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Abstract. We consider the problem of finding a Steiner minimum tree
in a hypercube. Specifically, given n terminal vertices in an m dimen-
sional cube and a parameter q, we compute the Steiner minimum tree
in time O(72q + 8qnm2), under the assumption that the length of the
minimum Steiner tree is at most m + q.

This problem has extensive applications in taxonomy and biology. The
Steiner tree problem in hypercubes is equivalent to the phylogeny (evo-
lutionary tree) reconstruction problem under the maximum parsimony
criterion, when each taxon is defined over binary states. The taxa, char-
acter set and mutation of a phylogeny correspond to terminal vertices,
dimensions and traversal of a dimension in a Steiner tree. Phylogenetic
trees that mutate each character exactly once are called perfect phylo-
genies and their size is bounded by the number of characters. When
a perfect phylogeny consistent with the data set exists it can be con-
structed in linear time. However, real data sets often do not admit per-
fect phylogenies. In this paper, we consider the problem of reconstructing
near-perfect phylogenetic trees (referred to as BNPP). A near-perfect
phylogeny relaxes the perfect phylogeny assumption by allowing at most
q additional mutations. We show for the first time that the BNPP prob-
lem is fixed parameter tractable (FPT) and significantly improve the
previous asymptotic bounds.

1 Introduction

One of the core areas of computational biology is phylogenetics, the reconstruc-
tion of evolutionary trees [13,21]. This problem is often phrased in terms of a
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parsimony objective, in which one seeks the simplest possible tree to explain a
set of observed taxa. Parsimony is a particularly appropriate objective for trees
representing short time scales, such as those for inferring evolutionary relation-
ships among individuals within a single species or a few closely related species.
Such phylogeny problems have become especially important since we now have
identified millions of single nucleotide polymorphisms (SNPs) [16,17], sites at
which a single DNA base takes on two common variants. Simply stated, if we
examine any specific SNP site on the human genome, then all the individuals in
the data sets can be classified into two classes. Therefore an individual’s A, C,
G, T string can be represented as a binary string with no loss of information.

Consider a n × m input matrix I, where each row represents an input taxon
and is a string over states Σ. The columns of I are called characters. A phylogeny
is a tree where vertices represent taxa and edges mutations. A phylogeny T for I
is a tree that contains all the taxa in I and its length is the sum of the Hamming
distances of adjacent vertices. Minimizing the length of a phylogeny is the prob-
lem of finding the most parsimonious tree, a well known NP-complete problem,
even when |Σ| = 2 [10]. Researchers have thus focused on either sophisticated
heuristics (e.g. [4,11]) or solving optimally for special cases (e.g. [1,18]).

In this work, we focus on the case when the set of states is binary, |Σ| = 2.
The taxa can therefore be viewed as vertices of an m-cube, and the problem is
equivalent to finding the Steiner minimum tree in an m-cube. In this setting, a
phylogeny for I is called perfect if its length equals m. Gusfield showed that
such phylogenies can be reconstructed in linear time [12]. If there exists no per-
fect phylogeny for input I, then one option is to slightly modify I so that a
perfect phylogeny can be constructed for the resulting input. Upper bounds and
negative results have been established for such problems. For instance, Day and
Sankoff [6], showed that finding the maximum subset of characters containing
a perfect phylogeny is NP-complete while Damaschke [7] showed fixed parame-
ter tractability for the same problem. The problem of reconstructing the most
parsimonious tree without modifying the input I seems significantly harder.

In the general case when |Σ| = s, a phylogeny for I is called perfect if the
length is m(s − 1). In this setting, Bodlaender et al. [3] proved a number of
crucial negative results, among them that finding the perfect phylogeny when
the number of characters is a parameter is W [t]-hard for all t. A problem is
fixed parameter tractable on parameter k if there exists an algorithm that runs
in time O(f(k)poly(|I|)) where |I| is the input size. Since FPT ⊆ W [1], this
shows in particular that the problem is not fixed parameter tractable (unless the
complexity classes collapse).

Fernandez-Baca and Lagergren considered the problem of reconstructing op-
timum near-perfect phylogenies [9]. A phylogeny is q-near-perfect if its length is
m(s−1)+q. They find the optimum phylogeny in time nmO(q)2O(q2s2), assuming
a q-near-perfect phylogeny exists. This bound may be impractical for sizes of m
to be expected from SNP data (binary states), even for moderate q. Given the
importance of SNP data, it would therefore be valuable to develop methods able
to handle large m for the special case of s = 2, when all taxa are represented
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by binary strings. This problem is called Binary Near-Perfect Phylogenetic tree
reconstruction (BNPP).

In a prior work, Sridhar et al. [20] solve the BNPP problem in time O(
(

m
q

)
72q

nm + nm2). The main contribution of the prior work is two-fold: they simplify
the previous algorithm [9] which results in the reduction of the exponent in
the run-time to q and demonstrate the first empirical results on near-perfect
phylogenies. For real data sets that were solved, the range of values for n, m
and q were: 15-150, 49-1510 and 1-7 respectively. However, many instances were
unsolvable because of the high running time.

Our Work: Here, we present a new algorithm for the BNPP problem that runs
in time O(72q+8qnm2). This result significantly improves the prior running time.
Fernandez-Baca and Lagergren [9] in concluding remarks state that the most
important open problem in the area is to develop a parameterized algorithm or
prove W [t] hardness for the near-perfect phylogeny problem. We make progress
on this open problem by showing for the first time that BNPP is fixed parameter
tractable (FPT). To achieve this, we use a divide and conquer algorithm. Each
divide step involves performing a ‘guess’ (or enumeration) with cost exponential
in q. Finding the Steiner minimum tree on a q-cube dominates the run-time
when the algorithm bottoms out.

2 Preliminaries

In defining formal models for parsimony-based phylogeny construction, we bor-
row definitions and notations from a couple of previous works [9,21]. The input
to a phylogeny problem is an n × m binary matrix I where rows R(I) repre-
sent input taxa and are binary strings. The column numbers C = {1, · · · , m}
are referred to as characters. In a phylogenetic tree, or phylogeny, each vertex v
corresponds to a taxon (not necessarily in the input) and has an associated label
l(v) ∈ {0, 1}m.

Definition 1. A phylogeny for matrix I is a tree T (V, E) with the following
properties: R(I) ⊆ l(V (T )) and l({v ∈ V (T )|degree(v) ≤ 2}) ⊆ R(I). That is,
every input taxon appears in T and every leaf or degree-2 vertex is an input
taxon.

Definition 2. A vertex v of phylogeny T is terminal if l(v) ∈ R(I) and Steiner
otherwise.

Definition 3. For a phylogeny T , length(T ) =
∑

(u,v)∈E(T ) d(l(u), l(v)), where
d is the Hamming distance.

A phylogeny is called an optimum phylogeny if its length is minimized. We will
assume that both states 0, 1 are present in all characters. Therefore the length
of an optimum phylogeny is at least m. This leads to the following definition.

Definition 4. For a phylogeny T on input I, penalty(T ) = length(T ) − m;
penalty(I) = penalty(T opt), where T opt is any optimum phylogeny on I.
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Definition 5. A phylogeny T is called q-near-perfect if penalty(T ) = q and
perfect if penalty(T ) = 0.

Note that in an optimum phylogeny, no two vertices share the same label.
Therefore, we can equivalently define an edge of a phylogeny as (t1, t2) where
ti ∈ {0, 1}m. Since we will always be dealing with optimum phylogenies, we will
drop the label function l(v) and use v to refer to both a vertex and the taxon it
represents in a phylogeny.

The BNPP problem: Given an integer q and an n×m binary input matrix I,
if penalty(I) ≤ q, then return an optimum phylogeny T , else declare NIL. The
problem is equivalent to finding the minimum Steiner tree on an m-cube if the
optimum tree is at most q larger than the number of dimensions m or declaring
NIL otherwise. An optimum Steiner tree can easily be converted to an optimum
phylogeny by removing degree-two Steiner vertices. The problem is fundamental
and therefore expected to have diverse applications besides phylogenies.

Definition 6. We define the following notations.

– r[i] ∈ {0, 1}: the state in character i of taxon r
– μ(e) : E(T ) → 2C: the set of all characters corresponding to edge e = (u, v)

with the property for any i ∈ μ(e), u[i] �= v[i]
– for a set of taxa M , we use T ∗

M to denote an optimum phylogeny on M

We say that an edge e mutates character i if i ∈ μ(e). We will use the following
well known definition and lemma on phylogenies.

Definition 7. Given matrix I, the set of gametes Gi,j for characters i, j is
defined as: Gi,j = {(r[i], r[j])|r ∈ R(I)}. Two characters i, j share t gametes in
I i.f.f. |Gi,j | = t.

In other words, the set of gametes Gi,j is a projection on the i, j dimensions.

Lemma 1. [12] An optimum phylogeny for input I is not perfect i.f.f. there
exists two characters i, j that share (all) four gametes in I.

Definition 8. (Conflict Graph [15]): A conflict graph G for matrix I with
character set C is defined as follows. Every vertex v of G corresponds to unique
character c(v) ∈ C. An edge (u, v) is added to G i.f.f. c(u), c(v) share all four
gametes in I. Such a pair of characters are defined to be in conflict. Notice that
if G contains no edges, then a perfect phylogeny can be constructed for I.

Simplifications: We assume that the all zeros taxon is present in the input.
If not, using our freedom of labeling, we convert the data into an equivalent
input containing the all zeros taxon (see section 2.2 of Eskin et al [8] for details).
We now remove any character that contains only one state. Such characters do
not mutate in the whole phylogeny and are therefore useless in any phylogeny
reconstruction. The BNPP problem asks for the reconstruction of an unrooted
tree. For the sake of analysis, we will however assume that all the phylogenies
are rooted at the all zeros taxon.
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3 Algorithm

This section deals with the complete description and analysis of our algorithm
for the BNPP problem. For ease of exposition, we first describe a randomized
algorithm for the BNPP problem that runs in time O(18q + qnm2) and returns
an optimum phylogeny with probability at least 8−q. We later show how to
derandomize it. In sub-section 3.1, we first provide the complete pseudo-code
and describe it. In sub-section 3.2 we prove the correctness of the algorithm.
Finally, in sub-section 3.3 we upper bound the running time for the randomized
and derandomized algorithms and the probability that the randomized algorithm
returns an optimum phylogeny.

3.1 Description

We begin with a high level description of our randomized algorithm. The algo-
rithm iteratively finds a set of edges E that decomposes an optimum phylogeny
T ∗

I into at most q components. An optimum phylogeny for each component is
then constructed using a simple method and returned along with edges E as an
optimum phylogeny for I.

We can alternatively think of the algorithm as a recursive, divide and con-
quer procedure. Each recursive call to the algorithm attempts to reconstruct an
optimum phylogeny for an input matrix M . The algorithm identifies a character
c s.t. there exists an optimum phylogeny T ∗

M in which c mutates exactly once.
Therefore, there is exactly one edge e ∈ T ∗

M for which c ∈ μ(e). The algorithm,
then guesses the vertices that are adjacent to e as r, p. The matrix M can now be
partitioned into matrices M0 and M1 based on the state at character c. Clearly
all the taxa in M1 reside on one side of e and all the taxa in M0 reside on
the other side. The algorithm adds r to M1, p to M0 and recursively computes
the optimum phylogeny for M0 and M1. An optimum phylogeny for M can be
reconstructed as the union of any optimum phylogeny for M0 and M1 along
with the edge (r, p). We require at most q recursive calls. When the recursion
bottoms out, we use a simple method to solve for the optimum phylogeny.

We describe and analyze the iterative method which flattens the above re-
cursion. This makes the analysis easier. For the sake of simplicity we define the
following notations.

– For the set of taxa M , M(i, s) refers to the subset of taxa that contains state
s at character i.

– For a phylogeny T and character i that mutates exactly once in T , T (i, s)
refers to the maximal subtree of T that contains state s on character i.

The pseudo-code for the above described algorithm is provided in Figure 1.
The algorithm performs ‘guesses’ at Steps 2a and 2c. If all the guesses performed
by the algorithm are ‘correct’ then it returns an optimum phylogeny. Guess at
Step 2a is correct i.f.f. there exists T ∗

Mj
where c(v) mutates exactly once. Guess at

Step 2c is correct i.f.f. there exists T ∗
Mj

where c(v) mutates exactly once and edge
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buildNPP(input matrix I)

1. let L := {I}, E := ∅
2. while | ∪Mi∈L N(Mi)| > q

(a) guess vertex v from ∪Mi∈LN(Mi), let v ∈ N(Mj)
(b) let M0 := Mj(c(v), 0) and M1 := Mj(c(v), 1)
(c) guess taxa r and p
(d) add r to M1, p to M0 and (r, p) to E
(e) remove Mj from L, add M0 and M1 to L

3. for each Mi ∈ L compute an optimum phylogeny Ti

4. return E ∪ (∪iTi)

Fig. 1. Pseudo-code to solve the BNPP problem. For all Mi ∈ L, N(Mi) is the set of

non-isolated vertices in the conflict graph of Mi. Guess at Step 2a is correct i.f.f. there

exists T ∗
Mj

where c(v) mutates exactly once. Guess at Step 2c is correct i.f.f. there exists

T ∗
Mj

where c(v) mutates exactly once and edge (r, p) ∈ T ∗
Mj

with r[c(v)] = 1, p[c(v)] = 0.

Implementation details for Steps 2a, 2c and 3 are provided in Section 3.3.

(r, p) ∈ T ∗
Mj

with r[c(v)] = 1, p[c(v)] = 0. Implementation details for Steps 2a,
2c and 3 are provided in Section 3.3. An example illustrating the reconstruction
is provided in Figure 2.

3.2 Correctness

We will now prove the correctness of the pseudo-code under the assumption that
all the guesses performed by our algorithm are correct. Specifically, we will show
that if penalty(I) ≤ q then function buildNPP returns an optimum phylogeny.
The following lemma proves the correctness of our algorithm.

Lemma 2. At any point in execution of the algorithm, an optimum phylogeny
for I can be constructed as E ∪ (∪iTi), where Ti is any optimum phylogeny for
Mi ∈ L.

Proof. We prove the lemma using induction. The lemma is clearly true at the
beginning of the routine when L = {I}, E = ∅. As inductive hypothesis, assume
that the above property is true right before an execution of Step 2e. Consider
any optimum phylogeny T ∗

Mj
where c(v) mutates exactly once and on the edge

(r, p). Phylogeny T ∗
Mj

can be decomposed into T ∗
Mj

(c(v), 0)∪T ∗
Mj

(c(v), 1)∪ (r, p)
with length l = length(T ∗

Mj
(c(v), 0)) + length(T ∗

Mj
(c(v), 1)) + d(r, p). Again,

since c(v) mutates exactly once in T ∗
Mj

, all the taxa in M0 and M1 are also
in T ∗

Mj
(c(v), 0) and T ∗

Mj
(c(v), 1) respectively. Let T ′, T ′′ be arbitrary optimum

phylogenies for M0 and M1 respectively. Since p ∈ M0 and r ∈ M1 we know that
T ′∪T ′′∪(r, p) is a phylogeny for Mj with cost length(T ′)+length(T ′′)+d(r, p) ≤
l. By the inductive hypothesis we know that an optimum phylogeny for I can be
constructed using any optimum phylogeny for Mj . We have now shown that using
any optimum phylogeny for M0 and M1 and adding edge (r, p) we can construct
an optimum phylogeny for Mj . Therefore the proof follows by induction. 	
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Fig. 2. Example illustrating the reconstruction. Underlying phylogeny is T ∗
I ; taxa r and

p (both could be Steiner) are guessed to create E = {(10000, 10100), (01000, 01010)};
E induces three components in T ∗

I . When all taxa in T ∗
I are considered, character 3

conflicts with 1, 2 and 5 and character 4 conflicts with 1 and 2; two components are

perfect (penalty 0) and one has penalty 2; penalty(I) =def penalty(T ∗
I ) = 7.

3.3 Bounds

In this sub-section we bound the probability of correct guesses, analyze the
running time and show how to derandomize the algorithm. We perform two
guesses at Steps 2a and 2c. Lemmas 3 and 5 bound the probability that all the
guesses performed at these Steps are correct throughout the execution of the
algorithm.

Lemma 3. The probability that all guesses performed at Step 2a are correct is
at least 4−q.

Proof. Implementation: The guess at Step 2a is implemented by selecting v uni-
formly at random from ∪iN(Mi).

To prove the lemma, we first show that the number of iterations of the while
loop (step 2) is at most q. Consider any one iteration of the while loop. Since v
is a non-isolated vertex of the conflict graph, c(v) shares all four gametes with
some other character c′ in some Mj. Therefore, in every optimum phylogeny
T ∗

Mj
that mutates c(v) exactly once, there exists a path P starting with edge

e1 and ending with e3 both mutating c′, and containing edge e2 mutating c(v).
Furthermore, the path P contains no other mutations of c(v) or c′. At the end
of the current iteration, Mj is replaced with M0 and M1. Both subtrees of T ∗

Mj

containing M0 and M1 contain (at least) one mutation of c′ each. Therefore,
penalty(M0)+penalty(M1) < penalty(Mj). Since penalty(I) ≤ q, there can
be at most q iterations of the while loop.

We now bound the probability. Intuitively, if |∪iN(Mi)| is very large, then the
probability of a correct guess is large, since at most q out of |∪iN(Mi)| characters
can mutate multiple times in T ∗

Mj
. On the other hand if | ∪i N(Mi)| = q then we
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terminate the loop. Formally, at each iteration | ∪i N(Mi)| reduces by at least
1 (guessed vertex v is no longer in ∪iN(Mi)). Therefore, in the worst case (to
minimize the probability of correct guesses), we can have q iterations of the loop,
with q + 1 non-isolated vertices in the last iteration and 2q in the first iteration.
The probability in such a case that all guesses are correct is at least

(
q

2q
)×(

q − 1
2q − 1

)× . . .×(
1

q + 1
) =

1
(
2q
q

) ≥ 2−2q. 	


Buneman Graphs. We now show that r, p can be found efficiently. To prove
this we need some tools from the theory of Buneman graphs [21].

Let M be a set of taxa defined by character set C of size m. A Buneman
graph F for M is a vertex induced subgraph of the m-cube. Graph F contains
vertices v i.f.f. for every pair of characters i, j ∈ C, (v[i], v[j]) ∈ Gi,j . Recall that
Gi,j is the set of gametes (or projection of M on dimensions i, j). Each edge of
the Buneman graph is labeled with the character at which the adjacent vertices
differ.

Buneman graphs have been defined in previous works on matrices M in which
no two characters share exactly two gametes. The definition can be extended
to allow such characters while preserving the following lemmas (see expanded
version for details). We say that a subgraph F ′ of F is the same as an edge labeled
tree T if F ′ is a tree and T can be obtained from F ′ by suppressing degree-two
vertices. A phylogeny T is contained in a graph F if there exists an edge-labeled
subgraph F ′ that is the same as the edge labeled (by function μ) phylogeny T . A
Buneman graph F for input M has the property that every optimum phylogeny
for M is contained in F [21]. From the definition of the Buneman graph F , we
know that there exists no vertex v ∈ F for which (v[i], v[j]) /∈ Gi,j . Therefore,
using the above property, we have:

Lemma 4. In every optimum phylogeny T ∗
M , the conflict graph on the set of

taxa in T ∗
M (Steiner vertices included) is the same as the conflict graph on M .

Lemma 5. The probability that all guesses performed at Step 2c are correct is
at least 2−q.

Proof. Implementation: We first show how to perform the guess efficiently. For
every character i, we perform the following steps in order.

1. if all taxa in M0 contain the same state s in i, then fix r[i] = s
2. if all taxa in M1 contain the same state s in i, then fix r[i] = s
3. if r[i] is unfixed then guess r[i] uniformly at random from {0, 1}

Assuming that the guess at Step 2a (Figure 1) is correct, we know that there
exists an optimum phylogeny T ∗

Mj
on Mj where c(v) mutates exactly once. Let

e ∈ T ∗
Mj

s.t. c(v) ∈ μ(e). Let r′ be an end point of e s.t. r′[c(v)] = 1 and p′

be the other end point. If the first two conditions hold with the same state s,
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then character i does not mutate in Mj . In such a case we know that r′[i] = s,
since T ∗

Mj
is optimal and the above method ensures that r[i] = s. Notice that

if both conditions are satisfied simultaneously with different values of s then i
and c(v) share exactly two gametes in Mj and therefore i, c(v) ∈ μ(e). Hence,
r′[i] = r[i]. We now consider the remaining cases when exactly one of the above
conditions hold. We show that if r[i] is fixed to s then r′[i] = s. Note that in
such a case at least one of M0, M1 contain both the states on i and i, c(v) share
at least 3 gametes in Mj. The proof can be split into two symmetric cases based
on whether r is fixed on condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on condition 1: In this case, all the taxa in
M0 contain the same state s on i. Therefore, the taxa in M1 should contain
both states on i. Hence i mutates in T ∗

Mj
(c(v), 1). For the sake of contradiction,

assume that r′[i] �= s. If i /∈ μ(e) then p′[i] �= s. However all the taxa in M0
contain state s. This implies that i mutates in T ∗

Mj
(c(v), 0) as well. Therefore

i and c(v) share all four gametes on T ∗
Mj

. However i and c(v) share at most 3
gametes in Mj - one in M0 and at most two in M1. This leads to a contradic-
tion to Lemma 4. Once r is guessed correctly, p can be computed since it is is
identical to r in all characters except c(v) and those that share two gametes with
c(v) in Mj . We make a note here that we are assuming that e does not mutate
any character that does not share two gametes with c(v) in Mj . This creates
a small problem that although the length of the tree constructed is optimal, r
and p could be degree-two Steiner vertices. If after constructing the optimum
phylogenies for M0 and M1, we realize that this is the case, then we simply
add the mutation adjacent to r and p to the edge (r, p) and return the resulting
phylogeny where both r and p are not degree-two Steiner vertices.

The above implementation therefore requires only guessing states correspond-
ing to the remaining unfixed characters of r. If a character i violates the first
two conditions, then i mutates once in T ∗

Mj
(i, 0) and once in T ∗

Mj
(i, 1). If r[i] has

not been fixed, then we can associate a pair of mutations of the same character
i with it. At the end of the current iteration Mj is replaced with M0 and M1
and each contains exactly one of the two associated mutations. Therefore if q′

characters are unfixed then penalty(M0) + penalty(M1) ≤ penalty(Mj)− q′.
Since penalty(I) ≤ q, throughout the execution of the algorithm there are q un-
fixed states. Therefore the probability of all the guesses being correct is 2−q. 	


This completes our analysis for upper bounding the probability that the algo-
rithm returns an optimum phylogeny. We now analyze the running time. We use
the following lemma to show that we can efficiently construct optimum phylo-
genies at Step 3 in the pseudo-code.

Lemma 6. For a set of taxa M , if the number of non-isolated vertices of the
associated conflict graph is t, then an optimum phylogeny T ∗

M can be constructed
in time O(3s6t + nm2), where s = penalty(M).
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Proof. We use the approach described by Gusfield and Bansal (see Section 7
of [14]) that relies on the Decomposition Optimality Theorem for recurrent muta-
tions. We first construct the conflict graph and identify the non-trivial connected
components of it in time O(nm2). Let κi be the set of characters associated with
component i. We compute the Steiner minimum tree Ti for character set κi. The
remaining conflict-free characters in C \ ∪iκi can be added by contracting each
Ti to vertices and solving the perfect phylogeny problem using Gusfield’s linear
time algorithm [12].

Since penalty(M) = s, there are at most s + t + 1 distinct bit strings defined
over character set ∪iκi. The Steiner space is bounded by 2t, since | ∪i κi| = t.
Using the Dreyfus-Wagner recursion [19] the total run-time for solving all Steiner
tree instances is O(3s+t2t). 	

Lemma 7. The algorithm described solves the BNPP problem in time O(18q +
qnm2) with probability at least 8−q.

Proof. For a set of taxa Mi ∈ L (Step 3, Figure 1), using Lemma 6 an optimum
phylogeny can be constructed in time O(3si6ti + nm2) where si = penalty(Mi)
and ti is the number of non-isolated vertices in the conflict graph of Mi. We
know that

∑
i si ≤ q (since penalty(I) ≤ q) and

∑
i ti ≤ q (stopping condition

of the while loop). Therefore, the total time to reconstruct optimum phylogenies
for all Mi ∈ L is bounded by O(18q + qnm2). The running time for the while
loop is bounded by O(qnm2). Therefore the total running time of the algorithm
is O(18q + qnm2). Combining Lemmas 3 and 5, the total probability that all
guesses performed by the algorithm is correct is at least 8−q. 	

Lemma 8. The algorithm described above can be derandomized to run in time
O(72q + 8qnm2).

Proof. It is easy to see that Step 2c can be derandomized by exploring all possible
states for the unfixed characters. Since there are at most q unfixed characters
throughout the execution, there are 2q possibilities for the states.

However, Step 2a cannot be derandomized naively. We use the technique of
bounded search tree [5] to derandomize it efficiently. We select an arbitrary
vertex v from ∪iN(Mi). We explore both the possibilities on whether v mutates
once or multiple times. We can associate a search (binary) tree with the execution
of the algorithm, where each node of the tree represents a selection v from
∪iN(Mi). One child edge represents the execution of the algorithm assuming v
mutates once and the other assuming v mutates multiple times. In the execution
where v mutates multiple times, we select a different vertex from ∪iN(Mi) and
again explore both paths. The height of this search tree can be bounded by 2q
because at most q characters can mutate multiple times. The path of height
2q in the search tree is an interleaving of q characters that mutate once and q
characters that mutate multiple times. Therefore, the size of the search tree is
bounded by 4q.

Combining the two results, the algorithm can be derandomized by solving at
most 8q different instances of Step 3 while traversing the while loop 8q times
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for a total running time of O(144q +8qnm2). This is, however, an over-estimate.
Consider any iteration of the while loop when Mj is replaced with M0 and M1. If
a state in character c is unfixed and therefore guessed, we know that there are two
associated mutations of character c in both M0 and M1. Therefore at iteration i,
if q′i states are unfixed, then penalty(M0)+penalty(M1) ≤ penalty(Mj)− q′i.
At the end of the iteration we can reduce the value of q used in Step 2 by q′i,
since the penalty has reduced by q′i. Intuitively this implies that if we perform
a total of q′ guesses (or enumerations) at Step 2c, then at Step 3 we only need
to solve Steiner trees on q − q′ characters. The additional cost 2q′

that we incur
results in reducing the running time of Step 3 to O(18q−q′

+ qnm2). Therefore
the total running time is O(72q + 8qnm2). 	


4 Discussion and Conclusions

Discussion: If all Steiner tree problem instances on the q-cube are solved in
a pre-processing step, then our running time just depends on the number of
iterations of the while loop, which is O(8qnm2). Such pre-processing would be
impossible to perform with previous methods. Alternate algorithms for solving
Steiner trees may be faster in practice as well.

In Lemma 8, we showed that the guesses performed at Step 2c do not affect
the overall running time. We can also establish a trade-off along similar lines
for Step 2a that can reduce the theoretical run-time bounds. Details of such
trade-offs will be analyzed in the expanded version.

Conclusions: We have presented an algorithm to solve the BNPP problem
that is theoretically superior to existing methods. In an empirical evaluation [20],
the prior algorithm reconstructed optimum phylogenies for values of q up to 7.
Our algorithm should solve for larger values of q since it is clearly expected to
out-perform prior methods and its own worst case guarantees. The algorithm is
intuitive and simple and hence is one of the few theoretically sound phylogenetic
tree reconstruction algorithms that is also expected to be practical.
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