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We describe data structures for representing simplicial meshes compactly while sup-
porting online queries and updates efficiently. Our data structure requires about a factor
of five less memory than the most efficient standard data structures for triangular or
tetrahedral meshes, while efficiently supporting traversal among simplices, storing data
on simplices, and insertion and deletion of simplices.

Our implementation of the data structures uses about 5 bytes/triangle in two di-
mensions (2D) and 7.5 bytes/tetrahedron in three dimensions (3D). We use the data
structures to implement 2D and 3D incremental algorithms for generating a Delaunay
mesh. The 3D algorithm can generate 100 Million tetrahedra with 1 Gbyte of memory,
including the space for the coordinates and all data used by the algorithm. The runtime
of the algorithm is as fast as Shewchuk’s Pyramid code, the most efficient we know of,
and uses a factor of 3.5 less memory overall.
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1. Introduction

For many applications the space required to represent large unstructured meshes
in memory can be the limiting factor in the size of a mesh. Standard represen-
tations of tetrahedral meshes, for example, can require 300-500 bytes per vertex.
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One option for using larger meshes is to maintain the mesh in external memory.
To avoid thrashing, this requires designing algorithms for which the access to the
mesh is carefully orchestrated. Although several such external memory algorithms
have been designed,»2:345678 these algorithms can be much more complicated
than their main-memory counterparts, and can be significantly slower.

Another option for using larger meshes is to try to compress the representa-
tion within main memory. There has in fact been significant interest in compress-
ing meshes.?10:11,12,13,14,15,16,17 T, three dimensions, for example, these methods
can compress a tetrahedral mesh to less than a byte per tetrahedron!4—about 6
bytes/vertex (not including vertex coordinates). These techniques, however, are
designed for storing meshes on disk or for reducing transmission time, not for rep-
resenting a mesh in main memory. They therefore do not support dynamic queries
or updates to the mesh while in compressed form.

We are interested in compressed representations of meshes that permit dynamic
queries and updates to the mesh. The goal is to solve larger problems while us-
ing standard random-access main-memory algorithms. In this paper we present
data structures for representing two and three dimensional simplicial meshes. The
data structures support standard operations on meshes including traversing among
neighboring simplices, inserting and deleting simplices, and the ability to store data
on simplices. For a class of well shaped meshes!® with bounded degree these oper-
ations each take constant time. The precise definition of our interface is given in
Section 4. Although our data structures are not as compact as those designed for
disk storage, they still save a factor of between 5 and 10 over standard representa-
tions.

Our data structures are described in Section 5. They take advantage of
the separator properties of well-shaped meshes'® using recent results in graph
compression.!??° In particular our technique uses separators to relabel the ver-
tices so that vertices that share a simplex are likely to have labels that are close in
value. Pointers are then difference encoded using variable length codes. We use this
technique to radially store the neighboring vertices around each vertex in 2D and
around a subset of the edges in 3D. A query need only decode a single vertex in 2D
or vertex and edge in 3D. For applications that need to generate new vertices, e.g.,
Delaunay refinement, we leave unallocated slots in the label space and assign new
labels based on the labels of the neighbors.

Section 6 describes an implementation of our data structure and Section 7
presents experimental results. The implementation uses about 5 bytes per trian-
gle in 2D and about 7.5 bytes per tetrahedron in 3D when measured over a range of
mesh sizes and point distributions. We present experiments based on using our rep-
resentation as part of incremental Delaunay algorithms in both 2D and 3D. We use
a variant of the standard Bowyer-Watson algorithm?:22 and the exact arithmetic
predicates of Shewchuk?? for all geometric tests. We also present experiments based
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on a Delaunay refinement algorithm that removes triangles with small angles by
adding new points at their circumcenters. All space is reported in terms of the total
space including the space for the vertex coordinates and all other data structures
required by the algorithm. The results for 1 Gbyte of memory are summarized as
follows.

o We can generate a 2D Delaunay mesh with 110 million triangles (.47 Gbytes
for the mesh, .44 Gbytes for the vertex coordinates, and about .1 Gbytes
for auxiliary data used by the algorithm). Compared to the Triangle code?*
(the most efficient we know of) our algorithm uses a factor of 3 less memory.
It is about 10% slower than Triangle’s divide-and-conquer algorithm and
much faster than its incremental algorithm.

e We can generate a 3D Delaunay mesh with 100 Million tetrahedra (.75
Gbytes for the mesh, .17 Gbytes for the vertex coordinates, and .08 Gbytes
for auxiliary data). Compared to the Pyramid code,?® our algorithm uses
a factor of 3.5 less memory, and is about 30% faster.

e We can generate a refined 2D Delaunay mesh with 80 million triangles with
no angle less than 26%. This version dynamically generates new labels, and
uses an extra level of indirection in our data-structure.

Our data structure can be used in conjunction with external memory algo-
rithms. Also, although we only describe our implementation for 2D and 3D sim-
plicial meshes, the ideas extend to higher dimensions. These topics are discussed,
briefly, in Section 8.

2. Standard Mesh Data Structures

There have been numerous approaches for representing unstructured meshes in 2
and 3 dimensions. Some are specialized to simplicial meshes and others can be used
for more general polytope meshes. For the purpose of comparing space usage, we
review the most common of these data structures here. A more complete comparison
for 2D structures can be found in a paper by Kettner.26

In two dimensions most approaches are based on either triangles or edges. The
simplest data structure is based on triangles. Each triangle has three pointers to
the neighboring triangles, and three pointers to its vertices. Assuming no data
needs to be stored on triangles or edges, this data structure uses 6 pointers per
triangle. Storing data requires extra pointers. Shewchuk’s Triangle code?* and the
CGAL 2D triangulation data structure?” both use a triangle-based data structure.
To distinguish the three neighbors/vertices of a triangle, a handle to a triangle
typically needs to include an index from 1 to 3. The data structure used by Triangle,
for example, includes such an index in the pointer to each neighbor (in the low 2
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bits) so that a neighbor query not only returns the neighbor triangle, but returns
in which of three orders it is held.

There are many closely related data structures based on edges, including the
doubly connected edge list,?® winged-edge,? half-edge,*® and quad-edge®! struc-
tures. In addition to triangulated meshes, these data structures can all be used for
polygonal meshes. In these data structures each edge maintains pointers to its two
neighboring vertices and to neighboring edges cyclically around the neighboring
faces and vertices. Each edge might also maintain pointers to the neighboring faces
and to edge data. The most space efficient of these data structures can maintain
for each edge a pointer to the two neighboring vertices and to just two neigh-
boring edges, one around each face and vertex. Assuming no data needs to be
stored on a face or edge, this requires 4 pointers per edge, which for a manifold
triangulation is equivalent to the 6 pointers per triangle used by the triangle struc-
ture (|E| = 3/2|T|). The half-edge data structure,® used by CGAL,26 LEDA3? and
HGAM,33 maintains two structures per edge, one in each direction. These half-edges
are cross referenced, requiring an extra two pointers per edge. The winged-edge and
quad-edge structures maintain pointers to all four neighboring edges, requiring 6
pointers per edge (9 per triangle).

In three dimensions there are analogous data structures based either on tetra-
hedra or on faces and edges. Again the simplest data structure is to use a structure
per tetrahedron. Each tetrahedron has 4 pointers to adjacent tetrahedra, and 4 to
its corner vertices. Assuming no data this requires 8 pointers per tetrahedron. This
data structure is used by Pyramid?® and CGAL.2” The face and edge data structures
are often called boundary representations (b-reps). Such boundary representations
are more general than the tetrahedron data structures, allowing the representation
of polytope meshes, but tend to take significantly more space. Dobkin and Laszlo®*
suggest a data structure based on edge-face pairs, which in general requires 6 point-
ers per edge-face. For tetrahedral meshes this data structure can be optimized to 9
pointers per face (6 to the adjacent faces rotating around its 3 edges, and 3 to the
corner vertices). This corresponds to 18 pointers per tetrahedron. Weiler’s radial-
edge representation,3® Brisson’s cell-tuple representation,® and Linehard’s G-map
representation3” all take more space.

In summary, the most efficient standard data structures of simplicial meshes use
6 pointers per triangle in 2D and 8 pointers per tetrahedron in 3D. At least one
extra pointer is required to store data on triangles in 2D or tetrahedra in 3D.

3. Preliminaries

In this section we review some basic notions of combinatorial topology used in this
paper. For a more detailed discussion the reader can refer to Ref. [38] and Ref.[39]
among others.

An (abstract) simplicial complez K is a collection of finite sets which is closed
under taking subsets. The elements of K are called simplices. The underlying set
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UK is called the verter set and its elements are called vertices. The dimension of
a simplex with d vertices is d — 1. The dimension of K is the maximum dimension
among its simplices. A simplex 7 is a face of a simplex ~ iff 7 C v, and iff 7 # «v
we say that 7 is a proper face of v. We say that K is pure if every simplex is a face
of a simplex of highest dimension. Let S be a subset of K. We call the collection
of all simplices in S together with all their faces, CI(S), the closure of S. The star
of a simplex is the set of its superfaces, St(c) = {7 : 0 C v}. The link of a simplex
o is the set of simplices in the closure of its star that do not intersect ¢, namely,
Lk(o) = Cl(St(a)) — St(o).

Let E be a mapping from the vertices of K to R™. We let |o| denote the convex
hull of the images of their vertices of o under E, and let |K| = Usek|o|. We say
that | K| is an embedding of K iff for all simplices ¢ and 7 it holds that |o|N|7| = |v]
where v is their maximum common face (which may be empty). We say that K
is a d-manifold (with boundary) iff |K| is a d-manifold (with boundary). If K is a
manifold of dimension d then the link of every (d — 2)-simplex is a cycle of edges
and vertices (i.e., a 1-manifold). If K is a manifold with boundary, then the link of
every (d — 2)-simplex is either a cycle or a path, i.e., a 1-manifold with or without
boundary (see Figure 1 (a)). We will make use of this fact in our representation
described in section 5.

An ordering, s-&, of a d-simplex, s%, is a total ordering of its vertices. An orienta-
tion, s, of a simplex, ¢, is a méximal set of orderings which are even permutations
of each other®. Every ordering s? on a simplex implies an orientation s? on the sim-
plex, and every d-simplex, d > 0, has two possible orientations. The orientation sé
of a simplex induces an orientation s%=1 on L every d—1 subsunplex—z e., for all
sd=1 ¢ 591 there exists s¢ € s@ such that 91 is a prefix of sd.

For our purposes, a d-pseudomanifold is a pure d-complex where every (d —
1)-simplex is contained in at most two d-simplices and where the dual graph is
connected. The vertices of the dual graph are the d-simplices and the edges are the
(d — 1)-simplices. A d-pseudomanifold is orientable if its d-simplices can be given
orientations in such a way that when they meet at a (d — 1)-simplex s, they induce
opposite orientations on s. Every orientable d-pseudomanifold has two possible
orientations, which can be specified by the orientation of one of its d-simplices. If
K is a d-pseudomanifold then the link of every (d — 2)-simplex is a collection of
disjoint cycles and/or paths (see Figure 1 (b)).

In this paper we will use the term simplicial mesh to refer to a pseudomanifold
abstract simplicial complex with a given orientation.

4. Interface

In this section we present the interface for simplicial meshes that our data struc-
ture implements. It is a simplified version of an interface described in Ref. [40].

2An even permutation is a permutation reached by an even number of swaps.
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(a) (b)

Fig. 1. Example of a 2D manifold complex with boundary (a) and a pseudomanifold complex (b)
along with the link of a vertex v. The link is a single path in (a) and two paths in (b).

The interface supports standard operations on meshes including, a mechanism to
systematically traverse a mesh (e.g., reflect across a face, or rotate around a ver-
tex), and for updating the mesh, including inserting and deleting simplices and
associating data with simplices. The interface consists of four operations on or-
dered simplices (empty, up, down, and faces), and three operations on simplicial
meshes (add,delete, and findUp).

Let s* = (v1,...,vk+1) be an ordered simplex. The empty operation creates an
empty simplex empty() — (). The up operation adds a vertex v to s: up(s*,v) —
(v1,...,Vks1,v). The down operation extracts the last vertex from s*: down(s*) —
(viy...,Uk) © Uks1. Given sd consider the (d — 1)-faces 3'11_1, .. .,sd+} The faces

—~d—1

operation returns a set {s‘li_l,.. )85 +1} such that s; is not a prefix of any

member of s?. Intuitively this means that it returns every (d—1)-face in the opposite
orientation than the one given in s¢. This can be easily implemented using the above
operations.

Let M be a d-dimensional simplicial mesh. The add operation takes M and a
highest dimension ordered simplex s s? and returns a new mesh M’ that results from
adding s to M. We require that s? has consistent orientation with M. Note that
when we add s, we don’t have to store all even permutations of Sd—JUSt storing
s is enough to determine the orientation of s%. The delete operation takes M
and a highest dimension ordered simplex s¢ and returns the mesh M’ that results
from removing s¢ from M. The findUp operation takes an ordered sunplex s’c
0 <k <d, and M. It returns an ordered simplex s@ such that s¢ € M and sF is a
prefix of sd, or null if none exists. In the special case where k = d — 1, then there
is at most one s4 that can be returned.

In addition to the core interface, we also provide two operations to associate
and retrieve data from simplices in a complex. The addData operation takes M,
an ordered simplex s_"“, 0 < k < d and some user supplied data w. It associates u
with s* in M. The operation findData takes M and an ordered simplex sk and
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procedure boundary(s?, M, M)
if not findData(M, s?) then
addData(M, s¢, true)
for every f in faces(sTi) do
s'* = up(f)
if (s’d = null) then add(M,, f)
else boundary(s’d, M, M)

Fig. 2. Pseudocode for computing the d — 1 boundary My of a d simplicial mesh M.

returns the user data ud associated with s* in M. If there is no associated data
then null is returned.

The interface as described can be used for most applications that traverse and
update a simplicial mesh. Figure 2 gives an example of code that traverses a d-
simplicial mesh with boundary and returns the (d—1) boundary mesh. It recursively
traverses the mesh in depth-first order storing flags on the d simplices when visited.
Whenever a boundary d — 1 simplex is found (s’ 4 = null in the code), it is added
to the output mesh. The code assumes the boundary is a simplicial mesh.

5. Data Structure

Here we describe our 2D and 3D data structures for simplicial meshes (simplicial
orientable pseudo manifolds). We first describe uncompressed versions of the data
structures and then describe how to compress them. Our data structures are based
on storing the link for a set of (d—2)-simplices. In 2D this is similar to the half-edge
structure,3® and in 3D it is similar to the Dobkin and Laszlo3* structure. We note,
however, that all references are to vertex labels instead of pointers to other higher-
dimensional simplex structures, allowing us to compress based on vertex labels. Our
data structures have the property that if the degree of all vertices is bounded all
queries take constant time. We first describe a version for manifold complexes.

Our 2D data structure maps each vertex to its link, represented as a cycle of the
labels of its neighboring vertices. The cycle is ordered radially around the vertex
in the orientation of the complex, e.g., clockwise. A findUp query on the ordered
edge (v1,v2) can be answered by looking up the link for vy, finding v in the link,
and returning the next vertex in the link. A findUp on a vertex can be answered
by selecting the first two vertices off of its link.

The link can be stored as a list of labels starting at an arbitrary point on the
cycle. If the vertex has bounded degree, the lookup takes constant time. To analyze
the space note that each edge appears in two cycles, and each appearance requires
two pointers, one to the vertex label and one to the next element in the list. The
total space is therefore 4 pointers/edge + 1 pointer/vertex. This is identical in space
usage to the triangle-based structure, assuming that it also maintains a pointer from
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each vertex to one of its incident triangles. Our data structure is similar to the half-
edge structure since there are effectively two structures per edge, one pointing in
each direction. It differs, however, in that there are no direct cross pointers between
the matching half edges.

In 3D the data structure maps a subset of all ordered edges to their link, repre-
sented as a cycle of vertex labels. The cycle is maintained in a consistent orientation,
e.g., obeying a right-hand rule with respect to the order (direction) of the edge.
The representative subset E’ is selected to include only the edges {v1, vz} for which
either the labels of v; and v are both odd, or they are both even. Furthermore an
edge is only stored in one of its two orders, chosen using a fixed rule, e.g., lower
labeled vertex first. Since for any triangle (2-simplex) at least two labels have to be
either odd or even, this sampling of the edges guarantees that every triangle has at
least one representative ordered edge in E’. The data structure also needs to sup-
ply a way to access the link given the vertex labels of any edge in E’. This can be
implemented using an adjacency list for each v € V of all outgoing representative
edges (v,v') € E’. Each element of the list stores v’ and a pointer to the link of
(v,v").

A findUp on an ordered triangle (v1,vq,v3) works as follows. It first finds a
representative ordered edge (v, vp) from the triangle. Let’s call the third vertex
on the triangle v.. It looks up the link of (vq,vs) in the adjacency list for v,, and
searches for v, in the link. If (v, v2,v3) and (vg, vs, ve) have the same orientation
(are an even permutation of each other) findUp returns the next vertex in the
link, otherwise it returns the previous vertex in the link. A findUp on a vertex
can be implemented by selecting any of its outgoing edges, and selecting the first
two vertices of the edge’s link. A vertex, however, might have no outgoing edges
in E’. For such a vertex v the data structure can store (vi,ve) for any triangle
(v,v1,v2). The triangle can be used to find the tetrahedron. To support findUp on
edges requires storing all edges (in one direction), but not necessarily their links.
For edges not in E’ (i.e., odd-even edges), the data structure needs only store a
single vertex in their link. '

To analyze the space for this data structure we assume that the links of repre-
sentative edges are stored as lists of vertices. Each list element has two pointers:
one to the vertex and one to the next element in the list. For an edge e € E’ there is
a one-to-one correspondence between the triangles for which e is a face and list ele-
ments in the link of e. Since a triangle has 3 edges, and on average half the edges will
appear in E'P, every triangle will contribute an average of 3 *.5 = 1.5 list elements
to the overall data structure. Since there are twice as many triangles as tetrahedra,
each tetrahedron will contribute an average of 3 list elements, which corresponds
to 6 pointers. We also need to store the vertex adjacency lists for out-edges in E’.
Each edge (v1,v2) € E’ will appear as an element in one list (v1), and will require

bThis is only strictly true for randomly selected labels. However, for non-random labels one can
use a hash on the labels to decide on which edges to include.
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three pointers: one to vy, one to the link of (v, vs), and one to the next element
in the list. Additionally a pointer from each vertex to its list is required. The total
space to support findUp on triangles is therefore 6|T| 4+ 3/2|E| + |V]. For a typical
reasonably shaped mesh |E| =~ 7/6|T| and |V| = 1/6|T|, giving approximately 8
pointers/tetrahedron. This is the same as the data structure based on tetrahedra.

The additional space to support findUp on vertices is trivial since most vertices
already have an outgoing edge. To support findUp on edges, we need to separately
store the excluded edges (v, v2) that are not in E’ in either direction. These can
be stored off of v; using a linked list with 3 pointers per edge—one for va, one for
some v in the link of (v1,vs), and one for the next pointer. This comes to about
3x1/2x|E| =7/6%3/2|T| =7/4T|. Many applications will not need findUp on
edges, so in these cases this extra data need not be stored.

For manifolds with boundaries, the link might be a path of vertices instead of a
cycle. We can simply keep the path starting at the first element. For pseudomani-
folds the link of singular vertices (2D) or edges (3D) can consist of a set of cycles
and/or paths. We call this set the link set and it can be represented as multiple
lists.

A d-simplex s can be deleted by finding the representative (d —2)-simplices that
are faces of s, and splitting a cycle or path of each of their links. For example, in
Figure 1 when the triangle is deleted from (a) going to (b), the path for the link of
vertex v is split into two paths. Similarly the cycles for the other two vertices on
the triangle are each split into a path. If splitting a link leaves the link set empty,
then the (d — 2)-simplex is deleted. A d-simplex s can be added by finding the
representative (d — 2)-simplices of s, and extending each of their link sets. This
extension might add a new path to the set (if neither of the two new vertices are
in the set), it might extend an existing path (if one vertex is in the set), it might
join two existing paths (if the two vertices are in separate paths), or it might join
a path into a cycle (if the two vertices are the ends of the same path). If the data
structure is restricted to manifolds with boundary, then the single path must either
be extended by one (on either side), or jointed into a cycle.

Data can be added to the d-simplices (or (d — 1)-simplices) by adding a data
field to each element of the link. Since a d-simplex will appear in multiple links,
the data only needs to be stored on one of them (chosen in a fixed manner to make
lookup easy). We make use of this in the compressed data structure.

5.1. Compressed Data Structure

We first discuss how to compress the data structure in 2D. Compression in 3D
is similar. We make use of difference coding, in which each element in a vertex’s
link is represented by its difference from the original vertex. If these differences are
small, then a variable-length prefix code (such as the Gamma code of Elias!) can
represent them efficiently. An additional sign bit can be added to allow for negative
differences. To ensure that the differences are small, our algorithm relabels the
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o[ 3]s 2 ][5 1]

Fig. 3. The neighborhood and corresponding difference code data for vertex 314. The first entry,
6, is the degree of the vertex. Other entries are the offsets of the neighbors.

vertices in a preprocessing phase which we will discuss later.

Once the vertices are relabeled, the link of a vertex can be represented by
concatenating the code for its degree to the codes for the differences of its neighbors.
(See Figure 3 for an example.) If a vertex has a link consisting of multiple cycles
or paths (as can occur in a pseudomanifold), this link set can be represented by
putting the cycles/paths one after the other with a count before each. If data is
associated with some of the simplices, this can be interleaved with the codes for
the neighbors. The resulting vertex encodings are stored in fixed-length blocks; if
an encoding is larger than will fit in one block, multiple blocks may be formed
into a linked list to hold the encoding. Our data structure makes use of a hashing
technique to minimize the size of the pointers used in these linked lists.

When the data structure is queried, the code for the corresponding vertex is
decompressed. When an update is made, the code for the corresponding vertices is
decompressed, modified, and then compressed again. '

Compression of the 3D data structure is similar except that the data structure
stores the link around representative edges rather than around vertices. For each
vertex the data structure stores a list of that vertex’s representative out-edges, with
pointers to the links of those out-edges. These pointers are compressed using the
same hashing technique as above.

5.2. Generating Labels

If all the vertices are known before the algorithm begins, our algorithm can relabel
them using a technique based on z-y cuts. Given a set of points, the technique first
finds which of the z and y axes has the greatest diameter. It finds the approximate
median in that coordinate and partitions the points on either side of that median.
The points on one side are labeled first, then the points on the other side. This is
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done recursively to produce a labeling in which points that are near each other have
similar labels. This is similar to a separator-based technique for graph compression
through relabeling!® except that it occurs before any edges have been added to the
mesh.

If not all vertices are known before the algorithm begins, our algorithm can
assign a sparse labeling to the initial vertices. When a new vertex is added, it is
assigned a label that is close to the labels of its neighbors. It would be inefficient to
allocate storage for every possible label; instead, our algorithm uses an extra level
of indirection to map vertex labels to memory blocks.

6. Implementation
6.1. 2D Triangulation

Our 2-dimensional compressed data structure is implemented as follows.

For difference encoding our structure uses the nibble code, a code of our own
devising that stores integers using 4-bit “nibbles”. Each nibble contains three bits of
data and one “continue” bit. The continue bit is set to 0 if the nibble is the last one
in the representation of a integer, and 1 otherwise. Blandford, Blelloch, and Kash*2
found that this code is a good compromise between speed and space-efficiency.

It is sometimes necessary to store an extra bit b with a value v. This is accom-
plished with a shift operation: v' «— 2v+b. In particular, if any value might be nega-
tive, our difference coder stores its absolute value plus a sign bit: v’ « 2|v|+sign(v).

A vertex is represented with a nibble code for the degree of the vertex, followed
by nibble codes for the differences to each of the vertex’s neighbors. Our imple-
mentation stores two additional “special-case” bits with each neighbor to provide
information about the triangle that precedes it in the link. One bit is set to indicate
a gap in the link set: it indicates that there is no triangle preceding that neighbor in
the mesh. The other bit is set when data is associated with the triangle preceding
that neighbor. In this case, the code for that neighbor is followed with a nibble code
representation of the data. '

As an optimization, note that for many vertices none of the special-case bits will
be set. Our implementation stores a bit with the degree of each vertex to indicate
if none of its special-case bits are set; if this is so, those bits are omitted in the
encoding of that vertex.

Our implementation stores the nibble codes for each vertex in an array con-
taining one seven-byte block per vertex. If a block overflows (that is, if the storage
needed is greater than seven bytes), additional space is allocated from a separate
pool of seven-byte blocks. The last byte of the block stores a pointer to the next
block in the sequence. Our implementation uses a hashing technique to ensure that
the pointer never needs to be larger than one byte. This requires a hash function
that maps (address, i) pairs to addresses in the spare memory pool. Our imple-
mentation tests values of 4 in the range 0 to 127 until the result of the hash is an
unused block. It then uses that value of ¢ as the pointer to the block. Under certain
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Block | Blocks Total
Size Needed Space
5 745,151 | 10,086,381
6 475,263 | 9,998,531
7 283,559 | 9,920,446
8

9

164,660 | 10,101,104

94,105 | 10,537,195
10 53,399 | 11,179,987
11 30,496 | 11,974,072

Fig. 4. The number of extra blocks needed for 22° vertices on a uniform distribution in 2D, and
the total space required if we allocate 30% more blocks than are needed.

assumptions about the hash function, if the memory pool is at most 75% full, the
probability that this technique will fail to find an i < 127 is at most .751%® ~ 10716,

If the vertices are labeled sparsely (so that new labels can be generated dynam-
ically), our implementation also makes use of a hash mapping between labels and
vertex data blocks. One byte of memory is allocated per label; if the label is in use,
this byte contains a hash pointer to the first data block for that vertex.

One bit is stored with each block to indicate whether the current block is the
last in the sequence. For the first block this bit is stored with the degree of the
vertex; for subsequent blocks it is stored as the eighth bit of the one-byte pointer
to that block. :

There is a tradeoff in the sizes of the blocks used. Large blocks are inefficient
since they contain unused space; small blocks are inefficient since they require space
for pointers to other blocks. In addition, there is a cost associated with computing
hash pointers by searching for unused blocks in the memory pool. Figure 4 shows
the tradeoff between these factors for our Delaunay triangulation algorithm run on
220 uniformly distributed points in the unit square. We chose a block size of 7 since
it gives the most efficient use of space. '

To improve the efficiency of lookups our implementation uses a caching system.
When a query or update is made, the blocks associated with the appropriate vertex
are decoded. The information is represented in uncompressed form as a list with
one vertex in the link per element of the list. The lists are kept in a FIFO cache
with a maximum capacity of 2000 nodes. Update operations may affect the lists
while they are in the cache. The lists are encoded back into blocks when they are
flushed from the cache.

6.2. 3D Triangulation

Our 3-dimensional structure is implemented as a slight generalization of our 2-
dimensional structure. Recall that our 3D data structure keeps a map from each
vertex v to all of its representative out-edges. This is stored as a difference coded
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Block Blocks Blocks Used
Size | Allocated | 210 [ 215 [ 220
2 0.55n 59% | 67% | 70%
4 1.3n 90% | 90% | 88%
6 1.55n 90% | 90% | 87%
8 1.3n 78% | 73% | 75%
10 1.8n 30% | 51% | 63%

Fig. 5. The number of blocks of each size that are allocated for an n-vertex 3D mesh, and the
percentage of blocks that were used for n = 219, 215, and 220,

list of the corresponding neighbors. The code for each neighbor v’ is followed by a
code for the number of nibbles in the encoding of the representative edge (v,v’),
and a pointer to the first block containing the data for that edge. (The pointer
is stored using the same hash trick as above to keep pointer sizes small.) Every
representative edge has its own block allocated from the memory pool, with the
capability to allocate additional blocks if needed.

When an edge is queried, our implementation loads only the list for one vertex
and for the edge itself into the cache. It does not need to decompress the other
edges adjoining that vertex.

Since the number of nibbles needed per representative edge is quite variable, our
data structure allocates from pools of 2, 4, 6, 8, or 10-byte blocks to reduce wasted
space. The number of blocks in each pool was determined experimentally and is
shown in Figure 5. The data structure ensures that each pool always has at least
10% free space; if a block cannot be allocated from a given pool, the data structure
looks for a larger one. The initial block for each vertex comes from a separate array
containing blocks of size 7.

6.3. Dynamic point generation

To support dynamic point generation we use an expanded label space. If a total of
n vertices are to be generated, we allow for 2n possible labels. Each label receives
a one-byte hash pointer which, if the label is in use, points to the initial data block
for the corresponding vertex. The initial vertices are spread evenly across the label
space.

6.4. Incremental Delaunay

We implemented a Delaunay triangulation algorithm in two and three dimensions
using our compressed data structure. We employ the well-known Bowyer-Watson
kernel?1:22 to incrementally generate the mesh. During the course of the algorithm
a Delaunay triangulation of the current pointset is maintained. An incremental
step inserts a new vertex into the mesh by determining the elements that violate
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the Delaunay condition. Those elements form the Delaunay cavity. The faces that
bound the cavity are called the horizon. The mesh is modified by removing the
elements in the cavity and connecting the new vertex to the horizon.

The cavity is connected, thus can be found by a local search on the current mesh.
When a point p is inserted, the cavity is determined starting from any element that
will get removed by the insertion of p. To achieve optimal runtime bounds we use
the idea of Guibas et al.#3 and maintain an association of every point p not yet
inserted into the mesh with the element ¢, that contains p. The search for the
cavity of p will start at ¢,. Their algorithm keeps the history of the mesh and uses
that history to locate the t, for each p as it is inserted. In contrast we do not keep
the mesh history but maintain the association of noninserted points p to containing
elements ¢, on the current mesh.

At each incremental step all points on cavity elements have to be reassociated
with new elements using lineside tests in 2D and planeside tests in 3D, which
accounts for the dominant cost of the algorithm. We have carefully implemented
the bulldozing idea described in Ref. [40] and extended it to three dimensions.

Our implementation does not require extra memory for the lists of points since
at any time a point is either a vertex in the mesh or in one such list. The memory
that will be used to store the vertex in the mesh can first be used as a list node.

The algorithm maintains a work queue of elements whose interiors contain
points. When no elements contain points (i.e., all have been added to the mesh),
the algorithm terminates.

In this scenario all points are known at the beginning. We generate labels for
the input points using cuts along coordinate directions as described at the end of
Section 5. The runtimes reported in the next section include this preprocessing step.

6.5. Delaunay Refinement

To test our implementation’s performance for the case when new points are dynam-
ically generated at runtime, we implemented a 2D Delaunay refinement code in the
style of Ruppert.** We augment a Delaunay triangulation by adding circumcenters
of badly shaped triangles while maintaining the Delaunay property. When the ini-
tial triangulation is built we walk through the mesh once and check the quality of
each element, queuing the ones not satisfying a preset minimum angle bound. The
same work queue used in the triangulation phase of the algorithm is used to store
the list of triangles to be split.

Whenever a new point p is generated the algorithm assigns a new label by
considering the horizon vertices H of the cavity created by p and calculating the
value v that minimizes the sum of the log norms to H. It then finds the closest
label to v that is not yet used.

In the pure triangulation code, all vertices are known at the beginning, so we
can store the point coordinates and the first level vertex arrays densely. In the
refinement code we can only fill these arrays up to about 85% before the open
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Distribution | # Pts | # Extra Blocks | Time(s)
uniform 218 70, 823 3.16
normal 218 72,239 3.52
kuzmin 218 72,917 4.36
line 218 66, 297 3.64
uniform 220 288, 255 13.25
normal 220 292, 580 14.41
kuzmin 920 292, 709 91.34
line 920 976,124 15.86

Fig. 6. The number of extra 7-byte blocks needed to store triangular Delaunay meshes for various
point distributions using our structure and the runtime of our 2D implementation.

address hashing takes prohibitively long. We also require extra memory for the
additional map from the label space to the vertices.

7. Experiments

We report experiments on a Pentium 4, 2.4GHz system, running RedHat Linux
Kernel 2.4.18, GNU C/C++ compiler version 3.0.1. For all geometric operations
(lineside, planeside, incircle, and insphere tests) we use Shewchuk’s adaptive pre-
cision geometric predicates.?> We use single-precision floating-point numbers to
represent the coordinates. For every problem setting and size the results of our
experiments were very consistent over multiple runs. Therefore we do not report
ranges of results for identical runs.

7.1. 2D Delaunay:

We tested our 2D implementation on data drawn from several distributions to as-
sess its memory needs for non-uniform data sets. We ran tests on the following
distributions: Uniformly random, normal, kuzmin, and a line singularity. Details on
these distributions can be found in Ref. [45]. In Figure 6 we report the number of
extra (overflow) 7-byte blocks used to store Delaunay meshes of various point dis-
tributions and the runtime of our implementation. It can be seen that the runtime
varies by about 40% while the number of extra blocks varies by about 10%. Fur-
thermore the number of extra blocks used comes to only about 28% of the number
of default blocks needed, which is one per vertex. In our experiments we set the
number of extra blocks available to 35% of the number of default blocks. The extra
blocks therefore fill to about 80% of capacity. Given this setting, the total space we
require for the mesh is 1.35 x 7 bytes/vertex, which is 4.725 bytes/triangle.

Next, we compare runtime and memory usage of our implementation to
Shewchuk’s Triangle?* code which is the most efficient code reported by Boissonnat
et. al..?” In Figure 7 we report the runtime of our (incremental) code vs. Trian-
gle’s divide-and-conquer and its incremental implementation. We report the total
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Distribution | # Pts | # Bytes used | Time(s)
uniform 216 2,525, 300 9.26
normal 216 2,572,659 9.38
kuzmin 916 2,571,769 11.23
line 916 2,264, 465 8.77
uniform 218 10,135,321 39.59
normal 218 10, 463,761 41.89
kuzmin 218 | 10,444,195 | 45.04
line 918 9,372,669 | 38.97

Fig. 10. The number of bytes needed for occupied blocks to store tetrahedral Delaunay meshes
for various point distributions and the runtime of our 3D implementation.

memory use of both codes in Figure 8 and break down our memory use for the
simplicial mesh, point coordinates and the work queue in Figure 9. While using
just about a third of the memory our code runs about 10% slower than Triangle’s
divide-and-conquer implementation and is about an order of magnitude faster than
Triangle’s incremental implementation. In our code 50% of the memory is used to
represent the mesh, 40% to store the coordinates, and 10% for the work queue.

7.2. 3D Dela,'u,ndy:

As in 2D we tested our 3D implementation on the same four point distributions.
In our 3D structure we allocate memory blocks of different size. To compare the
memory needs for various point distribution, we report the number of bytes used to
store occupied blocks in Figure 10. As in 2D the runtimes differ, but the memory
needed is nearly independent of the distribution.

We compare our 3D implementation with uniform random data to Shewchuk’s
Pyramid code?®¢. Figures 11 and 12 show the runtime and the memory usage.
Figure 13 breaks down the memory usage of our code. '

In comparison our implementation runs slightly faster and uses only about one
third of the memory. In 3D the representation of the mesh uses about 75% of
the total memory; point coordinates and work queue account for 18% and 7%,
respectively.

7.3. 2D Delaunay refinement:

We tested our 2D Delaunay refinement code and compare runtime and memory use
to our pure 2D Delaunay code, see Figures 14 and 15. The Figures show problem
size in terms of the final number of elements in the mesh. In the pure Delaunay
code, all n points are known initially; in the refinement code, only n/2 points are

“We note that the version of Pyramid we are using is a Beta release.
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known initially, and the other n/2 are generated and labeled on the fly as described
in Section 6. We refine the mesh up to a minimum angle of 26.85°.

The runtimes for the two versions are almost identical. We need about 30%
more memory in the refinement code. Additional memory is needed for the map
from labels to vertices and for slack in the point coordinate array and the first level
vertex array needed for our hashing technique.
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8. Discussion

The representation we described can be used as an alternative to external memory
(out-of-core) representations, when the mesh is within a factor of five or so of
fitting in memory relative to a standard representation. Our representation has the
advantage that it allows random access to the mesh without significant penalty,
and can therefore be used as part of standard in-memory algorithms (or even code)
by just exchanging the mesh interface.

8.1. In conjunction with external memory

For very large problems our representation can be used in conjunction with external-
memory techniques. Since in our representation the ordering of the vertices is de-
signed to be local (it is based on the quad/oct tree decomposition), and the blocks
of memory for vertices are laid out in this ordering, nearby vertices in the mesh will
most likely appear on the same page. One problem is that, if the data for a vertex
overflows, we now assign the overflow data to the extra blocks using a hash, which
has no locality. To make sure that the overflow data has some spatial locality one
could be more careful about assigning the extra blocks (e.g. preferentially within
the same page as the original block). Based on this representation, algorithms that
have a strong bias to accessing the mesh locally (e.g., see the recent work of Amenta,
Choi and Rote®) will tend to have good spatial locality and work well with virtual
memory when it does not fit into physical memory.

8.2. Generalizations to d-dimensions

The idea of storing the link of every d — 2 dimensional simplex generalizes to arbi-
trary dimension. The compression technique also generalizes to arbitrary dimension,
but is likely to be ineffective for large dimensions. This is because the size of the
difference codes depends on the separator sizes,!® which in turn depends on the di-
mension. Choosing an effective way to select the representative subset of the d — 2
dimensional simplices will depend on the dimension and would need to be consid-
ered to use our representation on dimensions greater than three. We have not done
any experimentation to analyze the effectiveness of our techniques on dimensions
greater than three, or to compare our representations to other representations.
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