids, a 5x reduction in steps requires 4m to
6m edges. Even though the number of steps reduces more steadily
and quickly on road maps and grids with larger ρ, the number of
added edges in turn increases more rapidly (100x times more edges
added to achieve 20x reduction on the number of steps). On scale-
free networks, however, Radius-Stepping improves standard BFS by
more than 10x without adding many extra edges, and an efficient
implementation of Radius-Stepping on these networks might be
worthwhile in the future.

Weighted Graphs: Figure 5 shows, for the weighted case, the
average number of steps taken by Radius-Stepping as ρ is varied.
More results appear in Tables 5 and 6, which compare the number
of steps taken by Radius-Stepping to when ρ “ 1. Notice that
when ρ “ 1, Radius-Stepping becomes essentially Dijkstra’s except
vertices with the same distance are extracted together.

Similar to the unweighted case, the trends in Figure 5 are also
nearly-linear, indicating an inverse-proportion relationship between

 10

 20

 50

 100

 200

 500

 1000

1 2 5 10 20 50 100 200 500 1k 2k 5k 10k

Road map of Texas
Road map of Pennsylvania

(a) Road maps

 2

 5

 10

 20

 50

 100

 200

1 2 5 10 20 50 100 200 500 1k 2k 5k 10k

Webgraph of Stanford
Webgraph of Notre Dame

(b) Web graphs

 10

 20

 50

 100

 200

 500

 1000

 2000

1 2 5 10 20 50 100 200 500 1k 2k 5k 10k

2D-grid
3D-grid

(c) Grids
Figure 4: Unweighted graphs—the average number of Radius-Stepping steps (y-axis) as ρ (x-axis) is varied.

25

10
2

10
3

10
4

10
5

10
6

1 2 5 10 20 50 100 200 500 1000

Road map of Texas
Road map of Pennsylvania

(a) Road maps

 40

 100

 400

 1000

 4000

 10000

 50000

1 2 5 10 20 50 100 200 500 1000

Webgraph of Stanford
Webgraph of Notre Dame

(b) Web graphs

10
1

10
2

10
3

10
4

10
5

10
6

1 2 5 10 20 50 100 200 500 1000

2D-grid
3D-grid

(c) Grids
Figure 5: Weighted graphs—the average number of Radius-Stepping steps (y-axis) as ρ (x-axis) is varied.

ρ
Road Maps Web Graphs Grids

Penn Texas Notre
Dame

Stanford 2D 3D

1 986K 1252K 35.6K 30.0K 965K 239K
2 26479.9 34673.4 1953.7 2203.3 33592.2 11046.1
5 2294.5 3123.5 571.3 759.2 3495.8 722.4

10 872.6 1206.5 387.2 562.3 1385.0 261.9
20 455.0 634.1 274.9 432.2 722.9 137.8
50 245.0 343.0 174.6 293.7 375.1 76.1
100 167.2 233.7 118.8 219.3 246.9 54.1
200 119.8 166.9 83.7 166.0 166.9 40.2
500 81.1 111.3 58.4 120.0 102.1 28.1

1000 61.1 83.2 45.0 93.6 71.1 21.7

Table 5: The average number of steps with different settings of ρ for
weighted graphs.

the number of steps and ρ, which is consistent with our theory. In
the weighted case, however, we can visit much fewer vertices in
each step than those in the unweighted case because most vertices
have different distances to the source. Thus, Dijkstra’s algorithm
(or when ρ “ 1) requires almost n steps to finish. As a result,
considering the inverse-proportion relationship, even a small ρ can
greatly reduce the number of steps. Indeed, the number of steps
taken by Radius-Stepping is far fewer than the predicted theoretical
upper bound (Op nρ log ρLq with L “ 104 here). We also notice
that the number of steps decreases much faster when ρ is small
compared to larger values of ρ.

The reduction in the number of steps is significant. Even ρ “ 10
leads to about 1000x fewer steps on road maps and grids, and about
50–100x on the web graphs. When ρ “ 100, we only need a
few hundreds of steps on all graphs, which can already provide
considerable parallelism. The number of steps further decreases
to 20–80 when ρ “ 1000. This provides some evidence that the
algorithm has the potential to deliver substantial speedups when
many more cores on a shared-memory machine are made available.

ρ
Road Maps Web Graphs Grids

Penn Texas Notre
Dame

Stanford 2D 3D

2 37.2 36.1 18.2 13.6 28.7 21.6
5 429.7 400.8 62.3 39.6 276.1 330.6

10 1130.0 1037.7 92.0 53.4 696.8 912.0
20 2167.0 1974.5 129.5 69.5 1334.9 1733.3
50 4024.5 3650.1 203.9 102.3 2572.7 3138.5

100 5897.1 5357.3 299.7 137.0 3908.6 4414.9
200 8230.4 7501.5 425.4 180.9 5782.0 5941.4
500 12157.8 11248.9 609.7 250.3 9451.7 8499.8
1000 16137.5 15048.1 791.2 320.9 13572.8 11006.6

Table 6: The number of steps taken by Radius-Stepping on weighted graphs
divided by the number of steps taken by Radius-Stepping itself when using
ρ “ 1.

Another trend is that the reduction factors on the web graphs
are always less than the other two types of graphs. The reason is
that the web graphs are scale-free, and even when we do not use
enclosed balls to traverse the graph, not many steps are required.
The “hubs” substantially bring down the diameter of the graph. For
more uniformly distributed graphs, such as the road maps and grids,
increasing ρ to a big value reduces the number of steps required to
perform SSSP more rapidly.

5.5 How to choose the parameters?
What is the best combination of k and ρ? The choice of k and

ρ offers a tradeoff between the number of added edges (hence ad-
ditional space and work) and the parallelism of the algorithm. In
general, we do not want to increase the number of edges substan-
tially; the total number of edges should be around Opmq. On every
graph tested, k “ 3 or 4 works reasonably well whereas ρ in the
range 50–100 for weighted graph yields the best bang for the buck.
A larger ρ can reduce the number of steps in Radius-Stepping but
in turn, increases the preprocessing time and the number of edges

required to be added. A larger k will reduce the number of added
edges but at the same time, increases the number of visited edges,
as well as the overall depth4.

On unweighted graphs, Radius-Stepping performs better on web
graphs, but less efficient on grids and road maps. Finally, since
preprocessing is only run once, if SSSP will be run from multiple
sources, we suggest increasing ρ and decreasing k: the cost for
preprocessing is amortized over more sources.

6. PRIOR AND RELATED WORK
This secton discusses prior results on parallel single-source short-

est paths that are most relevant to ours (for a more comprehensive
survey, see [19] and the references therein). Throughout, we assume
the input is an arbitrary undirected graph with n vertices and m

nonnegative edges.
Some early algorithms achieve a high degree of parallelism (poly-

logarithm depth) but with substantially more work than Dijkstra’s al-
gorithm. Using matrix multiplications over semirings, Han et al. [13]
gives an algorithm withOplog2 nq depth andOpn3plog log n{ log nq1{3q
work that, in fact, solves the all-pairs shortest-path problem. With
randomization, this algorithm can be implemented inOplog nq depth
and Opn3 log nq work [11].

In another line of work, Driscoll et al. [9], refining the approach
of Paige and Kruskal [21], present an Opn log nq-depth algorithm
with Dijkstra’s work bound. Later, Brodal et al. [4] improve the
depth to Opnq; however, the algorithm needs Opm log nq work. We
summarize in Table 7 the cost bounds for exact SSSP algorithms
that have subcubic work.

By allowing a slight increase in work in exchange for a bet-
ter depth bound, many algorithms have been proposed. Ullman
and Yannakakis [29] describe a randomized parallel breadth-first
search (BFS) that solves unweighted SSSP in rOpm ` nρq work
and rOpn{ρq. The algorithm works by performing limited searches
from a number of locations and adding shortcut edges with appro-
priate distances to speed up later traversal. Extending this idea to
weighted graphs, Klein and Subramanian [17] derive an algorithm
that runs in Op

?
n log L log2 nq depth and Opm

?
n log L log2 nq

work. For undirected graphs, Cohen [6] presents an algorithm
with Opn{ρ ¨ polylogpnqq depth and Opn2 log L ` nρ2q work. Shi
and Spencer [25] show an algorithm with Θpn{ρ ¨ log nq depth, and
Opnρ2 log n log ρ`m log nq or Oppρ3`mρq log nq work. This not
only has a smaller depth bound than our algorithm but also is the
only algorithm in Table 7 with strongly-polynomial depth. However,
since the search is based on vertices instead of distances, the work
and depth bounds here are tight, promising Opρ2q parallelism on
any input instances but leaving no room for more parallelism on
“nice” input graphs. By contrast, the experiments in this paper show
that our algorithm can attain a much higher degree of parallelism on
many real-world graphs.

More recently, Meyers and Sanders [19] describe an algorithm
called ∆-stepping and analyze it for various random graph settings.
Although the algorithm works well on general graphs in practice,
no theoretical guarantees are known.

In addition to these results, better algorithms have been developed
for special classes of graphs such as planar graphs (e.g., [28, 16])
and separator-decomposable graphs [5].

There have also been approximation algorithms for SSSP. Co-
hen [7] describes a p1`εq-algorithm for undirected graphs that runs

4As mentioned at the beginning of Section 5.4, a larger k will not
increase the number of steps, but the number of the overall substeps,
which is the inner loop of Radius-Stepping, hence an increase in the
overall depth.

in Oppolylogpnqq depth and Oppm ` nqnαq work for α ą 0. Using
an alternative hopset construction of Miller et al. [20], Cohen’s algo-
rithm can be made to run in Opm ¨ polylogpnqq work and Opn1´αq
depth for α ą 0.

7. CONCLUSION
We presented a parallel algorithm for single-source shortest paths

that runs in two phases. The preprocessing requires Opnρ2q work
and Opρ log ρq depth, adding Opnρq edges (shortcuts) where ρ is a
user-defined parameter. Then, the single-source shortest paths can
be computed with Oppm ` nρq log nq work and Op nρ log n log ρLq
depth for any arbitrary graph with nonnegative weights. The algo-
rithm is simple and has the potential to be practical. Our experi-
ments further show that the theoretical bounds are pessimistic for
real-world graphs; the actual costs are often much less.

Acknowledgments
This research was supported in part by NSF grants CCF-1314590
and CCF-1533858, and the Intel Science and Technology Center for
Cloud Computing.

8. REFERENCES
[1] A.-L. Barabási and R. Albert. Emergence of scaling in

random networks. Science, 286(5439):509–512, 1999.
[2] G. E. Blelloch, D. Ferizovic, and Y. Sun. Parallel ordered sets

using join. In ACM Symposium on Parallel Algorithms and
Architectures (SPAA). ACM, 2016.

[3] G. E. Blelloch and M. Reid-Miller. Fast set operations using
treaps. In ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 16–26. ACM, 1998.

[4] G. S. Brodal, J. L. Träff, and C. D. Zaroliagis. A parallel
priority queue with constant time operations. Journal of
Parallel and Distributed Computing, 49(1):4–21, 1998.

[5] E. Cohen. Efficient parallel shortest-paths in digraphs with a
separator decomposition. Journal of Algorithms,
21(2):331–357, 1996.

[6] E. Cohen. Using selective path-doubling for parallel
shortest-path computations. Journal of Algorithms,
22(1):30–56, 1997.

[7] E. Cohen. Polylog-time and near-linear work approximation
scheme for undirected shortest paths. Journal of the ACM
(JACM), 47(1):132–166, 2000.

[8] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

[9] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan.
Relaxed heaps: An alternative to fibonacci heaps with
applications to parallel computation. Communications of the
ACM, 31(11):1343–1354, 1988.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of
the ACM (JACM), 34(3):596–615, 1987.

[11] A. M. Frieze and L. Rudolph. A parallel algorithm for all
pairs shortest paths in a random graph. Management
Sciences Research Group, Graduate School of Industrial
Administration, Carnegie-Mellon University, 1984.

[12] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down
parallel semisort. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 24–34. ACM,
2015.

[13] Y. Han, V. Pan, and J. Reif. Efficient parallel algorithms for
computing all pair shortest paths in directed graphs. In ACM

Algorithm Preprocessing Shortest Path

Work Depth Work Depth

U
nw

ei
gh

te
d Standard BFS – – Opm ` nq Opnq

Ullman and Yannakakis [29] Opmρ ` ρ3q Op nρ log n log˚ nq Opm ` nρq Op nρ log n log˚ nq

Spencer [26] – – Opm log ρ ` nρ2 log2 ρq Op nρ log2 ρq

This work˚ Opnρ2q Opρ log˚ nq Opm ` nρq Op nρ log ρ log˚ nq

W
ei

gh
te

d

Parallel Dijkstra’s [21] – – Opm ` n log nq Opn log nq

Parallel Dijkstra’s [4] – – Opm log n ` nq Opnq

Klein and Subramanian [17] – – Opm
?
n log2 n log Lq Op

?
n log2 n log Lq

Spencer [26] – – Oppnρ2 log ρ ` mq log nρLq Op nρ log n log ρLq
Shi and Spencer [25]˚ Opnρ2 log n log ρ ` mq Oplog n log ρq Oppm ` nρq log nq Op nρ log nq

Cohen [6]˚ Opm ` nρ2 log2 nq Oplog2 nq Opn2 log3 n log Lq Op nρ log3 n log Lq

This work ˚ Opm log n ` nρ2q Opρ log ρq Oppm ` nρq log nq Op nρ log n log ρLq
˚ the presented bounds only apply to undirected graphs.
Table 7: Cost bounds for exact SSSP algorithms that have subcubic work, broken down into (i) the cost of preprocessing and (ii) the cost of only the shortest-path
computation, where m is the number of edges in the initial input graph and n is the number of vertices in the initial input graph. The bounds already account for
alterations made, if any, by preprocessing.

Symposium on Parallel Algorithms and Architectures (SPAA),
pages 353–362. ACM, 1992.

[14] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley
Professional, 1992.

[15] R. M. Karp and V. Ramachandran. Parallel algorithms for
shared-memory machines. Handbook of theoretical computer
science (vol. a): algorithms and complexity, 1991.

[16] P. N. Klein and S. Subramanian. A linear-processor
polylog-time algorithm for shortest paths in planar graphs.
Symposium on Foundations of Computer Science (FOCS).
IEEE, 1993.

[17] P. N. Klein and S. Subramanian. A randomized parallel
algorithm for single-source shortest paths. Journal of
Algorithms, 25(2):205–220, 1997.

[18] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection. 2014.

[19] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest
path algorithm. Journal of Algorithms, 49(1), 2003.

[20] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu. Improved
parallel algorithms for spanners and hopsets. In ACM
Symposium on Parallelism in Algorithms and Architectures,
SPAA, pages 192–201, 2015.

[21] R. C. Paige and C. P. Kruskal. Parallel algorithms for shortest
path problems. In International Conference on Parallel
Processing (ICPP), pages 14–20, 1985.

[22] H. Park and K. Park. Parallel algorithms for red–black trees.
Theoretical Computer Science, 262(1):415–435, 2001.

[23] W. Paul, U. Vishkin, and H. Wagener. Parallel computation on
2-3-trees. RAIRO, Informatique théorique, 17(4):397–404,
1983.

[24] W. J. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries
in 2-3 trees. In Intl. Colloq. on Automata, Languages and
Programming (ICALP), pages 597–609, 1983.

[25] H. Shi and T. H. Spencer. Time-work tradeoffs of the
single-source shortest paths problem. Journal of Algorithms,
30(1):19–32, 1999.

[26] T. H. Spencer. Time-work tradeoffs for parallel algorithms.
Journal of the ACM (JACM), 44(5):742–778, 1997.

[27] M. Thorup. Undirected single-source shortest paths with
positive integer weights in linear time. Journal of the ACM
(JACM), 46(3):362–394, 1999.

[28] J. L. Träff and C. D. Zaroliagis. A simple parallel algorithm
for the single-source shortest path problem on planar digraphs.
Journal of Parallel and Distributed Computing 60.9 (2000):
1103-1124.

[29] J. D. Ullman and M. Yannakakis. High-probability parallel
transitive-closure algorithms. SIAM Journal on Computing,
20(1):100–125, 1991.

ρ

Road map of Pennsylvania Web graph of Stanford 2D-grid

k reduced
steps

k reduced
steps

k reduced
steps2 3 4 5 2 3 4 5 2 3 4 5

10 1.67 0.41 0.05 0.01 3.00 3.11 0.02 0.01 0.00 3.48 0.36 0.00 0.00 0.00 3.00
20 3.79 2.38 0.84 0.23 3.88 9.91 3.06 0.09 0.01 5.03 5.75 0.46 0.00 0.00 4.00
50 10.34 6.05 5.65 3.71 5.04 47.57 10.74 3.40 0.13 7.71 16.05 8.40 9.54 0.67 6.01

100 20.33 13.64 8.85 8.16 6.13 109.98 39.99 20.96 8.73 10.25 29.59 22.02 10.52 11.43 8.02
200 39.92 26.35 20.15 14.51 7.85 188.92 67.25 45.54 17.96 12.72 48.40 41.34 28.03 12.73 11.04
500 97.58 64.72 48.49 37.64 10.76 337.34 141.58 119.03 63.69 14.92 126.09 99.22 55.62 64.75 17.12

1000 192.00 127.45 95.55 75.84 13.74 529.14 208.66 219.21 149.20 15.17 243.12 181.50 129.26 108.37 23.18

Table 8: The ratio of created shortcut edges to the original edges when using the greedy heuristic as ρ and k are varied. The “reduced steps” columns are from
Table 4 as a reference.

ρ

Road map of Pennsylvania Web graph of Stanford 2D-grid

k reduced
steps

k reduced
steps

k reduced
steps2 3 4 5 2 3 4 5 2 3 4 5

10 0.95 0.12 0.01 0.00 3.00 0.02 0.01 0.01 0.00 3.48 0.25 0.00 0.00 0.00 3.00
20 2.70 0.90 0.18 0.04 3.88 0.05 0.02 0.01 0.01 5.03 3.95 0.25 0.00 0.00 4.00
50 7.78 3.59 1.89 0.72 5.04 0.20 0.06 0.04 0.03 7.71 12.16 6.21 4.06 0.36 6.01

100 16.09 8.09 4.40 2.58 6.13 0.51 0.13 0.08 0.06 10.25 24.22 14.27 8.32 6.06 8.02
200 32.60 17.04 9.89 6.03 7.85 0.99 0.25 0.15 0.11 12.72 48.35 30.23 20.28 12.45 11.04
500 81.75 44.14 26.65 17.11 10.76 2.18 0.50 0.30 0.22 14.92 125.96 80.09 54.44 42.26 17.12

1000 162.91 89.30 54.82 35.95 13.74 3.92 0.66 0.34 0.24 15.17 241.30 154.97 110.87 84.87 23.18

Table 9: The ratio of created shortcut edges to the original edges when using the DP heuristic as ρ and k are varied. The “reduced steps” columns are from
Table 4 as a reference.

