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ABSTRACT
Self-adjusting computation is an approach for automatically pro-

ducing dynamic algorithms from static ones. It works by tracking

control and data dependencies, and propagating changes through

the dependencies when making an update. Extensively studied

in the sequential setting, some results on parallel self-adjusting

computation exist, but are only applicable to limited classes of com-

putations, or are ad-hoc systems with no theoretical analysis of

their performance.

In this paper, we present the first system for parallel self-adjusting

computation that applies to a wide class of nested parallel algo-

rithms and provides theoretical bounds on the work and span of

the resulting dynamic algorithms. Our bounds relate a “distance”

measure between computations on different inputs to the cost of

propagating an update.

The main innovation in the paper is in using Series-Parallel trees

(SP trees) to track sequential and parallel control dependencies

to allow change propagation to be applied safely in parallel. We

demonstrate several example applications, including algorithms for

dynamic sequences and dynamic trees. Lastly, we show experimen-

tally that our system allows algorithms to produce updated results

over large datasets significantly faster than from-scratch execution,

saving both work and parallel time.
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1 INTRODUCTION
Self-adjusting computation is an approach to automatically, or semi

automatically, convert a (suitable) static algorithm to a dynamic

one [1, 4–6, 21, 24, 31, 33]. Most often, self-adjusting computation

is implemented in the form of a change propagation algorithm. The

idea, roughly, is to run a static algorithm while keeping track of

data dependencies. Then when an input changes (e.g. adding an

edge to a graph), the change can be propagated through the compu-

tation, updating intermediate values, creating new dependencies,

and updating the final output. Not all algorithms are suitable for

the approach—for some, updating a single input value could prop-

agate changes through most of the computation. To account for

how much computation needs to be rerun, researchers have studied

the notion of “stability” [1, 6] over classes of changes. The goal

is to bound the “distance” between executions of a program on

different inputs based on the distance between the inputs. For ex-

ample, for an appropriate sorting algorithm, adding an element to

the unsorted input list would ideally cause at most𝑂 (log𝑛) work of
recomputation, and that recomputation could be propagated with

a constant factor overhead. With self-adjusting computation, this

would lead to the performance of a binary search tree.

In the sequential setting this approach has been applied to a

wide variety of algorithms, with various bounds on the stability,

and also cost of change propagation as a function of the compu-

tational distance. Applications includes dynamic trees [6], kinetic

data structures [8, 9, 12], computational geometry [3, 10], Huffman

coding [7], and Bayesian inference [13]. Self-adjusting computation

has also been extended in several directions. Notable works include

work on “on-demand” updates with Adapton [32], the CEAL lan-

guage [30, 31], and automatic derivation of self-adjusting programs

via information-flow type systems [22, 23].

More recent work [2, 11, 14, 15, 20, 29] has studied applying

change propagation in parallel, allowing for batch dynamic updates—

e.g., adding a set of edges to an existing graph and then propagating

those changes in parallel. Batch updates are particularly important

in practice due to the rapid rate of modifications to very large data

sets such as the web graph or social networks. Furthermore, in

principle, parallelism and change propagation should work well to-

gether since algorithms with shallow dependence chains tend both

to be good for parallelism (since fewer dependencies means more

task can run in parallel) and for dynamic updates (since changes

will not have to propagate as deeply). Indeed, several researchers

have studied the approach and developed systems in the applied

setting, which show good performance improvements [14, 15, 20]

on tasks such as map-reduce.

In the theoretical setting, recent work has studied bounds on

the cost of change propagation for a class of so-called “round-

synchronous” computations [2]. This was applied to generate ef-

ficient algorithms for batch-dynamic trees, supporting batches

Paper Presentation  SPAA ’21, July 6–8, 2021, Virtual Event, USA

59

https://doi.org/10.1145/3409964.3461799
https://doi.org/10.1145/3409964.3461799
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3409964.3461799&domain=pdf&date_stamp=2021-07-06


of links and cuts among other operations. However, the round-

synchronous nature limits the applicability to algorithms that fit

the model. Earlier work applied similar ideas to a problem from

computational geometry [11].

In this paper we develop a more general framework for sup-

porting self-adjusting computation for arbitrary nested-parallel

algorithms. We prove bounds on the cost of change propagation in

the framework based on an appropriately defined distance metric.

We have also implemented the framework and run experiments on

a variety of benchmarks. A nested parallel program is one that is

built from arbitrary sequential and parallel composition. A compu-

tation is defined recursively as either two computations that are

composed in parallel (a fork), two that are composed sequentially,

or the base case which is a sequential strand. Multiway forking can

easily be implemented by nesting parallel compositions.

The crux of our technique is to represent a computation by a

dependency graph that is anchored on a Series-Parallel tree [27], or
SP tree for short. An SP tree corresponds to the sequential and par-

allel composition of binary nested parallel programs—i.e., parallel

composition consists of a 𝑃 node with two children (the left-right

order does not matter), and sequential composition consists of an

𝑆 node with two children (here the order does matter). The leaves

are sequential strands of computation, and can just be modeled as

leaf 𝑆 nodes. The SP tree represents the control dependencies in

the program—i.e., that a particular strand needs to executed before

another strand. We introduce R nodes to indicate data reads, which

are used to track data dependencies between writes and reads—i.e.,

that a particular read depends on the value of a particular write.

Together we refer to the trees as RSP trees. The RSP tree of a compu-

tation allows propagating a change in a way that respects sequential

control dependencies while allowing parallelism where there is no

dependence. We prove that a parallel change propagation algorithm

can propagate changes through the computation in a manner that

is both efficient and scalable.

Programs written in our framework write their inputs and any

non-local values that depend on them into “modifiable references”,

or modifiables for short, which track all reads to them and facilitate

change propagation. Like previous work on sequential change prop-

agation [6], we achieve our efficiency by restricting input programs

to those which write to each modifiable exactly once. All race-free

functional programs satisfy this restriction. We note that since local

variables do not need to be tracked, they are not bound by this

restriction, so the scope of programs amenable to our framework is

not just those which are purely functional.

Roughly speaking, given two executions of the same algorithm

on different inputs, we define the computation distance to be the

work that is performed by one but not the other (see Definition 4.2

for the full definition). We then show the following theorem that

bounds the runtime of the change propagation algorithm.

Theorem 1.1 (Efficiency). Consider an algorithm 𝐴, two input
states 𝐼 and 𝐼 ′, and their corresponding RSP trees 𝑇 and 𝑇 ′. Let𝑊Δ =

𝛿 (𝑇,𝑇 ′) denote the computation distance, 𝑅Δ denote the number of
affected reads, 𝑠 denote the span of 𝐴, and ℎ denote the maximum
heights of𝑇 and𝑇 ′. Then, change propagation on𝑇 with the dynamic
update (𝐼 , 𝐼 ′) runs in𝑂 (𝑊Δ +𝑅Δ ·ℎ) work in expectation and𝑂 (𝑠 ·ℎ)
span w.h.p.

We have implemented the proposed techniques in a library for C++,

which we call PSAC++
1
(Parallel Self-Adjusting Computation in

C++). The library allows writing parallel self-adjusting programs

by using several small annotations in a style similar to writing con-

ventional parallel programs. Self-adjusting programs can respond

to changes to their data by updating their output via the built-in

change propagation. Our experiments with several applications

show that parallel change propagation can handle a broad variety

of batch changes to input data efficiently and in a scalable fash-

ion. For small changes, parallel change propagation can yield very

significant savings in work; such savings can amount to orders

of magnitude of improvement. For larger changes, parallel change

propagationmay save somework, and still exploit parallelism, yield-

ing improvements due to both reduction in work and an increase in

scalability. We summarize the contributions of the paper as follows:

• A general approach for parallel change propagation based on

using RSP trees to safely propagate changes in the correct order

while allowing parallelism in the propagation.

• Theoretical bounds on the work (sequential time) and span (par-

allel time) of our algorithms.

• An implementation as C++ library, with six example applications

to study as benchmarks.

• Experimental results that confirm what is backed up by our

theoretical analysis, that parallel change propagation is efficient

for a range of applications.

1.1 Technical Overview
The idea of the change propagation algorithm is first to run an

algorithm on some initial input while keeping a trace of reads and

writes to “non local” locations. This trace can be thought of as a

write-read dependence graph, indicating what reads depend on

what writes (also called a data dependence graph). Along with each

read the trace also stores the code that was run on the value, and

maintains some form of control ordering of the execution. When

an input is updated at particular locations, the change propagation

algorithm knows what read those locations and reruns them. This

can cause new reads and writes that both update the trace, and

create changes that have to propagated to their readers. Importantly,

and one of the biggest challenges in change propagation, is that the

reads that rerun have to do so in control order, otherwise they could

use stale information. For example, if a read A, and a later a read B in

program control order both need to be rerun, running B first might

miss updates byA. Since A could do something differentwhen rerun,

the trace might not even know there will be a data dependence

between them (A is now going to write to something B reads). This

means that the topological order on the trace’s data dependence

graph in insufficient for safety, and that control dependencies also

need to be considered.

In the sequential setting, the total order of all instructions is

typically maintained using a dynamic list-maintenance data struc-

ture [25] keeping all reads in time order. The structure needs to be

dynamic since during propagation new computation can be added,

and old deleted, at arbitrary points in the ordering. During change-

propagation, all reads that are affected by a write are placed in a

priority queue prioritized by this order, processing the earliest first.

1
Our code is publicly available at https://github.com/cmuparlay/psac
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For our work on parallel change propagation, the broad idea

is to organize the control dependencies of the program around

the RSP tree. Unlike the sequential case, instead of having a total

order of execution time, the RSP tree effectively keeps track of the

parallel partial order of control dependencies among the strands.

As with the sequential case, we also keep track of all write-read

data dependencies. Unlike the sequential algorithm which uses a

priority queue of time order, our algorithm instead uses the RSP

tree itself to maintain the partial order among strands—and this

allows running multiple tasks in parallel during the propagation.

The initial run builds the RSP tree. It stores on each read (R) node

a closure to rerun if the value it read changes
2
. When the input is

modified, the change-propagation algorithm identifies all readers

of the changed values. We refer to these as the affected readers. Now,
instead of adding them to a priority queue by sequential time order,

the algorithm makes some markings in the RSP tree. In particular it

starts at each affected reader and marks all ancestors in the RSP tree.

It then traverses the RSP tree and using the marks finds readers

that require and are safe to rerun, i.e., only descending if a node

is marked. Whenever it gets to a 𝑃 node, the algorithm traverses

down whichever children are marked (either left, right, or both in

parallel), and whenever it gets to an internal 𝑆 node, it traverses

down the left branch if it is marked, and then the right branch if

it is marked. At an 𝑆 node the algorithm never goes down both

branches simultaneously since that would be unsafe

Whenever the traversal meets an affected reader, change propa-

gation runs the closure associated with the reader and updates the

resulting computation and its corresponding subtree of the RSP tree,

possibly cascading new reads and writes and marking additional

regions of the RSP tree for additional propagation. Once the marked

regions of the tree have all been traversed, change propagation is

complete and the computation will be fully up to date.

1.2 Related Work
While there is little work on fully fledged parallel self-adjusting

computation, a few systems have been developed.

Incoop. On the programming language side, Bhatodia et al. [15]

develop a framework for self-adjusting computation in the map-

reduce paradigm. Their system specifically targets map-reduce-

style computations in a distributed model of computation, and does

not provide any theoretical guarantees on the runtime of updates.

Two for the price of one. Burckhartd et al. [20] were the first to

develop a general-purpose system for parallel self-adjusting compu-

tation. They do so by extending the so-called concurrent revisions

model with primitives for self-adjusting computation. This model

enables programs to express fork-join parallelism with versioned
types that allow multiple threads to concurrently write to an object

that is automatically aggregated at the join point, in a style similar

to Cilk reducers [28]. Their algorithm for self-adjusting computa-

tion then essentially performs memoisation of the versioned writes

done by each fork, allowing them to be looked up and re-used if

their dependencies haven’t changed. Their work is evaluated on a

set of five benchmark problems, where it is demonstrated exper-

imentally that the combination of parallelism and self-adjusting

2
A closure is a code pointer along with needed local variables.

computation is worthwhile, producing both work savings and par-

allel time speedups. This work, however, is purely experiential and

does not provide theoretical guarantees on the runtime of updates.

iThreads. Bhatodia et al. [14] develop iThreads, a pthreads drop-in
replacement that automatically dynamizes the underlying program.

The advantage of such a system is that dynamization is completely

automatic; the programmer does not even have to annotate their

code or add additional primitives to perform self-adjusting com-

putation. The corresponding downside is that the dynamization

is very coarse grained, since the only units of work that can be

re-executed are the entire pthread computations. The user is there-

fore unable to fine tune the dynamism, which is often important

to optimize self-adjusting programs. Theoretical guarantees on the

runtime of updates are not provided.

PAL. Hammer et al. [29] present Parallel Adaptive Language (PAL),

a proposed (though not fully implemented) language for parallel

self-adjusting computation. Like other works, including ours, it

represents the trace of a computation using a tree structure, which

encodes parallel and sequential dependencies between computa-

tions and the data that they read. Their proposed algorithm, how-

ever, requires several nontrivial data structures, some of which,

such as an efficient concurrent fully dynamic lowest common an-

cestor (LCA) structure, do not yet exist. Their evaluation therefore

consists of a simulation of the work that would be performed by

the algorithm if said data structures were available, rather than a

realistic evaluation.

1.3 Model of Computation
We analyze algorithms in the work-span model, where work is the

total number of instructions performed by the algorithm and span

(also called depth) is the length of the longest chain of sequentially

dependent instructions [16]. The model can work-efficiently cross

simulate the classic CRCW PRAM model [16], and the more re-

cent Binary Forking model [18], incurring at most an additional

𝑂 (log∗ (𝑛)) factor overhead in the depth due to load balancing. An

algorithm with work𝑊 and span 𝑆 can be ran on a 𝑃-processor

PRAM in 𝑂 (𝑊 /𝑃 + 𝑆) time [19]. We say that an algorithm has

𝑂 (𝑓 (𝑛)) cost with high probability (w.h.p.) if it has 𝑂 (𝑐 · 𝑓 (𝑛)) cost
with probability at least 1 − 1/𝑛𝑐 , for any 𝑐 ≥ 1.

2 FRAMEWORK
Our framework for parallel self-adjusting computation is built

around a set of core primitives that are easy to integrate into ex-

isting algorithms. In this section, we describe these primitives and

give an example algorithm for illustration.

write(dest: 𝛼 mod, value : 𝛼)
alloc_mod(T: type) : T mod
read(m : (𝛼1 mod, ..., 𝛼𝑘 mod), r : 𝛼1 × ... × 𝛼𝑘 ↦→ ())
par(left_f : () ↦→ () , right_f : () ↦→ ())
run(𝑓 : () ↦→ ()) : 𝑆
propagate(root : 𝑆)

Figure 1: Interface for Parallel Self-Adjusting Computation
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Modifiables. The primary mechanism by which computations are

dynamised is through the use of modifiable variables. A modifiable

variable, or modifiable for short, is either a value that is part of

the input to the algorithm, or a nonlocal variable whose value

depends on the value of another modifiable variable. Algorithms

are dynamised by placing their inputs in modifiables, and ensuring

that all nonlocal variables whose values depend on a modifiable

are also placed in modifiables. When a modifiable is updated, our

framework automatically determines which values are affected by

the resulting changes and propagates the appropriate updates.

Modifiables can be allocated either statically, i.e. before the com-

putation is run, or dynamically, in which case their lifetime will be

tied to the scope of the computation that allocated them. Writing

to modifiables is achieved using the write operation. We require

that each modifiable is written to at most once during each run of

the computation, and that modifiables are not read before they are

written. We also require that modifiables are only read from and

written to by computations that are in the dynamic (nested) scope

of the computation that allocated it.

Read operations. To ensure that dependencies are tracked, modifi-

ables must be read using the read operation. read reads the values

of the given modifiables and invokes the given reader function with

their current values as arguments.

Parallelism. We support fork-join parallelism through a binary

fork operation par, which takes two thunks (functions that take no

arguments and return nothing) and executes them in parallel.

Control. Computations are initiated with the run operation, which

returns a handle to the computation (represented by the root of

the RSP tree). After making changes to the input, changes are

propagated using the propagate operation.
Additional primitives. For performance, our practical implemen-

tation also supports an alloc_array operation and a corresponding

read_array operation for allocating and reading arrays of modi-

fiables. We also support a parallel_for primitive, which executes

a given function over a range of values in parallel. We omit the

details of these primitives.

A note on randomness. We require that all algorithms imple-

mented in our framework be deterministic. That is, given some

input, if re-executed they must produce exactly the same output.

It is still possible, and indeed we have several in our application

examples, to implement randomized algorithms. To do so, the ran-

domness must be pre-generated before executing the computation

to ensure that, when re-executed, the same results will be obtained.

Example. To illustrate our framework, we give an implementation

of a parallel divide-and-conquer sum function. See Algorithm 1. In

our pseudocode, for readability, we denote reads using the syntax:

with read(mods...) as args... do 𝑓 (args...)

As typical with self-adjusting computation, the code uses “destina-

tion passing”, where Sum takes the modifiable in which the result

should be written as an argument.

3 CHANGE PROPAGATION ALGORITHM
We use a variant of SP trees (see introduction) extended with read

(R) nodes, which we call RSP trees. A read is tracked in the RSP

tree by creating an R node as the left child of the current S node

Algorithm 1 Parallel self-adjusting sum

1: function Sum(A[lo...hi] : int mod array, res : int mod)
2: if lo = hi - 1 then
3: with read(A[lo]) as x do
4: write(res, x)
5: else
6: local mid← lo + (hi - lo) / 2

7: local left_res← alloc_mod(int)
8: local right_res← alloc_mod(int)
9: par(function⇒ Sum(A[lo...mid], left_res),

function⇒ Sum(A[mid...hi], right_res))

10: with read(left_res, right_res) as x, y do
11: write(res, x + y)

S

P

S S

S

R

P S

R

P S

RS S S S

R R R R

m1 m2 m3 m4 res

Figure 2: The RSP tree of the divide-and-conquer sum algo-
rithm on an input of size four. Dynamically allocated mod-
ifiables are depicted underneath the 𝑆 node that allocated
them.Writes and reads to/frommodifiables are shownas red
(long-dashed) and green (short-dashed) arrows respectively.

whenever a reader is executed. The reader code then executes in the

subtree of the R node and the continuation (the code that executes

directly after the read completes) proceeds in the sibling. The full

semantics for RSP trees is defined by the algorithms in this section.

Figure 2 shows an example RSP tree for the divide-and-conquer

sum computation of Algorithm 1 on an input of size four. The four 𝑅

nodes lowest in the tree correspond to the reads of the input, which

occur at the base case of the algorithm. The 𝑅 nodes higher in the

tree are the reads of the results of the recursive calls. Although not

depicted in this simple algorithm, reads may be nested, in which

case read nodes may appear as descendants of other read nodes.

Our framework facilitates self-adjusting computation by first

building the RSP tree during the initial run of the static algorithm.

To execute dynamic updates, when a modifiable is written to, all of

the read nodes that read from it, and all of their ancestors in the

RSP tree are marked as pending re-execution. Change propagation

then simply consists in traversing the RSP tree, ignoring subtrees

that are not marked, since no changes are present, and re-executing

the marked readers. Note that this re-execution destroys the old

portion of the RSP tree corresponding to the read and generates

a new one, meaning that the old and new computations can be
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entirely structurally different. Additionally, such re-execution may

also write to subsequent modifiables that were also read during the

computation, so this process may mark additional nodes in the tree

as pending re-execution, which will cause further propagation. The

remainder of this section discusses the high-level implementation

of these operations and the framework’s primitives.

Pseudocode for the key components of our algorithm is shown

in Algorithms 2–5. In the code, current_scope is a thread-local vari-
able pointing to the current S node of the RSP tree that the code

is running in. Maintaining this notion of scope is important for

two reasons. Most obviously, it ensures that the RSP tree can be

constructed while the algorithm is ran. Less obviously, and more

interestingly, it also allows us to more efficiently allocate and collect

dynamically allocated modifiables.

Writing to modifiables. Pseudocode for writing to modifiables is

given in Algorithm 2. If the new value differs from the old value, all

of the readers of that modifiable are marked for change propagation.

Algorithm 2 Writing modifiables

1: function write(dest : 𝛼 mod, value: 𝛼 )
2: if dest is unwritten or value ≠ dest.val then
3: dest.val← value

4: for each reader in dest.readers do in parallel
5: reader.affected← true
6: reader.mark() // defined in Algorithm 5

Reading modifiables. Pseudocode for the read operation and for

handling R nodes is shown in Algorithm 3. R nodes consist of two

specific fields, the list of modifiables that were read (mods), and

the reader function that executes on the values of the modifiables

(reader_f). When an R node is created or destroyed, it adds or

removes itself from the corresponding lists of readers. When an R

node executes its reader function, the R node is used as the scope

of the computation. This means that R nodes count as S nodes for

the purpose of determining sequential dependencies.

Algorithm 3 Reading modifiables

1: function read(m : (𝛼1 mod, ..., 𝛼𝑘 mod) , r : 𝛼1 × ... × 𝛼𝑘 ↦→ ())
2: local cur← current_scope

3: cur.left← new 𝑅 node (m, r) // Calls 𝑅::create
4: current_scope← cur.left

5: cur.left.do_read()

6: cur.right← new S node

7: current_scope← cur.right

8: function 𝑅::create(m, r) // Called on creating a new node
9: this.mods← m

10: this.reader_f← r

11: for each mod v in mods do in parallel
12: v.readers← v.readers ∪{this} // must be atomic!
13: function 𝑅::do_read

14: local 𝑚1, ...,𝑚𝑘 ← this.mods

15: local 𝑣1, ..., 𝑣𝑘 ← 𝑚1.val, ...,𝑚𝑘 .val

16: this.reader_f(𝑣1, ..., 𝑣𝑘 )
17: function 𝑅::destroy

18: for each mod m in this.mods do
19: m.readers← m.readers \ {this} // must be atomic!

Parallelism. The par function creates a 𝑃 node as the left child of

the current scope. The 𝑃 node has two 𝑆 nodes as children, which

will correspond to the scope of the two computations that run in

parallel. After completing the parallel computation, an 𝑆 node is

created as the right child of the current node to be the scope of any

subsequent computation. The algorithm is shown in Algorithm 4.

Algorithm 4 Parallelism

1: function par(left_f: () ↦→ () , right_f: () ↦→ ())
2: local cur← current_scope

3: cur.left← new 𝑃 node

4: cur.left.left← new 𝑆 node

5: cur.left.right← new 𝑆 node

6: in parallel do:
7: { current_scope← cur.left.left; left_f() }

8: { current_scope← cur.left.right; right_f() }

9: cur.right← new 𝑆 node

10: current_scope← cur.right

Control operations. These are depicted in Algorithm 5. Run cre-

ates the root S node of the RSP tree and runs the computation from

scratch. The propagate functions perform change propagation for

each of the kind of RSP tree nodes. Note that the P version propa-

gates in parallel, and the S version sequentially. When reaching a

read node, the algorithm reruns the associated reader function.

4 ANALYSIS
In this section, we provide an analysis of our model to establish its

correctness and prove bounds on the runtimes of our algorithms.

Bounds in our analysis will depend on the work and span of the

underlying algorithm, as well as the height of the generated RSP

tree, which we note is at most the span of the algorithm, but can

be much less. For all of our examples, it is at most 𝑂 (log(𝑛)), even
when the span of the algorithm is larger.

Setting. For our analysis, we will consider algorithms 𝐴 in our

parallel self-adjusting framework, which can be thought of as func-

tions which act on given inputs 𝐼 = {(𝑚𝑖 , 𝑣𝑖 )}𝑖 , a set of modifiable-

value pairs consisting of modifiables that 𝐴 will read, and their

values. Executing𝐴(𝐼 ) results in an output (𝜏,𝑇 ), where 𝜏 is a set of
modifiable-value pairs consisting of every modifiable written to by

the execution of the algorithm, and the corresponding value. 𝑇 is

the RSP tree of the computation, where each read node is annotated

with the reader function and the values that were read. We define

the domain of a set of pairs 𝑋 by 𝑑𝑜𝑚(𝑋 ) = {𝑚 : (𝑚, 𝑣) ∈ 𝑋 }. Due
to the write-once restriction, note that in a valid execution, we must

have 𝑑𝑜𝑚(𝐼 ) ∩ 𝑑𝑜𝑚(𝜏) = ∅.
We can then define a dynamic update Δ = (𝐼 , 𝐼 ′) to be a pair of

input states with 𝐼 ≠ 𝐼 ′, denoting that the input is changed from

𝐼 to 𝐼 ′, which may involve changing the values of modifiables in

𝐼 , adding new modifiables that were not read the first time, and

removing modifiables that are no longer read. We can then think of

change propagation as taking an RSP tree 𝑇 and a dynamic update

(𝐼 , 𝐼 ′), and outputting a set of writes 𝜏 and an updated RSP tree 𝑇 ′.
We can now define the notion of affected readers, which, intu-

itively, when applying an algorithm to two different inputs, are

readers that exist in both computations but read different values,

i.e. they are the frontiers where the computations diverge.
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Algorithm 5 Control operations

1: function run(𝑓 : () ↦→ ()) : 𝑆
2: local root← new 𝑆 node

3: current_scope← root

4: 𝑓 ()

5: return root

6: function propagate(root : 𝑆)

7: if root.marked then root.propagate()

8: function node::mark

9: this.marked← true
10: if this.parent ≠ ⊥ ∧ ¬ this.parent.marked then
11: this.parent.mark()

12: function 𝑆 ::propagate

13: if this.left ≠ ⊥ ∧ this.left.marked then
14: this.left.propagate()
15: if this.right ≠ ⊥ ∧ this.right.marked then
16: this.right.propagate()
17: this.marked← false
18: function 𝑃 ::propagate

19: if this.left.marked ∧ this.right.marked then
20: in parallel do:
21: this.left.propagate()
22: this.right.propagate()
23: else if this.left.marked then this.left.propagate()
24: else this.right.propagate()
25: this.marked← false
26: function 𝑅::propagate

27: if this.affected then
28: this.left← ⊥
29: this.right← ⊥
30: this.do_read()
31: this.affected← false
32: else
33: if this.left ≠ ⊥ ∧ this.left.marked then
34: this.left.propagate()
35: if this.right ≠ ⊥ ∧ this.right.marked then
36: this.right.propagate()
37: this.marked← false

Definition 4.1 (Affected readers). Consider an algorithm 𝐴, two

input states 𝐼 and 𝐼 ′, and their corresponding RSP trees 𝑇 and 𝑇 ′,
i.e., 𝐴(𝐼 ) = (𝜏,𝑇 ) and 𝐴(𝐼 ′) = (𝜏 ′,𝑇 ′) for some 𝜏 and 𝜏 ′. We say

that a read node is subsumed by another read node in the same tree

if the first one is a descendant of the second one, i.e., the first one

was created while executing the second one’s computation. Given

two read nodes 𝑣 ∈ 𝑇 and 𝑣 ′ ∈ 𝑇 ′, we say that they are cognates
if the paths in 𝑇 and 𝑇 ′ to 𝑣 and 𝑣 ′ are the same, that is, the path

branches left or right at the same time and have the same labels.

We call a pair of cognate read nodes affected if they read different

values, and are not subsumed by another such node.

Note that this definition of affected node makes sense because of

the fact that computations in our framework are deterministic, and

hence, the only place at which a computation can begin to differ is

at a read node that reads different values than last time. We now

introduce the notion of computation distance. The computation dis-

tancemodels the amount of work required to re-execute the affected

readers. In essence, it is the minimum amount of work required to

update the computation assuming absolutely no overhead.

Definition 4.2. Consider an algorithm 𝐴, two input states 𝐼 and

𝐼 ′, and their corresponding RSP trees 𝑇 and 𝑇 ′. Define the cost of a
read node to be the work performed by its reader function

3
. The

computation distance between the executions of 𝐴 on the inputs 𝐼

and 𝐼 ′ is defined as the sum of the costs of the affected read nodes

in 𝑇 and 𝑇 ′. More formally, if we denote by 𝑙 (𝑇 ), 𝑣 (𝑇 ),𝑤 (𝑇 ), the
RSP label of the root node of 𝑇 , the values read by the read node at

the root of𝑇 , and the work performed by the reader function of the

read node at the root of 𝑇 , we can define the computation distance

recursively starting at the root of the trees as follows.

𝛿 (𝑇,𝑇 ′) =
{
𝑤 (𝑇 ) +𝑤 (𝑇 ′) if 𝑙 (𝑇 ) = 𝑅 ∧ 𝑣 (𝑇 ) ≠ 𝑣 (𝑇 ′),∑𝑘

𝑖=1 𝛿 (𝑇𝑖 ,𝑇 ′𝑖 ) otherwise,

where 𝑇𝑖 denotes the 𝑖
th
subtree of 𝑇 .

Observe that due to determinism, the definition of computation

distance will only consider cognate nodes 𝑇,𝑇 ′ which must have

the same number of children/subtrees. We are now ready to state

the correctness theorem of our framework.

Theorem 4.3 (Correctness). Consider an algorithm 𝐴 and an
input state 𝐼 where 𝐴(𝐼 ) = (𝜏,𝑇 ). Let Δ = (𝐼 , 𝐼 ′), where 𝐴(𝐼 ′) =
(𝜏 ′,𝑇 ′), denote a dynamic update to the input. Then, applying change
propagation to the RSP tree 𝑇 with dynamic update Δ yields
(1) writes 𝜏 ′′ such that 𝜏 ′ ⊆ 𝜏 ′′ ∪ {(𝑚, 𝑣) ∈ 𝜏 |𝑚 ∉ 𝑑𝑜𝑚(𝜏 ′′)},
(2) the RSP tree 𝑇 ′.

Proof sketch. Proving the correctness of change propagation

essentially relies on establishing two facts: that it visits and re-

executes all affected read nodes, and that re-executing just the

affected read nodes is sufficient.

The fact that all affected read nodes are re-executed can be estab-

lished inductively on the sequential dependencies of the affected

readers. The earliest affected reader must read a modifiable that

exists in 𝐼 and 𝐼 ′ but has a different value, and hence will be marked

in the RSP tree and will be re-executed. An affected reader that has

had all of its sequential dependencies re-executed must be marked

since it either reads a modifiable that exists in 𝐼 and 𝐼 ′ but has a
different value, or it reads a modifiable that is written earlier in the

computation. In the second case, since computations are determin-

istic, the modifiable must be written inside a reader whose input

has changed, and hence is an affected reader which has already

been re-executed.

Establishing that re-executing all affected readers writes to all

modifiables whose values in 𝜏 ′ are different than in 𝜏 follows from

determinism and the write-once restriction. Determinism implies

that all differing writes must occur inside an affected reader, and the

write-once restriction ensures that these writes exist in 𝜏 ′. Lastly,
the fact that the RSP tree is updated to𝑇 ′ follows from determinism.

□

Wenow prove our efficiency theorem that bounds the cost of change

propagation in terms of the computation distance.

3
The work performed by the reader function is considered to be the work that it would

perform when executed without self-adjusting computation, i.e., assuming that reads

and writes take constant time.
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Proof sketch of Theorem 1.1. Since there are 𝑂 (𝑅Δ) affected
readers, it costs at most 𝑂 (𝑅Δ · ℎ) work to traverse the RSP tree to

reach each of them. The work required to re-execute all affected

readers and destroy their old RSP subtrees is 𝑂 (𝑊Δ) by defini-

tion, plus any overhead encountered from maintaining modifiables’

reader sets and marking ancestors when performing the write
primitive. We can argue that these overheads can be reduced to

constant or amortized. To reduce the maintenance of reader sets to

constant overhead, the algorithm can maintain each modifiable’s

reader set as a hashtable. To avoid issues of concurrency and re-

sizing, insertions and deletions (Lines 12 and 19 in Algorithm 3)

can be deferred and performed in batch after change propagation

is complete. The overhead of write can be amortized by noticing

that for all marked nodes, they will either be traversed by change

propagation, or destroyed by a re-execution.

Lastly, we consider how these overheads affect the span of the

algorithm. Each write operation takes up to ℎ time, and each read
may require a hashtable operation that takes up to log(𝑟 ) time

w.h.p, where 𝑟 is the size of the reader set. However, ℎ ≥ log(𝑟 ) and
hence the overhead is at most ℎ per operation w.h.p., leading to a

total span of 𝑂 (𝑠 · ℎ) w.h.p. □

It is worth noting that the randomness in our bounds comes purely

from the use of hashtables to store the reader sets. For algorithms in

which eachmodifiable has only a constant number of readers, which

is often the case, the bounds can therefore be made deterministic.

Analyzing the computation distance of algorithms. To obtain

bounds for dynamic updates on particular algorithms implemented

in our framework, it suffices to analyze the number of affected reads

and the computation distance for the desired class of updates (and

the span of the algorithm which is usually already known). Here,

we will sketch an analysis of the sum algorithm from Algorithm 1.

Theorem 4.4. Consider Algorithm 1 on an input 𝐴 of 𝑛 modifi-
ables, and a dynamic update in which the values of 𝑘 modifiables are
changed. The number of affected reads and the computation distance
induced by such an update is 𝑂 (𝑘 log(1 + 𝑛/𝑘)).

Proof sketch. Note that the algorithm performs log(𝑛) levels
of recursion. We count separately the number of affected reads

that occur during the first log(𝑘) levels and those that occur after.

During the first log(𝑘) levels, since the algorithm performs binary

recursion, there can be no more than 𝑂 (2log(𝑘) ) = 𝑂 (𝑘) reads in
total, affected or not. The 𝑘 updated modifiables will affect 𝑘 of

the base-case reads on Line 3. The corresponding writes on Line 4

then affect up to 𝑘 reads on Line 10 from the calling functions. The

writes on Line 11 then affect up to 𝑘 reads from their callers, and

so on. The final log(𝑛/𝑘) levels of recursion therefore account for

at most 𝑘 log(𝑛/𝑘) affected readers. Therefore, in total, there can

be at most 𝑂 (𝑘 + 𝑘 log(𝑛/𝑘)) = 𝑂 (𝑘 log(1 + 𝑛/𝑘)) affected readers,

each of which performs 𝑂 (1) work. □

In [2], several algorithms, including list contraction and tree contrac-

tion, which also appear in our benchmarks, had their computation

distance analyzed in the round-synchronous model. The round-

synchronous model can be implemented in our framework, and

hence it is straightforward to translate these analyses to bounds

our framework.

Overhead of self-adjusting computation. In addition to the cost

of dynamic updates, we can also discuss the overhead of the initial

computation. Note that each node in the RSP tree corresponds to at

least one primitive operation, and hence the cost of the building the

tree and later destroying it can be charged to the computation. Then,

just as in change propagation, the overhead of the read and write
primitives are either constant, or can be amortized (see the Proof

sketch of Theorem 1.1), leading to constant amortized overhead.

Lastly, we remark on the memory usage. The two sources of

memory overhead come from the RSP tree and modifiables. In the

worst case, the size of the RSP tree is proportional to the work of

the algorithm. However, for any sensible algorithm, both strands of

any parallel fork will contain at least one read (if they do not, the

parallel fork was unnecessary). Therefore, under this assumption,

the size of the SP tree is proportional to the number of reads in the

algorithm. Since the memory overhead of modifiables (their reader

sets) is also proportional to the number of reads, the additional

memory overhead is just proportional to the number of reads.

Work-efficiency of change propagation. By definition, the re-

execution of a set of affected readers with computation distance𝑊Δ

takes𝑂 (𝑊Δ) work. Based on Theorem 1.1, we therefore consider the

work overhead of change propagation to be 𝑅Δ · ℎ. This means that

if𝑊Δ ≥ 𝑅Δ · ℎ, i.e, each affected reader performs at least ℎ work on

average, then change propagation essentially has just constant-time

overhead. In practice, this suggests that good granularity control is

important for writing efficient self-adjusting algorithms.

Comparison to sequential self-adjusting computation.The best
sequential algorithms for self-adjusting computation [6] can prop-

agate an update of computation distance𝑊Δ in 𝑂 (𝑊Δ log(𝑊Δ))
work. Compared to our bounds, which are at most 𝑂 (𝑊Δ · ℎ), the
difference is a log(𝑊Δ) versus ℎ. Given a parallel algorithm on in-

put size 𝑛 with polylog(𝑛) span, we have ℎ ≤ polylog(𝑛). However,
often, and for every example we studied, ℎ is just log(𝑛), even for

algorithms with larger span. Therefore at worst, our algorithm is

𝑂 (polylog(𝑛)) slower than the best sequential algorithm, but in

the common case, just 𝑂 (log(𝑛)/log(𝑊Δ)) slower.

5 IMPLEMENTATION
To study its practical performance, we implemented our framework

as a library for C++. For parallelism, we use the work-stealing sched-

uler from the Parlay library [17]. For memory allocation, we use

jemalloc [26] in addition to Parlay’s pool-based memory allocator.

In this section, we discuss some of the interesting aspects of the

implementation of the system, and note some useful optimizations.

Reader set implementation. One interesting part of the system is

handling the reader sets of modifiables. Since multiple concurrently

executing threads may read the same modifiable, it is important

that modifications to this set are thread-safe. To obtain our the-

oretical bounds, we describe the algorithm using a hashtable. In

practice, however, we observe that the majority of modifiables in

self-adjusting algorithms have just a small constant number of read-

ers, often just one. We therefore implement the reader sets with

a hybrid data structure that stores a single reader inline with no

heap allocation when there is only one reader. When the number

of readers becomes more than one, the reader set atomically con-

verts itself into a linked data structure. We used a linked list for
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algorithms with small reader sets, and a randomized binary search

tree for algorithms with larger reader sets.

Our binary search tree uses the hashes of the addresses of the

reader nodes as the random keys. To insert a new reader into the

tree, our algorithms attempts to insert it into the appropriate leaf of

the tree using an atomic compare-and-swap (CAS) operation. If the

CAS succeeds, the insertion is successful. Otherwise, note that the

correct location for the key must be a child of the node that instead

won the CAS, so our algorithm proceeds down and tries again. To

simplify deletions, rather than deleting from the tree eagerly, nodes

that need to be removed are simply marked as dead, and removed

during the next traversal.

To ensure thread safety, we have to make sure that operations

on the reader sets that might race are safe. Note that insertions

correspond to reads, traversals correspond to writes, and deletions

correspond to the cleanup of destroyed subtrees after a computation

is re-executed. Insertions will therefore never race with traversals

since reads and writes to the same modifiable can not race in a valid

self-adjusting program. Deletions may however race with traversals

or insertions since the cleanup of an RSP subtree may take place

while another re-computation is occurring. One way to mitigate

any potential problems is to defer all destructions of RSP subtrees

until a later garbage-collection phase, rather than performing them

during change propagation. Lastly, multiple traversals can not race

due to the write-once condition, but multiple insertions or deletions

can. Our algorithm is safe with respect to concurrent insertions,

and our lazy deletion strategy makes concurrent deletions safe.

Garbage collection. Rather than eagerly deleting subtrees of the

RSP tree when a reader is re-executed, we instead move such sub-

trees off to a garbage pile which we collect after performing change

propagation. This simplifies the destruction of subtrees since doing

so naively can very easily lead to race conditions, such as those

discussed in the reader set implementation. Performing delayed

garbage collection also has the benefit of improving the responsive-

ness of change propagation, as the result of the update can be made

visible to the user before the garbage collector is run.

Supporting dynamically sized inputs. Modifiables give us the

ability to easily write algorithms that support updating the values
in the input and propagating the results. In many situations, we

also want to support the ability to add/remove elements to/from

the input. In sequential self-adjusting computation, this is achieved

by using linked lists to represent the input. In the parallel setting,

we can achieve similar results by representing the input as a bal-

anced binary tree. The trick is to use modifiables to represent the

parent/children relationships in the tree so that if a new element

is inserted, this will cause an update of a child and trigger change

propagation to update the computation with the new element.

6 BENCHMARKS AND EVALUATION
In this section, we evaluate the practical performance of our system.

We implemented six benchmarks, exhibiting a range of different

characteristics and providing different insights into the quality of

the proposed algorithms.

Experimental setup. We ran our experiments on a 4-socket AMD

machine with 32 physical cores in total, each running at 2.4 GHz,

with 2-way hyperthreading, a 6MB L3 cache per socket, and 200

GB of main memory. All of our code was compiled using Clang 9

with optimization level -O3. Each experiment was run using 1 – 64

worker threads in increasing powers of two. We used the Google

Benchmark C++ library to measure the speed (in real/wall time) of

each benchmark. We run each benchmark ten times and take the

average running time.

Benchmark setup. Each benchmark consists of four parts. First,

we run a static sequential program and a static parallel program that

implement the same algorithm to the self-adjusting one but without

any overhead from self-adjusting computation. We then benchmark

the parallel self-adjusting program, both on its initial computation,

and on performing dynamic updates with change propagation. For

each of the examples, we use varying batch update sizes to measure

the effect that batch sizes have on the amount of parallelism exhib-

ited by the update, and the amount of work required to propagate

it. We do not include the time taken to perform garbage collection

in the measurements. We hoped to experimentally compare our

results to those of [20], but their code is not publicly available.

Reporting of results. For each benchmark, we provide numeri-

cal results in Tables 1–6, which show the running times of the

static sequential algorithm (Seq), parallel static algorithm (Paral-

lel Static), the initial computation of the self-adjusting algorithm

(PSAC Compute), and the dynamic updates (PSAC Update), for 1

processor (1), 32 processors (32), and 32 processors with hyper-

threading (32ht). For each of the parallel algorithms, we compute

the self-speedup (SU), which is the relative improvement of the 32

or 32ht performance (whichever is better) compared to the 1 proces-

sor performance. For each example, we measure the performance

for some fixed input size 𝑛 and varying batch update sizes 𝑘 .

For the dynamic updates, we measure work savings (WS), which

is the relative improvement of their 1 processor performance com-

pared to the static sequential algorithm. Finally, we report the total

speedup, which is the relative performance of the dynamic updates

with 32 or 32ht processors compared to the static sequential al-

gorithm (equivalently, the product of the speedup and the work

savings). This allows us to measure separately, the benefits due to

parallelism (the SU), the benefits due to dynamism (the WS), and

their total combined benefit (Total).

Applications. We implemented the following benchmarks.

• Spellcheck: Computes the minimum edit distance of a set of

one million strings to a target string.

• Raytracer: Renders a 2000× 2000 pixel scene consisting of three
reflective balls using a simple ray tracing method.

• String Hash: Computes the Rabin-Karp fingerprint (hash) of a

one-hundred-million character string.

• Dynamic Sequence: Computes a list contraction of a linked list

of length one million.

• Dynamic Trees: Computes a tree contraction of a tree on one

million nodes.

• Filter: Filters the elements of a BST with respect to a given

predicate, returning a new BST.

6.1 Results
The results of our experiments are depicted in Tables 1–6.
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Static Algorithm
n 1t 32t 32ht SU Seq Baseline
10

6
36.21s 1.19s 908ms 39.84 36.72s

PSAC Initial Run
n 1t 32t 32ht SU
10

6
36.89s 1.20s 750ms 49.16

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
10

0
44us 45us 47us 0.98 819.6k 800.4k

10
1

445us 90us 112us 4.93 82.42k 406.7k

10
2

4.36ms 265us 208us 20.92 8.41k 176.0k

10
3

44ms 2.03ms 1.20ms 36.97 827.9 30.61k

10
4

436ms 19ms 11ms 37.46 84.18 3.15k

10
5

4.04s 167ms 118ms 34.08 9.10 310.2

10
6

37.67s 1.81s 1.21s 31.04 0.97 30.26

Table 1: Benchmark results for Spellcheck.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline
- 2.46s 80ms 49ms 49.32 2.54s

PSAC Initial Run
n 1t 32t 32ht SU
- 13.65s 520ms 323ms 42.24

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
- 112ms 8.66ms 7.47ms 15.08 26.44 398.8

Table 2: Benchmark results for Raytracer.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline
10

8
1.86s 58ms 31ms 58.34 1.72s

PSAC Initial Run
n 1t 32t 32ht SU
10

8
3.05s 96ms 61ms 49.81

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
10

0
14us 16us 16us 0.90 118.8k 107.1k

10
1

134us 66us 74us 2.02 12.81k 25.86k

10
2

1.26ms 162us 122us 10.35 1.36k 14.10k

10
3

12ms 717us 512us 25.17 133.3 3.36k

10
4

103ms 4.63ms 3.11ms 33.16 16.68 553.0

10
5

621ms 26ms 18ms 34.20 2.77 94.76

10
6

2.49s 108ms 66ms 37.27 0.69 25.73

10
7

5.21s 213ms 132ms 39.30 0.33 12.99

10
8

19.47s 709ms 472ms 41.24 0.09 3.65

Table 3: Benchmark results for String Hash.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline
10

6
647ms 70ms 73ms 8.77 586ms

PSAC Initial Run
n 1t 32t 32ht SU
10

6
4.32s 219ms 464ms 19.66

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
10

0
761us 629us 736us 1.21 770.2 931.0

10
1

5.58ms 1.65ms 1.97ms 3.38 105.2 355.2

10
2

31ms 3.31ms 2.95ms 10.69 18.62 199.0

10
3

201ms 14ms 10ms 18.53 2.91 53.94

10
4

1.26s 74ms 53ms 23.33 0.47 10.89

10
5

5.11s 263ms 195ms 26.15 0.11 3.00

10
6

8.45s 624ms 492ms 17.14 0.07 1.19

Table 4: Benchmark results for Dynamic Sequence.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline
10

6
915ms 85ms 66ms 13.85 824ms

PSAC Initial Run
n 1t 32t 32ht SU
10

6
4.85s 242ms 689ms 20.02

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
10

0
698us 584us 672us 1.19 1.18k 1.41k

10
1

3.28ms 1.04ms 1.23ms 3.14 251.7 789.4

10
2

24ms 2.29ms 2.18ms 11.03 34.23 377.7

10
3

210ms 12ms 10ms 20.46 3.93 80.33

10
4

1.47s 79ms 60ms 24.33 0.56 13.68

10
5

5.19s 254ms 173ms 29.85 0.16 4.74

10
6

8.59s 428ms 306ms 28.00 0.10 2.69

Table 5: Benchmark results for Dynamic Trees.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline
10

7
361ms 17ms 15ms 23.09 262ms

PSAC Initial Run
n 1t 32t 32ht SU
10

7
630ms 35ms 31ms 20.27

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
10

0
36us 109us 128us 0.33 13.20k 4.36k

10
1

275us 242us 298us 1.14 1.73k 1.96k

10
2

2.74ms 1.39ms 1.25ms 2.19 173.6 380.9

10
3

25ms 3.73ms 3.69ms 6.95 18.56 129.1

10
4

143ms 9.96ms 8.18ms 17.50 3.32 58.19

10
5

543ms 31ms 23ms 22.97 0.88 20.13

10
6

1.04s 80ms 55ms 18.76 0.46 8.61

10
7

2.12s 198ms 159ms 13.28 0.22 2.98

Table 6: Benchmark results for Filter.

The initial run. We are interested in the overhead of the initial

run. This is the ratio of the runtime of the self-adjusting algorithm

compared to the sequential baseline. Prior work on sequential self-

adjusting computation [3] observed overheads ranging from 1.9 to

29 depending on the application.

The overhead of the initial run varies with the problem and

the granularity of the work performed by the readers. For the

spellcheck benchmark, the overhead is negligible since each of the

readers performs a relatively expensive edit distance computation,

completely hiding the overhead of the framework. For algorithms

with smaller granularity, such as the Rabin-Karp benchmark, we

observe work overheads of around 1.7. The filter algorithm also uses

a similar granularity, and hence experiences similarly low overhead.

On the other hand, the raytracing algorithm involves modifiables

with a large number of readers, so the work overhead is higher,

at around a factor of 4.6. The list contraction and tree contraction

benchmarks both perform 𝑂 (log(𝑛)) rounds of computation, with

dependency chains spanning across them, and hence have larger

overheads of 5.8 and 7.3.

Work savings. Work savings measure the relative improvement

in runtime from using self-adjusting computation to perform an

update compared to running the algorithm from scratch. As was

the case for the work overhead, the work savings are dependent on

the granularity of the work performed by the readers. Of course,

the work savings are also heavily dependent on the size of the
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update relative to the size of the entire input. For small updates,

the work savings range from 770 when updating one element of

one million elements (list contraction) to 819k when updating one

of one million strings (edit distance). The work savings for the ray-

tracer benchmark are also very encouraging. For the given dynamic

update, a total of 6.25% of the image needed to be updated, but the

change propagation algorithm performed approximately 4% of the

work required to recompute from scratch. For benchmarks with

varying update sizes, the work savings gradually decrease as the

update size increases.

It is interesting to look at the crossover point where from-scratch

execution becomes more efficient than change propagation. For

benchmarks like spellcheck, which perform heavywork at the reads,

from-scratch execution does not outperform change propagation

until updating the entire input. For modest-granularity benchmarks

like hashing, from-scratch execution wins when the update size

reaches 𝑘 = 10
6
for sequential execution, or 𝑘 = 10

5
for parallel

execution, on an initial input of size 𝑛 = 10
8
. For tree contraction

and list contraction, the crossover points occur at 𝑘 = 10
4
out of

𝑛 = 10
6
elements for both sequential and parallel execution. For

filter, the crossover point occurs at roughly 𝑘 = 10
5
out of 𝑛 = 10

7

elements. In general, crossovers tend to occur a couple of orders of

magnitude before the input size.

Speedup. The initial runs of our algorithms all benefit, often sub-

stantially, from parallelism. On 32 hyperthreaded cores (64 threads),

spellcheck and hashing experience parallel speedups of 49-50x. Ray-

tracing achieves 42x, and list contraction, tree contraction, and filter

speed up by 19-20x.

In addition to the initial run, updates also benefit from paral-

lelism, particularly as the update sizes increases. Although there is

little potential for parallelism for 𝑘 = 1 updates, each benchmark

exhibits speedups ranging from 22-39x for larger update sizes. At

the crossover points, where change propagation is still compet-

itive with from-scratch execution, speedups range from 22-34x.

This further supports the notion that parallelism and self-adjusting

computation are highly complementary methods. Self-adjusting

computation leads to substantial savings for small update sizes, and

parallelism provides strong speedups for larger update sizes. For

moderate update sizes, both are effective and their benefits combine

to yield good total performance improvements.

Tree size and memory usage. The RSP tree size, and hence the

memory overhead of a self-adjusting algorithm depends heavily

on the granularity at which the data is stored and processed. Ta-

ble 7 shows the RSP tree sizes and memory usage of each of our

benchmarks at their default granularity. For most algorithms, the

memory overhead ranges between 1-7x the input size, which is

consistent with prior work on sequential self-adjusting computa-

tion [3]. The outliers are our list contraction and tree contraction

benchmarks, which use substantially more memory because they

perform 𝑂 (𝑛 log(𝑛)) work over 𝑂 (log(𝑛)) rounds of computation,

all of which is represented in the RSP tree, essentially leading to the

tree size being an additional factor of log(𝑛) larger than the input.

A more sophisticated implementation of these algorithms could

achieve 𝑂 (𝑛) work by using compaction on the set of live nodes at

each round. This could reduce their memory footprint, and would

be interesting to explore in future work.

Benchmark Problem size Input memory Tree size Memory
Spellcheck 10

6
strings 80MB 6M 312MB

Raytracer 8M pixels 192MB 24M 1.3GB

String Hash 10
8
chars 100MB 9.4M 462.5MB

Sequence 10
6
elems 20MB 33M 1.96GB

Tree 10
6
nodes 20MB 18.8M 1.3GB

Filter 10
7
elems 200MB 2.48M 193MB

Table 7: RSP tree sizes and the amount ofmemory consumed
by the RSP tree for each benchmark problem.

The cost of garbage collection. When a self-adjusting computa-

tion is discarded, the resulting RSP tree must be destroyed, which

also entails removing its read nodes from the reader sets of any

modifiables that they read. Table 8 shows the runtime of garbage

collection for each of the RSP trees for our six benchmark problems

compared to the performance of the initial run. Note that for all

of the problems other than Raytracer, garbage collection time is at

least a factor of 500 less than the actual computation. For Raytracer,

garbage collection is slightly more costly since it has many readers

per modifiable and hence has to pay the cost of deletion from the

reader sets. Even then, garbage collection takes less than 1% of the

time of the initial run.

Benchmark Initial Run Garbage Collection (32ht)
Spellcheck 750ms 158us

Raytracer 323ms 1.99ms

String Hash 61ms 101us

Sequence 464ms 437us

Tree 242ms 493us

Filter 31ms 31us

Table 8: The cost of garbage collection for each benchmark
problem. The initial run is the performance on 32 threads
or 32 hyperthreads, whichever is better.

6.2 Additional experiments
Finally, we perform two small experiments that measure the effect

that data granularity and the sizes of reader sets have on the overall

performance of self-adjusting computation.

Granularity tradeoffs. An important consideration when imple-

menting parallel algorithms is careful control of granularity. This

is perhaps even more true when implementing self-adjusting algo-

rithms, since the granularity of the data and the functions executed

by readers will directly influence the size of the RSP tree and the

overhead of modifiables. A larger granularity will lead to lower

work and memory overheads. The tradeoff, however, is that if the

granularity is too large, updates will slow down, since more irrel-

evant information will be recomputed when a small piece of the

input is updated. Here, we will explore the performance implica-

tions and tradeoffs that come from tuning the granularity of our

string hashing benchmark. Results are shown in Table 9.
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Granularity Memory Run Update Run Update
𝑝 = 1 𝑘 = 1 𝑝 = 32ht 𝑘 = 10

4

16 1.85GB 6.8s 17us 158ms 4ms

32 925MB 4.11s 15us 95ms 3.64ms

64 462.5MB 3.03s 14us 62ms 3.12ms

128 231.25MB 2.5s 14us 44ms 3.04ms

256 115.63MB 2.3s 15us 34ms 2.88ms

512 57.81MB 2.1s 18us 31ms 2.83ms
1024 28.79MB 2.0s 24us 29ms 3.68ms

2048 14.45MB 2.0s 39us 28ms 5.79ms

Table 9: Memory usage, initial run speed and update speed
for various granularities in the hashing benchmark with
size 𝑛 = 10

8. Memory denotes memory used by the RSP tree.

As expected, thememory usage andwork overhead decreases mono-

tonically as the granularity is increased. Themore interesting aspect

to look at is the update performance. Note that it is not necessarily

the case that the smallest granularity will lead to the fastest up-

dates. Although a smaller granularity means less redundant data is

read and recomputed, it also leads to larger RSP trees, which might

negate the benefit. The optimal granularity for update speed will

therefore be one that balances the tradeoff between reading data

and reducing the RSP tree size. For our string hashing benchmark,

we observe that the optimal tradeoff occurs at a granularity of 128

characters for single character (𝑘 = 1) updates, and at 512 charac-

ters for larger (𝑘 = 10
4
) updates. This phenomena is explainable by

cache line reads. Using a granularity of 512 will reduce the depth

of recursion, and hence the number of cache misses by about 9,

while reading a chunk of 512 characters corresponds to 8 cache

lines, which balance out.

Impact of reader-set size. Most self-adjusting computations, in-

cluding all but one of our benchmarks, only have a constant number

of readers (often just one) per modifiable. The raytracer benchmark

illustrates the effect of having a large number of readers per modi-

fiable, exhibiting a lesser speedup compared to most of the others.

Here, we present a small microbenchmark that examines the perfor-

mance impact of varying the number of readers of a modifiable. In

Table 10, we depict the results of experiment in which 10
6
workers

in parallel each read from a random modifiable and write its value

to a unique output destination. We vary the number of modifiables

to observe the effect on performance.

# Mods Readers/Mod Run Update
1 10

6
55.1ms 191ms

10 10
5

48.9ms 183ms

10
2

10
4

47.2ms 163ms

10
3

10
3

46.5ms 130ms

10
4

10
2

45.1ms 57.5ms

10
5

10 38.4ms 57.0ms

10
6

1 27.8ms 44.3ms

Table 10: Runtime of the reader-set size microbenchmark
for varying numbers of input modifiables. Run denotes the
runtime of the initial run, and Update denotes the runtime
of a making a dynamic update to every modifiable.

We observe that for the initial run (the Run column), the perfor-

mance is only marginally impacted as the number of readers per

mod varies from 10 to 10
6
. The exception is when there is only one

expected reader per mod, in which case the performance is up to

twice as fast as the 10
6
reader case. This is because of the optimiza-

tion we perform in which modifiables with a single reader store

that reader inline instead of allocating a linked data structure. We

measure the effect on updates (the Update column) by changing

the value of all of the modifiables and propagating the result. We

observe that when varying from 10 to 10
6
reads per modifiable,

performance is at most a factor of four slower, or a factor of five

slower compared to the one reader case.

7 CONCLUSION
In this work, we designed, analyzed, and implemented a system for

parallel self-adjusting computation. We showed that a small set of

primitives is sufficient to express self-adjusting programs that can

exploit arbitrary nested parallelism. Compared to previous work,

this is the first such system with theoretical bounds on the runtime

of the updates. Our experiments show that the system is capable of

producing dynamic algorithms that both vastly outperform their

static counterparts when performing small to moderately sized

updates, and scale well on multiprocessor machines.
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