
27

Parallelism in Randomized Incremental Algorithms

GUY E. BLELLOCH, Carnegie Mellon University

YAN GU, University of California, Riverside

JULIAN SHUN, MIT CSAIL

YIHAN SUN, University of California, Riverside

In this article, we show that many sequential randomized incremental algorithms are in fact parallel. We

consider algorithms for several problems, including Delaunay triangulation, linear programming, closest pair,

smallest enclosing disk, least-element lists, and strongly connected components.

We analyze the dependencies between iterations in an algorithm and show that the dependence structure is

shallow with high probability or that, by violating some dependencies, the structure is shallow and the work

is not increased significantly. We identify three types of algorithms based on their dependencies and present a

framework for analyzing each type. Using the framework gives work-efficient polylogarithmic-depth parallel

algorithms for most of the problems that we study.

This article shows the first incremental Delaunay triangulation algorithm with optimal work and polyloga-

rithmic depth. This result is important, since most implementations of parallel Delaunay triangulation use the

incremental approach. Our results also improve bounds on strongly connected components and least-element

lists and significantly simplify parallel algorithms for several problems.

CCS Concepts: • Theory of computation → Parallel algorithms; Shared memory algorithms; Graph

algorithms analysis; Sorting and searching; Computational geometry;

Additional Key Words and Phrases: Randomized incremental algorithms, Delaunay triangulation, linear pro-

gramming, closest pair, smallest enclosing disk, least-element lists, strongly connected components

ACM Reference format:

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Parallelism in Randomized Incremental Algo-

rithms. J. ACM 67, 5, Article 27 (September 2020), 27 pages.

https://doi.org/10.1145/3402819

1 INTRODUCTION

The randomized incremental approach has been a very useful paradigm for generating simple and
efficient algorithms for a variety of problems. There have been many dozens of papers on the
topic (e.g., see the surveys [63, 72]). Much of the early work was in the context of computational

A preliminary version of this work appeared in the Proceedings of the ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2016 [13].

This research was supported in part by NSF grants CCF-1314590 and CCF-1533858, the Intel Science and Technology Center

for Cloud Computing, and the Miller Institute for Basic Research in Science at UC Berkeley.

Authors’ addresses: G. E. Blelloch, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213; email:

guyb@cs.cmu.edu; Y. Gu and Y. Sun, Winston Chung Hall, University of California, Riverside, CA 92521; emails: {ygu,

yihans}@cs.ucr.edu; J. Shun, MIT CSAIL, 32 Vassar St, Cambridge, MA 02139; email: jshun@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0004-5411/2020/09-ART27 $15.00

https://doi.org/10.1145/3402819

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

https://doi.org/10.1145/3402819
mailto:permissions@acm.org
https://doi.org/10.1145/3402819
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3402819&domain=pdf&date_stamp=2020-09-19

27:2 G. E. Blelloch et al.

geometry, but the approach has also been applied to graph algorithms [28, 32]. The main idea is to
insert elements one-by-one in random order while maintaining a desired structure. The random
order ensures that the insertions are somehow spread out, and worst-case behaviors are unlikely.

The incremental process appears sequential, since it is iterative, but in practice incremental
algorithms are widely used in parallel implementations by allowing some iterations to start in
parallel and using some form of locking to avoid conflicts. Many parallel implementations for
Delaunay triangulation and convex hull, for example, are based on the randomized incremental
approach [8, 23, 25, 26, 37, 46, 61, 65, 74]. In theory, however, there are still no known bounds for
parallel Delaunay triangulation using the incremental approach, nor for many other problems.

In this article, we show that the incremental approach for Delaunay triangulation, and many
other problems, is indeed parallel and leads to work-efficient polylogarithmic-depth (time) algo-
rithms for the problems. The results are based on analyzing the dependence graph (more accurately
the distribution of dependence graphs over the random order). This technique has recently been
used to analyze the parallelism available in a variety of sequential algorithms, including the simple
greedy algorithm for maximal independent set [12], the Knuth shuffle for random permutation and
list/tree contraction [75], greedy graph coloring [54], and correlation clustering [64]. The advan-
tage of this method is that one can use standard sequential algorithms with modest change to make
them parallel, often leading to very simple parallel solutions. It has also been shown experimen-
tally that the incremental approach leads to practical parallel algorithms [11] and to deterministic
parallelism [11, 20]. Subsequent to the publication of the conference version of this article [13],
Alistarh et al. [2, 3] have shown that several parallel incremental algorithms have strong theoret-
ical guarantees using relaxed schedulers. Furthermore, we have recently followed up on the work
presented in this article and have shown that the randomized incremental algorithms for convex
hull, half-space intersection and finding the intersection of a set of unit circles have logarithmic
dependence depth whp, which leads to work-optimal polylogarithmic-depth algorithms for these
problems [15]. We have also shown that some algorithms in this article can be write-efficient [14],
which is motivated by the recent NVRAM technologies that writes to main memory are more
costly than reads [7, 9, 10].

The contributions of the article are summarized as follows.

1. We describe a framework for analyzing parallelism in randomized incremental algorithms.
We consider three types of dependencies (Types 1, 2, and 3) and give general bounds on
the depth of algorithms with for each type (Section 2).

2. We show that randomly ordered insertion into a binary search tree is inherently par-
allel, leading to an almost trivial comparison sorting algorithm taking O (logn) depth
and O (n logn) work (i.e., n processors), both with high probability on the priority-write
CRCW PRAM (Section 3). We know of no previous description and analysis of this parallel
algorithm.

3. We show that an offline variant of Boissonnat and Teillaud’s [21] randomized incremental
algorithm for Delaunay triangulation in d dimensions has dependence depth O (d logn)
with high probability (Section 4). We then describe a way to parallelize the algorithm, which
leads to a parallel version withO (d logn log∗ n) depth with high probability, andO (n logn +
n �d/2�) work in expectation, on the CRCW PRAM. This is the first incremental construction
of Delaunay triangulation with optimal work and polylogarithmic depth. This problem has
been open for 30 years and is important, since most implementations of parallel Delaunay
triangulation use the incremental approach, but none of them have polylogarithmic depth
bounds. Surprisingly, our algorithm is very simple.

4. We show that classic sequential randomized incremental algorithms for constant-
dimensional linear programming, closest pair, and smallest enclosing disk have shallow

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:3

Table 1. Work and Depth Bounds for Our Parallel Randomized Incremental Algorithms

Problem Work Depth Type

Comparison sorting (Section 3) O (n logn) O (logn) 1

d-dimensional Delaunay triangulation (Section 4) O (n logn + n �d/2�)† O (logn log∗ n) 1

2D linear programming (Section 5.1) O (n)† O (logn) 2

d-dimensional closest pair (Section 5.2) O (n)† O (logn log∗ n) 2

Smallest enclosing disk (Section 5.3) O (n)† O (log2 n) 2

Least-element lists (Section 6.1) O (WSP (n,m) logn)† O (DSP (n,m) logn) 3

Strongly connected components (Section 6.2) O (WR (n,m) logn)† O (DR (n,m) logn) 3

Here we assume d is a constant. WSP (n, m) and DSP (n, m) denote the work and depth, respectively, of a single-

source shortest paths algorithm. WR (n, m) and DR (n, m) denote the work and depth, respectively, of performing

a reachability query. Bounds marked with a † are expected bounds, and the rest are high-probability bounds. All

bounds are for the arbitrary CRCW PRAM, except for comparison sorting, which requires the priority-write CRCW

PRAM. In all cases, the work is the same as the sequential incremental algorithm, since the algorithms are effectively

equivalent beyond either reordering (Type 1 or 2) or some redundancy (Type 3). We assume here that DSP (n, m) and

DR (n, m) are Ω(log n). We use 2D to refer to ‘2-dimensional’.

dependence depth (Section 5). This leads to very simple linear-work and polylogarithmic-
depth randomized parallel algorithms for all three problems.

5. We show that by relaxing dependencies (i.e., allowing some to be violated), two random
incremental graph algorithms have (reasonably) shallow dependence depth. The relaxation
increases the work but only by a constant factor. We apply the approach to generate ef-
ficient parallel versions of Cohen’s algorithm [28] for least-element lists (Section 6.1) and
Coppersmith et al.’s algorithm [32] for strongly connected components (SCC, Section 6.2).
In both cases, we improve on the previous best bounds for the problems. Least-element
lists have applications to tree embeddings on graph metrics [18, 42] and estimating neigh-
borhood sizes in graphs [29]. Coppersmith et al.’s SCC algorithm [32] is widely used in
practice [6, 55, 76, 79]. In this article, we analyze the parallelism of this algorithm, which
had been a long-standing open question. This algorithm was later implemented and shown
experimentally to be practical by Dhulipala et al. [36].

Other than the graph algorithms, which call subroutines that are known to be hard to efficiently
parallelize (reachability and shortest paths), all of our solutions are work-efficient and run in poly-
logarithmic depth (time). The bounds for all of our parallel randomized incremental algorithms
can be found in Table 1.

Preliminaries. We analyze parallel algorithms in the work-depth paradigm [56]. An algorithm
proceeds in a sequence of D (depth) rounds, with round i doing wi work in parallel. The total
work is thereforeW =

∑D
i=1wi . We account for the cost of allocating processors and compaction

in our depth. Therefore the bounds on a PRAM with P processors is O (W /P + D) time [22]. We
use the concurrent-read and concurrent-writes (CRCW) PRAM model. By default, we assume the
arbitrary-write CRCW model but when stated use the priority-write model. We sayO (f (n)) with

high probability (whp) to indicate O (k f (n)) with probability at least 1 − 1/nk . For the graph
algorithms, we use m to indicate the number of edges and n the number of vertices and assume
thatm ≥ n − 1.

2 ITERATION DEPENDENCES

An iterative algorithm is an algorithm that runs in a sequence of iterations (steps) in order.
When applied to a particular input, we refer to the computation as an iterative computation.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:4 G. E. Blelloch et al.

Iteration j is said to depend on iteration i < j if the computation of iteration j is affected by the
computation of iteration i . The particular dependencies, or even the number of iterations, can
be a function of the input and can be modeled as a directed acyclic graph (DAG)—the iterations
(I = 1, . . . ,n) are vertices and dependencies between them are arcs (directed edges from lower
index to higher index).

Definition 2.1 (Iteration Dependence Graph [75]). An iteration dependence graph for an itera-
tive computation is a (directed acyclic) graphG (I ,E) such that if every iteration i ∈ I runs after all
predecessor iterations in G have completed, then every iteration will do the same computation as
in the sequential order.

We are interested in the depth (longest directed path) of iteration dependence graphs, since
shallow dependence graphs imply high parallelism—at least if the dependencies can be determined
online and the depth of each iteration can be appropriately bounded. We refer to the depth of the
DAG as the iteration dependence depth and denote it as D (G).

In general, there can be sub-iterations nested within each iteration of an algorithm. In this case,
we can consider the dependencies between these sub-iterations instead of the top-level iterations
(i.e., a dependence from the sub-iteration in one iteration to the sub-iteration in either the same
or a different iteration). The iteration dependence graph is defined analogously—dependence arcs
go from earlier sub-iterations to latersub-iterations, either in the same or different top-level itera-
tions. In this article, we only consider one such algorithm, Delaunay triangulation, where the main
iterations are over the points, and the sub-iterations are for each triangle created by adding the
point.

An incremental algorithm takes a sequence of elements (or objects) E, and iteratively inserts them
one at a time while maintaining some properties over the elements. A randomized incremental

algorithm is an incremental algorithm in which the elements are added in a uniformly random
order—each permutation is equally likely. In this article, we are interested in deriving probability
bounds over the iteration dependence depth. We consider three types of randomized incremental
algorithms, which we refer to as Types 1, 2, and 3, for lack of better names.

2.1 Type 1 Algorithms

In these algorithms, we show the probability bounds on iteration dependence depth by considering
all possible paths of dependencies. By bounding the probability of each path, and bounding the
number of possible paths, the union bound can be used to bound the probability that any path is
long. We use backwards analysis [72] to analyze the length and number of paths.

We say that an incremental algorithm hask-bounded dependencies if, for any input E and element
x ∈ E inserted last, x directly depends on at most k other elements—i.e., once those up to k other
elements are inserted, x can be inserted. For example, consider sorting by inserting into a binary
search tree (BST) based on a random order. For any key v inserted last, once the previous and
next keys in sorted order, vp and vn , have been inserted, we can immediate insert v . In particular,
the key v will either be the right child of vp or the left child of vn depending on which of the
two was inserted later. More subtly, the search path for v will also be the same once vp and vn

are both inserted (more discussion in Section 3). Inserting into a BST therefore has 2-bounded
dependencies.

If the iterations in an incremental algorithm are nested, then we consider the pairs of an element
along with each of its sub-iterations. We say that an incremental algorithm has k-bounded nested

dependencies if for any input E, any element x ∈ E inserted last, and any sub-iteration s for x , (x , s)
directly depends on at most k possible previous element–sub-iteration pairs. We say “possible”
here, since the sub-iterations might differ depending on the order of the previous elements. For

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:5

example, consider Delaunay triangulation in d dimensions. Inserting an element (point) x will run
sub-iterations adding a set of triangles (d-simplices). As shown in Section 4, each new triangle (sub-
iteration) will depend on at most two previous triangles. Each of these previous triangles could
have been added by a sub-iteration of any of its (d + 1) corner points, whichever was inserted last.
Hence there are 2(d + 1) possible element–sub-iteration pairs that the sub-iteration for x could
depend on, and Delaunay triangulation therefore has 2(d + 1)-bounded nested dependencies.

For a given insertion order of all elements, a tail is an element (or element–sub-iteration pair for
the nested case) that no other element (or element-sub-iteration pair) depends on. The tail count

is the number of possible tails over all orderings. Inserting n keys into a BST, for example, has a
tail count of n, since every key can be a tail. For Delaunay triangulation, every final triangle can
be involved in a tail, and each one created by any of its corners, depending on which corner is last.
Therefore the tail count is at most (d + 1) times the number of final triangles.

We are now interested in the length of dependence paths for incremental algorithms with k
bounded dependencies, either nested or not, and how that limits the iteration dependence depth.

Theorem 2.2. Consider a randomized incremental algorithm on n elements with k-bounded

(nested) dependencies, and for which the tail count is bounded by cnb , for some constants b and c .

Over the distribution of iteration dependence graphs G, and for all σ ≥ ke2:

Pr(D (G) ≥ σHn) < cn−(σ−b),

where Hn =
∑n

i=1 1/i .

Proof. We use backwards analysis by considering removing elements one by one from the last
iteration. We analyze a specific dependence path to a tail and then take a union bound over all
possible paths. We use the term point to mean an element for the non-nested case or an element–
sub-iteration pair for the nested case.

To consider the single specific path, we start at iteration n working backwards and let i be the it-
eration number. On each iteration, xi will correspond to a particular point and ei to its correspond-
ing element (ei = xi for the non-nested case). Consider one of the possible cnb tails. It corresponds
to a single point, which we set as xn . The probability of the event “element ei is inserted at iteration
i = n” is 1/n, since all permutations are equally likely. If ei is inserted at i , then the iteration i is on
the dependence path for that tail. We then arbitrarily choose one of the k points that xi depends
on and set xi−1 to that point. The fact there are k of them will be handled in the union bound.
If ei is not inserted at i , then xi−1 = xi . Now we move back to i = n − 1, and the probability ei is
inserted at i is again 1/i . This is true whether xn = xn−1 or not—in both cases we are looking for a
single element out of i possible elements. By repeating this process until i = 1, the probability that
element ei is inserted at iteration i is always 1/i for all i . Each time ei is inserted at i , we extend
the dependence path by 1 and make another arbitrary choice among up to k predecessors, setting
xi−1 with our choice, otherwise it is not extended.

Let L be a random variable corresponding to the total number of dependencies on the path we
are considering. We therefore have that E[L] =

∑n
i=1

1
i
= Hn . Furthermore, each event (ei inserted

at i) is independent, since each element is chosen at random from the remaining i elements. Using
a Chernoff bounds, we obtain:

P[L ≥ σE[l]] <

(
eσ−1

σσ

)E[l]

<
(e
σ

)σ E[l]

=

(e
σ

)σ Hn

.

We now take a union bound over the cnb possible tails and the at most kl possible choices we
make for a predecessor for a dependence path of length l . Note that any path longer than l must

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:6 G. E. Blelloch et al.

have a length l path as a prefix, and so we need not consider the longer paths when taking the
union bound. For σ ≥ ke2 and l = σHn , we therefore have the following:

P[D (G) ≥ σHn] ≤ cnbkσ Hn · P[L ≥ σHn]

< cnbkσ Hn

(e
σ

)σ Hn

= cnb

(
ke

σ

)σ Hn

≤ cnb
(

1

e

) (ln n)σ

= cn−(σ−b) . �

The Type 1 algorithms that we describe can be parallelized by running a sequence of rounds.
Each round checks all remaining iterations to see if their dependencies have been satisfied and runs
the iterations if so. They can be implemented in two ways: one completely online, only seeing a
new element at the start of each iteration, and the other offline, keeping track of all elements from
the beginning. In the first case, a structure based on the history of all updates can be built during the
algorithm that allows us to efficiently locate the “position” of a new element (e.g., Reference [51]),
and in the second case the position of each uninserted element is kept up-to-date on every iteration
(e.g., Reference [27]). The bounds on work are typically the same in either case. Our incremental
sort uses an online style algorithm, and the Delaunay triangulation uses an offline one.

2.2 Type 2 Algorithms

Type 2 incremental algorithms have a special structure. The iteration dependence graph for these
algorithms is formed as follows: Each iteration j is either a special iteration or a regular iteration

(depending on insertion order and the particular element). Each special iteration j depends on
all iterations i < j, and each regular iteration depends on the closest earlier special iteration. The
first iteration is special. Furthermore, the probability of being a special iteration is upper bounded
by c/j for some constant c and is independent of the choices for iterations j + 1 to n. For Type 2
algorithms, when a special iteration i is processed, it will check all previous iterations, requiring
O (i) work and depth denoted as d (i), and when a non-special iteration is processed it does O (1)
work.

Theorem 2.3. A Type 2 incremental algorithm has an iteration dependence depth ofO (logn) whp
and can be implemented to run in O (n) expected work and O (d (n) logn) depth whp, where d (n) an

upper bound on the depth of processing a special iteration as a function of n.

Proof. Since the probability of a special iteration is bounded by c/j independently of future
iterations, the expected number of special iterations is

∑n
j=1 c/j = O (logn), and using a Chernoff

bound, the number of special iterations is O (logn) whp. By construction, there cannot be more
than two consecutive regular iterations in a path of the iteration dependence graph, and so the
iteration dependence depth is at most twice the number of special iterations and hence O (logn)
whp.

We now show how parallel linear-work implementations can be obtained. A parallel implemen-
tation needs to execute the special iterations one by one, and for each special iteration it can do
its computation in parallel. For the non-special iterations whose closest earlier special iteration
has been executed, their computation can all be done in parallel. To maintain work-efficiency, we
cannot afford to keep all unfinished iterations active on each round. Instead, we start with a con-
stant number of the earliest iterations on the first round and on each round geometrically increase

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:7

ALGORITHM 1: Type 2 Algorithm

Input: Iterations [0, . . . ,n).

1 run special iteration 0

2 j ← 1

3 for r ← 2 to log2 n do

4 while j < 2r−1 do

5 parallel foreach k ∈ {j, . . . , 2r−1 − 1} do

6 F [k]← check if iteration k is special

7 l ← minimum true index in F , or 2r−1 if none

8 parallel foreach k ∈ {j, . . . , l − 1} do

9 run regular iteration k

10 if l < 2r−1 then

11 run special iteration l

12 j ← l

the number of iterations processed, similarly to the prefix methods described in earlier work on
parallelizing iterative algorithms [12].

Pseudocode is given in Algorithm 1. Without loss of generality, assume n = 2k for some integer
k . We refer to the outer for loop as rounds, and the inner while loop as sub-rounds. Each round r
processes iterations 2r−2, . . . , 2r−1 − 1, which we refer to as a prefix. The variable j at the start of
each sub-round indicates that all iterations before j are done, and all iterations at or after j are not.
Each sub-round finds the first unfinished special iteration l within the round, if any. It then runs all
regular iterations up to l (all of their dependencies are satisfied). Finally, if a special iteration was
found, that special iteration is run (all of its dependencies are satisfied). Finding the first unfinished
special iteration requires computing a minimum, which can be done inO (2r) work andO (1) depth
whp on an arbitrary CRCW PRAM [81]. Running all regular iterations also requiresO (2r) work and
O (1) depth, and running the special iteration requiresO (2r) work andO (d (n)) depth. The number
of sub-rounds within a round is one more than the number of special iterations in the prefix,

which for any prefix k is bounded by
∑2k−1−1

i=2k−2 c/i = O (1) in expectation. Therefore, the work in

round r is O (2r−1) in expectation, and summed over all rounds is O (1) +
∑log n

r=2 O (2r−1) = O (n) in
expectation. The number of sub-rounds is bounded by the number of special iterations plus log2 n,
and each sub-round has depth O (d (n)), and so the total depth is O (d (n) logn) whp.

2.3 Type 3 Algorithms

In the third type of incremental algorithms it is safe to run iterations in parallel, but this can require
extra work with respect to the sequential algorithm. In these algorithms an iteration can “separate”
future iterations. A simple example, again, is insertion into a binary search tree, where the first
key inserted separates keys less than it from ones greater than it. The idea is to then process the
iterations in rounds of increasing powers of two, as in the Type 2 case. However in this case, every
iteration in a round will run as if it is at the beginning of the round ignoring conflicts within the
round and then resolving the conflicts at the end of the round. We apply this approach to two
graph problems: least-element (LE) lists and strongly connected components (SCC).

Consider a set of elements S . We assume that each element x ∈ S defines a total ordering <x on
all S . This ordering can be the same for each x ∈ S , or different. For example, in sorting the total
ordering would be the order of the keys and the same for all x ∈ S . For a DAG, the ordering could
be a topological sort, and possibly different for each vertex, since topological sorts are not unique.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:8 G. E. Blelloch et al.

ALGORITHM 2: Type 3 Algorithm

Input: Iterations [0, . . . ,n).

1 run iteration 0

2 for r ← 1 to log2 n do

3 parallel foreach k ∈ {2r−1, . . . , 2r − 1} do

4 Run iteration k as if at iteration 2r−1, i.e., using the final state fromthe previous round

5 parallel foreach k ∈ {2r−1, . . . , 2r − 1} do

6 Combine state such that earlier k have higher priority

7 (Final state should be the same as if run sequentially up to 2r − 1)

For both our applications, LE-lists and SCC, the orderings can be different for each element. The
distinct orders is the innovative aspect of our analysis.

Definition 2.4 (Separating Dependencies). An incremental algorithm has separating dependen-

cies if for all input S : (1) it has total orderings <x ,x ∈ S , and (2) for any three elements a,b, c ∈ S ,
if a <c b <c c or c <c b <c a, then c can only depend on a if a is inserted first among the three.

In other words, if b separates a from c in the total ordering for c , and runs first, then it will
separate the dependence between a and c (also if c runs before a, of course, there is no dependence
from a to c). Again, using sorting as an example, if we insert b into a BST first (or use it as a pivot in
quicksort), it will separate a from c and they will never be compared (each comparison corresponds
to a dependence). Let d (i, j) be the event that there is a dependence from iteration i to iteration j
and p (d (i, j)) be its probability over all insertion orders.

Lemma 2.5. In a randomized incremental algorithm that has separating dependencies, we have

that p (d (i, j))) ≤ 2/i for 1 ≤ i < j ≤ n.

Proof. Consider the total ordering <j . Among the elements inserted in the first i iterations, at
most two of them are the closest (by <j) to the element inserted at iteration j (at most one on each
side). There will be a dependence from iteration i to j only if the element selected on iteration i
is one of these two—otherwise, iterations before i would have separated i from j. Since all of the
first i elements are equally likely to be selected on iteration i , the probability is at most 2/i . �

Corollary 2.6. The number of dependencies in a randomized incremental algorithm with sepa-

rating dependencies is O (n logn) in expectation (also true whp as given in Corollary 2.9).

This comes simply from the sum
∑n

j=2

∑j−1
i=1 p (d (i, j)), which is upper bounded by 2n lnn. This

leads, for example, to a proof that quicksort, or randomized insertion into a binary search tree,
does O (n logn) comparisons in expectation. This is not the standard proof based on pi j = 2/(j −
i + 1) being the probability that the ith and jth smallest elements are compared [33]. Here the pi j

represent the probability that the ith and jth elements in the random order are compared.
In this article, we introduce graph algorithms that have separating dependencies with respect to

the processing order of the vertices, and there is a dependence from vertex i to vertex j if a search
from i (e.g., shortest path or reachability) visits j.

To allow for parallelism, we permit iterations to run concurrently in rounds, as shown in Algo-
rithm 2. This means that we might not separate iterations that were separated in the sequential
order. For example, if a <c b <c c and in the sequential order a is inserted first and then b and then
c , thenb will separate a from c , avoiding a dependence between them. However, in the round-based
parallel order, a could be in one round and then b and c in another later round. In this case, b will
not separate a from c allowing for a dependence from a to c . We therefore have to consider c as

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:9

running at the start of the round (position 2r−1) in determining the probability p (da,c). This can
cause additional dependencies, and hence work, but as argued in the theorem below, the number
of dependencies is within a constant factor. The second parallel loop is needed to combine results
from the iterations that are run in parallel. The technique here depends on the algorithm but is
reasonably simple for the algorithms we consider for LE-Lists and SCC.

As an example, consider applying the approach to insertion into a binary search tree. On each
round r , 2r−1 keys are already inserted into a BST and in parallel we try to insert the next 2r−1

keys. In the first loop, all new keys will search the tree for where they belong. Many will fall into
their own leaf and be happy, but there will be some conflicts in which multiple keys fall into the
same leaf. The second loop would resolve these conflicts. This is a different parallel algorithm than
the Type 1 algorithm described in Section 3.

We say that iteration a has a left (right) dependence to a later iteration b if b depends on a and
a <b b (b <b a). This definition is used to bound the total number of dependencies of a specific
iteration as follows.

Lemma 2.7. When applying Algorithm 2 to an incremental algorithm with separating dependen-

cies, let pr j (l), j ≥ 2r be the probability that l iterations in round r have a left dependence to iteration

j. Then for all r and j, we have pr j (l) ≤ 2−l .

Proof. Clearly pr j (0) ≤ 2−0 = 1. The probability that among iterations {0, . . . , 2r − 1}, the clos-
est iteration to j based on <j appears among {2r−1, . . . , 2r − 1} is 1/2 (since elements are in random
order). Therefore,pr j (1) ≤ 1/2. Now given that the first is closest, the probability that the second is
closest out of the remaining iterations in {2r−1, . . . , 2r − 1} is (2r−1 − 1)/(2r − 1) < 1/2. Hence, the
probability for l = 2 is less than 1/4. This repeats so pr j (l) < 2−l for l > 1, giving our bound. �

We can make the symmetric argument about dependencies on the right. Importantly, the ex-
pected number of dependencies from a round to a later element is constant, and the probability
that the number of dependencies is large is low.

Theorem 2.8. A randomized incremental algorithm with separating dependencies can run in

O (logn) parallel rounds over the iterations and every iteration will have O (logn) incoming depen-

dencies whp (for a total of O (n logn) whp).

Proof. We just consider left dependencies, the right ones will just double the count. For fixed
j the upper bounds on the probabilities pr j are independent across the rounds r . This is because
working backwards each round picks a random set of 1/2 the remaining elements. The round that
iteration j belongs to contains fewer dependencies than previous rounds, and the rounds later have
no dependencies to iteration j. Therefore, pr j (l) ≤ 2−l holds for all rounds even when j < 2r .

For a set of independent random variables Xi with exponential distribution Xi ∼ Exp (a), the
sum X =

∑
Xi satisfies the following tail bounds [57]:

P (X > σE[X]) ≤ σe−aE[X](σ−1−ln σ) .

For log2 n rounds, E[X] = (log2 n)/a and P (X > (σ/a) log2 n) ≤ σn−(σ−1−ln σ) , which satisfies the
high-probability condition. Since by Lemma 2.7 our distributions are sub-exponential, the tails are
no larger. �

Corollary 2.9. A sequential randomized incremental algorithm with separating dependencies

will have O (logn) incoming dependencies per iteration whp.

Proof. As discussed above, every dependence in the sequential order will also appear in the
parallel order so the number of dependencies is at most as many. �

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:10 G. E. Blelloch et al.

ALGORITHM 3: IncrementalSort

Input: A sequence K = {k1, . . . ,kn } of keys.

Output: A binary search tree over the keys in K .

// ∗P reads the value from pointed to by P .

// P → x reads field x via pointer P .

// The check on Line 8 is only needed for the parallel version.

1 Root← a pointer to a new a location containing a null pointer

2 for i ← 1 to n do

3 N ← newNode(ki)

4 P ← Root

5 while true do

6 if ∗P = null then

7 write N into the location pointed to by P

8 if ∗P = N then

9 break // write succeeded and iteration i is done, always true sequentially

10 if N → key < (∗P) → key then

11 P ← pointer to (∗P) → left

12 else

13 P ← pointer to (∗P) → right

14 return Root

Theorem 2.8 does not explicitly give the work and depth for an algorithm, since it will depend on
the costs of running each iteration. These will be given for the particular algorithms in Section 6.

3 COMPARISON SORTING (TYPE 1)

We first consider how to use our framework for sorting by incrementally inserting into a binary
search tree (BST) with no re-balancing. For simplicity, we assume that no two keys are equal.
It is well known that for a random insertion order, inserting into a BST takes O (n logn) time
(comparisons) in expectation, even with high probability. We apply our Type 1 approach to show
that the sequential incremental algorithm is also efficient in parallel. Algorithm 3 gives pseudocode
that works either sequentially or in parallel. An iteration is one round of the for loop on Line 2.
For the parallel version, the for loop should be interpreted as a parallel for, and the assignment
on Line 7 should be considered a priority-write—i.e., all writes happen synchronously across the n
iterations, and when there are writes to the same location, the earliest iteration gets written. The
sequential version does not need the check on Line 8, since it is always true.

The dependence between iterations in the algorithm is in the check if ∗P is empty in Line 6. This
means that iteration j depends on i < j if and only if the node for i is on the path to j. The only
important dependence is the last one on the path, since all the others are subsumed by the last one
(i.e., they do not appear in the transitive reduction of the dependence graph).

Lemma 3.1. Insertion of n keys into a binary search tree in random order has iteration dependence

depth O (logn) whp.

Proof. When inserting an element at iteration i (removing in backwards analysis), there are at
most two keys it can directly depend on, the previous and the next in sorted order (it is at most,
since there might not be a previous or next key). This is among the keys from iterations 1 to i − 1.
Therefore there is a 2-bounded dependence for all iterations. Every key can be a tail (a leaf in
the final binary search tree), so the tail count is n. Using Theorem 2.2, we therefore have that the
iteration depth is bounded by σHn for σ > 2e2 with probability at most n−σ+1. �

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:11

We note that since iterations only depend on the path to the key, the transitive reduction of the
iteration dependence graph is simply the BST itself. In general, e.g., in Delaunay triangulation in
the next section, the dependence structure is not a tree.

Theorem 3.2. The parallel version of IncrementalSort generates the same tree as the sequential

version and for a random order of n keys runs in O (n logn) work and O (logn) depth whp on a

priority-write CRCW PRAM.

Proof. They generate the same tree, since whenever there is a dependence, the earliest itera-
tion wins. The number of rounds of the while loop is bounded by the iteration dependence depth
(O (logn) whp), since for each iteration, each round checks a new dependence (i.e., each round
traverses one level of the iteration dependence graph). Since each round takes constant depth on
the priority-write CRCW PRAM with n processors, this gives the required bounds. �

Note that this gives a much simpler work-optimal logarithmic-depth algorithm for comparison
sorting than Cole’s mergesort algorithm [30], although it is on a stronger model (priority-write
CRCW instead of EREW) and is randomized.

4 DELAUNAY TRIANGULATION (TYPE 1)

A Delaunay triangulation (DT) in d dimensions is a triangulation of a set of points P in Rd such
that no point in P is inside the circumsphere of any triangle (the sphere defined by the triangle’s
d + 1 corners). Here, we will use triangle to mean a d-simplex defined by d + 1 corner points and
use face to mean a d − 1 simplex with d corner points. We say a point encroaches on a triangle
if it is in the triangle’s circumsphere and will assume for simplicity that the points are in general
position, i.e., no k ≤ d + 1 points on a (k − 2)-dimensional hyperplane, or k ≤ d + 2 points on a
(k − 2)-dimensional sphere. Delaunay triangulation ford = 2 can be solved sequentially in optimal
O (n logn + n �d/2�) work. There are also several work-efficient (or near work-efficient) parallel
algorithms for d = 2 that run in polylogarithmic depth [19, 31, 69], and at least one for higher
dimension [5], but they are all complicated. We assume that d is a constant.

The widely used and simple incremental Delaunay algorithms date back to the 1970s [49]. They
are based on the rip-and-tent idea: For each point p in order, rip out the triangles p encroaches on
and tent over the resulting cavity with triangles from p to each boundary face of the cavity. The
algorithms differ in how the encroached triangles are found and how they are ripped and tented.
Clarkson and Shor [27] first showed that randomized incremental convex hull is efficient, running
with workO (n logn + n �d/2�) in expectation. These results imply optimalO (n logn + n �d/2�) work
for DT.

Guibas et al. [51] (GKS) showed a simpler direct randomized incremental algorithm for 2D DT
with optimal expected time bounds, and this has become the standard version described in text-
books [34, 40, 63] and often used in practice. The GKS algorithm uses a history of triangle updates
to locate a triangle t that a new point p encroaches. It then searches out for all other encroached
triangles flipping pairs of triangles as it goes. Edelsbrunner and Shah [41] generalized the GKS
method to work in arbitrary dimension with optimal work, again in expectation. The algorithms,
however, are inherently sequential, since for certain inputs and certain points in the input, the
search from t will likely have depth Θ(n), and hence a single iteration can take linear depth.

Boissonnat and Teillaud [21] (BT) consider a somewhat different but equally simple direct ran-
dom incremental algorithm for DT that does optimal work in expectation for arbitrary dimension.
Instead of using the history to locate a single triangle that a point p encroaches and then searching
out from it for the rest, it locates all encroached triangles directly using the history. It therefore
does not suffer the inherent sequential bottleneck of GKS.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:12 G. E. Blelloch et al.

Fig. 1. An illustration of the procedure of ReplaceBoundary(f ,v) on a new point v in two dimensions. In

this case, the boundary face f is (u,w). The function will detach t and replace it with t ′. The new triangle t ′

only depends on to and t . In support of Fact 4.1, we note that since v encroaches on t but not to , it must be

in the larger black ball but not the smaller one. Therefore, the yellow ball must be contained in the union of

the two black balls and must contain the intersection of them.

ALGORITHM 4: IncrementalDT

Input: A sequence V = {v1, . . . ,vn } of points in Rd .

Output: DT(V).

Maintains: A set of triangles M , and for each t ∈ M , thepoints that encroach on it, E (t)

1 tb ← a sufficiently large bounding triangle

2 E (tb) ← V

3 M ← {tb }
4 for i ← 1 to n do

5 Let R ← {t ∈ M | vi ∈ E (t)}
6 foreach face f on the boundary of R do

7 (t , to) ← the two triangles incident on f , witht on the vi side

8 ReplaceBoundary(to , f , t ,vi)

9 return M

10 function ReplaceBoundary(t0, f , t ,v)
11 t ′ ← a new triangle consisting of f and v

12 E (t ′) ← {v ′ ∈ E (t) ∪ E (to) | InCircle(v ′, t ′)}
13 detach t from face f in M

14 add t ′ to M

Our result. Here we show that an offline variant of the BT algorithm has iteration dependence
depth O (logn) whp. We further show that the iterations can be parallelized leading to a very
simple parallel algorithm doing no more work than the sequential version (i.e., optimal) and with
dependence depth O (logn) depth whp.

Our sequential variant of BT is described in Algorithm 4. For each triangle t ∈ M , the algorithm
maintains the set of uninserted points that encroach on t , denoted as E (t). On each iteration i , the
algorithm identifies the boundary of the region that point i encroaches on, and for each face f of
that region it detaches the triangle on the inside and replaces it with a new triangle t ′ consisting
of f and v . All work on uninserted points is done in determining E (t ′), which only requires going
through two existing sets, E (t) and E (t ′). This is justified by Fact 4.1. Determining the boundary
of the region can be implemented efficiently by maintaining a mapping from each point to the
simplices it encroaches and checking those simplices.

Fact 4.1 ([21]). Given two d-simplices t and to that share a face f , and a point v that encroaches

on t but not to , then for t ′ = (f ,v) we have E (t) ∩ E (to) ⊆ E (t ′) ⊆ E (t) ∪ E (to).

This fact is proven in Reference [21], and an illustration of it is given in Figure 1. A work
bound for IncrementalDT of O (n logn + n �d/2�) follows from the analysis of Boissonnat and

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:13

Teillaud [21]. Later, we show a more precise bound on the number of InCircle tests for d = 2,
giving an upper bound on the constant factor for the dominant term.

In the following discussion, given a set of points V ′ ⊆ V , the notation min(V ′) indicates the
earliest point inV ′ by insertion order and that comparing two points, as inv < v ′, compares their
position in the insertion order.

Dependence Depth and a Parallel Version. We now consider the dependence depth of the
algorithm. One approach is to consider dependencies among the outer iterations (adding each
point). Unfortunately it seems difficult to prove a logarithmic bound on dependence depth for
such an approach. The problem is that although a point will encroach on a constant number of
triangles and associated points in expectation, in some cases it could encroach on up to a linear
number. Hence, it does not have a k-bounded dependence. It seems that although expectation is
good enough for the work bound, it does not suffice for the depth bound, since we need to consider
maximum depth over multiple paths.

We therefore consider a more fine-grained dependence structure based on the triangles (sub-
iterations) instead of points (top level iterations). The observation is that not all triangles added
by a pointv need to be added on the same round. This will allows us to show that Algorithm 4 has
k bounded nested dependencies. We will make use of the following Lemma.

Lemma 4.2. In Algorithm 4, the function (sub iteration) ReplaceBoundary(to , f , t ,v) will be ap-

plied if and only if to and t share the face f at some point in the algorithm, and v = min(E (t)) with

v < min(E (to)).

Proof. First, v must be later than the points defining t0; otherwise, t is detached before t0
is created and the two never share a face. Once t and to are created, the only points that can
remove them are points that encroach on the triangles. Since v is the earliest such point, and only
encroaches on t , when running the iteration that inserts v , the triangles to and t will still be there,
and ReplaceBoundary(to , f , t ,v) will be applied. This is the only case when ReplaceBoundary
will be applied. �

We can now define a dependence graph GT (V) = (T ,E) based on Lemma 4.2. The vertices T
corresponds to triangles created by Algorithm 4 (each sub-iteration), and for each call to Replace-
Boundary(to , f , t ,v) we include an arc from each of to and t to the new triangle it creates t ′.

Theorem 4.3. Algorithm 4 has iteration dependence depthO (d logn) whp over the random orders

of V , i.e., D (GT (V)) = O (d logn) whp.

Proof. This follows from Theorem 2.2. In particular the algorithm has a 2(d + 1)-bounded
nested dependence. Each creation of a triangle (sub-iteration) by a point v depends on at most
two previous triangles (by Lemma 4.2, each of which depends on at most d + 1 points (the corners
of a triangle). Therefore, adding the triangle for point v depends on 2 · (d + 1) possible previous
sub-iterations. It is important to note that in a given run there will only be dependencies to the
two triangles, but the definition of k-bounded dependence requires we consider all possible depen-
dencies to sub-iterations and associated elements (points). The tail count (the number of possible
sub-iterations that ended a dependence chain) is bounded by the number of triangles in the result,
O (n �d/2�), times the number of points that could have generated each triangle, at most (d + 1),
giving a total of O (dn �d/2�). Plugging into Theorem 2.2 gives a dependence depth of

Pr(D (G) ≥ σHn) < dn−(σ−(d+1)/2)

for σ ≥ 2(d + 1)e2, satisfying the bounds. �

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:14 G. E. Blelloch et al.

ALGORITHM 5: ParIncrementalDT

Input: A sequence V = {v1, . . . ,vn } of points in Rd .

Output: DT(V).

Maintains: E (t), the points that encroach on each triangle t .

1 tb ← a sufficiently large bounding triangle

2 E (tb) ← V

3 M ← {tb }
4 while E (t) � ∅ for any t ∈ M do

5 parallel foreach (to , t) sharing a face f ∈ M , s.t. min(E (t)) < min(E (to)) do

6 ReplaceBoundary(to , f , t ,min(E (t)))

7 return M

Since we consider d to be constant, the d can be dropped from the bounds, but it might be useful
to understand the dependence ond , so we left it in for this Lemma (i.e., not assumingd is constant).

Algorithm 5 describes a parallel variant of Algorithm 4 based on the dependence structure. On
each round, the parallel algorithm applies ReplaceBoundary(to , f , t ,min(E (t)) to all faces that
satisfy the conditions of Lemma 4.2—t and to are present, and min(E (t)) < min(E (to)). The sub-
routine ReplaceBoundary is unchanged. Because of Lemma 4.2, the parallel variant will make
exactly the same calls to ReplaceBoundary as the sequential variant, just in a different order. We
note that since the triangles for a given point can be added on different rounds, the triangulation
is not necessarily self-consistent after each round. Importantly, a face might only have one adja-
cent triangle. In that case, the face cannot proceed until it receives the second triangle (or is the
boundary of the DT). Also, the faces of a triangle can be detached on different rounds. This does
not affect the algorithm—once all boundary faces of a point have been replaced, the old interior
will be fully detached from the new triangulation.

To implement the algorithm one can maintain three data structures: (1) the set of triangles
that have been created, each with the set of points that encroach on it, (2) a hash-map that maps
faces to their up to two neighboring triangles, and (3) the set of faces that satisfy the condition
on line Line 5, which we refer to as the active faces. The hash-map is indexed on the d corners
of a face in some canonical order. Each round goes over all the active faces in parallel and runs
ReplaceBoundary. This involves first looking up the neighboring triangles, running the InCircle
tests across their points in parallel, and filtering out the ones that return true. The algorithm also
finds the minimum indexed such point. Then the new triangle is added to the triangle set, the d + 1
faces of the new triangle are updated in the hash-map (some might be new), and the subset of them
that satisfy Line 5 are added to the set of active faces.

Most steps are easily parallelizable. Applying and filtering on the InCircle tests, and allo-
cating the new active faces for each ReplaceBoundary, can use processor allocation and com-
paction. This can be done approximately—i.e., into a constant factor larger set of locations. On the
CRCW PRAM the approximate version can be be implemented work efficiently inO (log∗ n) depth
whp [44]. On the CRCW PRAM the hash table operations and the minimum can also can be done
work efficiently in O (log∗ n) depth whp [44, 52].

Theorem 4.4. ParIncrementalDT (Algorithm 5) runs in O (logn log∗ n) depth whp, and with

work O (n logn + n �d/2�) in expectation, on the CRCW PRAM.

Proof. The number of rounds of ParIncrementalDT is D (GT (V)), since the iteration depen-
dence graph is defined by the dependencies in the algorithm. Each round has depth O (log∗ n)
whp as described above, so the overall depth is as stated. The work of the algorithm is the same

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:15

as the sequential work [21], since the calls to ReplaceBoundary are the same, and all steps are
work-efficient. We assume d is constant. �

Work bound for d = 2. Putting constants into the proof of the work bounds in GKS [51], and
appearing in some textbooks [34], gives an upper bound of 36n lnn +O (n) on the expected number
of InCircle tests for 2D Delaunay triangulation. The argument, very roughly, is that every point
encroaches on 4 triangles in expectation on each iteration, and each triangle has 3 points. Now
each of these triangles can involve one, two, or three InCircle tests for an encroaching point when
it is removed (depending on how many of its edges are on the boundary of the encroached region).
This gives an upper bound of an expected 3 × 4 × 3/i per iteration i leading to the 36n lnn +O (n)
upper bound.

Here we tighten the bounds. In the proof, we take advantage that, due to Fact 4.1, the InCircle
test is not required for points that appear in both E (to) and E (t), since they will always appear in
E (t ′). We know of no previous work that gives this bound.

Theorem 4.5. IncrementalDT for d = 2 and on n points in random order does at most 24n lnn +
O (n) InCircle tests in expectation.

Proof. We denote the point added at iteration i as xi . For an iteration j, we consider the history
of iterations i < j, and we are interested in the ones that do InCircle tests on x j . For each such
iteration, we consider the boundary of the region that x j encroaches immediately after iteration
i . We will bound the number of InCircle tests on point x j based on the changes to this boundary
over the iterations. We define each face of the boundary by its two endpoints (u,w) along with the
(up to) two points sharing a triangle with (u,w), which we denote as the four tuple (u,w ;vl ,vr)
and refer to as a winged edge. For example, in Figure 1 the winged edge (u,w ;vo ,v) corresponds
to the edge (u,w) after adding v .

In ReplaceBoundary, a point is only tested for encroachment (an InCircle test) if its boundary
winged edge (u,w ;vl ,vr) is being deleted and replaced with another. This is because a point only
needs to be tested if it encroaches on one side (one wing) and not the other. It seems to be messy to
keep track of the deletions, however, so instead we keep track of additions of these boundaries. We
can then charge each deletion against the addition—i.e., we do the InCircle test on the deletion,
but “pay” for it earlier on the addition. This means we have to include some charge for the initial
additions at the start of the algorithm. This is 3 per point, one for each edge of the bounding
triangle. However, when we add x j it has at least 3 boundaries we do not have to pay for, so
the net additional tests needed for this accounting method is at most zero. Let Yi j be the random
variable specifying the number of boundaries for point x j that iteration i adds (i.e., winged edges
that include xi , and are on the boundary of x j ’s encroached region when added). The total number
of InCircle tests C is then bounded by

C ≤
n∑

j=2

j−1∑
i=1

Yi j .

To analyze the expectation E[Yi j], we note that we can consider point x j as immediately fol-
lowing iteration i (since no other point xk ,k > i has been added yet). All points x1, . . . ,xi ,x j are
equally likely to be selected as x j , so the expected number of boundaries for x j is at most 6 (due to
the fact that planar graphs can have average degree at most 6). Each boundary winged edge has
4 points that could create it, any of which could be at position i . Therefore E[Yi j], is upper bounded
by the at most 6 boundaries in expectation, times the at most four points (worst case) and divided
by the i possible points x1, . . . ,xi , each equally likely. This gives E[Yi j] ≤ 6 × 4/i = 24/i , leading

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:16 G. E. Blelloch et al.

to the claimed result:

E[C] ≤
n∑

j=2

j−1∑
i=1

E[Yi j] =

n∑
j=2

j−1∑
i=1

24

i
≤ 24n lnn +O (n). �

5 LINEAR-WORK ALGORITHMS (TYPE 2)

In this section, we study several problems from low-dimensional computational geometry that
have linear-work randomized incremental algorithms. These algorithms fall into the Type 2 cat-
egory of algorithms defined in Section 2.2, and their iteration depth is polylogarithmic whp. To
obtain linear-work parallel algorithms, we process the iterations in prefixes, as described in Sec-
tion 2.2. For simplicity, we describe the algorithms for these problems in two dimensions and
briefly note how they can be extended to any fixed number of dimensions.

5.1 Linear Programming

Constant-dimensional linear programming (LP) has received significant attention in the computa-
tional geometry literature, and several parallel algorithms for the problem have been developed [1,
4, 24, 35, 39, 47, 48, 73]. We consider linear programming in two dimensions. We assume that the
constraints are given in general position and the solution is either infeasible or bounded. We note
that these assumptions can be removed without affecting the asymptotic cost of the algorithm [71].
Seidel’s [71] elegant and very simple randomized incremental algorithm adds the constraints one-
by-one in a random order, while maintaining the optimum point at any time. If a newly added
constraint causes the optimum to no longer be feasible (a tight constraint), then we find a new
feasible optimum point on the line corresponding to the newly added constraint by solving a one-
dimension linear program, i.e., taking the minimum or maximum of the set of intersection points
of other earlier constraints with the line. If no feasible point is found, then the algorithm reports
the problem as infeasible.

The iteration dependence graph is defined with the constraints as iterations and fits in the frame-
work of Type 2 algorithms from Section 2.2. The iterations corresponding to inserting a tight con-
straint are the special iterations. Special iterations depend on all earlier iterations, because when a
tight constraint executes, it needs to look at all earlier constraints. Non-special iterations depend
on the closest earlier special iteration i , because it must wait for iteration i to execute before exe-
cuting itself to retain the sequential execution (we can ignore all of the earlier constraints, since i
will depend on them). Using backwards analysis, an iteration j has a probability of at most 2/j of
being a special iteration, because the optimum is defined by at most two constraints and the con-
straints are added in a randomized order. Furthermore, the probabilities (event of being a special
iteration) are independent among different iterations.

As described in the proof of Theorem 2.3, our parallel algorithm executes the iterations in pre-
fixes. Each time a prefix is processed, it checks all of the constraints and finds the earliest one that
causes the current optimum to be infeasible using line-side tests. The check per iteration takes
O (1) work and processing a violating constraint at iteration i takesO (i) work andO (1) depth whp

to solve the one-dimensional linear program, which involves minimum/maximum operations. Ap-
plying Theorem 2.3 with d (n) = O (1) gives the following theorem.

Theorem 5.1. Seidel’s randomized incremental algorithm for 2D linear programming has iteration

dependence depth O (logn) and can be parallelized to run in O (n) work in expectation and O (logn)
depth whp on an arbitrary-CRCW PRAM.

We note that the algorithm can be extended to the case where the dimensiond is greater than two
by having a randomized incremental d-dimensional LP algorithm recursively call a randomized

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:17

incremental algorithm for solving (d − 1)-dimensional LPs. For any constant dimension d , this

increases the iteration dependence depth (and hence the depth of the algorithm) to O (logd−1 n)
whp. The work remains O (n) as in the sequential algorithm [71]. We note that although the work
is optimal in n, its depth is not as good as the best parallel algorithms [4] but is very much simpler.

5.2 Closest Pair

The closest pair problem takes as input a set of points in Euclidean space in d dimensions and
returns the pair of points with the smallest distance between each other. We assume that no pair
of points have the same distance. A well-known expected linear-work algorithm [45, 53, 59, 66]
works by maintaining a grid and inserting the points into the grid in a random order. If r is the
distance of the closest pair seen so far (initialized to the distance between the first two points),
then the grid partitions space into cubic regions of length r in each dimension and where each
non-empty region stores the points inside the region. The grid is maintained using a hash table
so that only non-empty regions need to be represented. Each region contains at mostO (1) points,
since the points have distance at least r from each other. Whenever a new point is inserted, one
can check the region the point belongs to and the 3d − 1 adjacent regions to see whether there
are any points in those regions that are closer than r (any point closer than distance r must be
in those regions). If so, then r is updated with the distance to the nearest point, and the grid has
to be rebuilt by inserting all points into a new hash table based on the new r . The check takes
O (1) work, and the rebuild takes O (i) work (whp because of hashing). Using backwards analysis,
one can show that point i has probability at most 2/i of causing the value of r to decrease, so the
expected work is

∑n
i=1 (O (1) +O (i) · (2/i)) = O (n) in expectation.

This is a Type 2 algorithm, and the iteration dependence graph is similar to that of linear pro-
gramming, with a dependence depth is O (logn) whp. To obtain a linear-work parallel algorithm,
we again execute the algorithm in prefixes. The special iterations are the ones that cause the grid
to be rebuilt. This happens if a point in the prefix has a distance closer than r to a point already
inserted in a previous round or to another point that appears earlier in the prefix. To find the spe-
cial steps, we insert all points in the prefix to a copy of the hash table, and for each point in the
current prefix, we check the 3d − 1 adjacent regions of its region to see whether it forms a closer
pair. Inserting into a parallel hash table takes O (i) work and O (log∗ i) depth whp for a set of i
points [44].

We now argue that when checking a region, a point only does O (1) work in expectation. A
region will have O (1) points from previous rounds and can accomodate O (1) points from the
current prefix without causing a pair with distance closer than r to be formed. If a closer pair is
formed, then we must account for the work of checking the newly added points in the region.
Consider the first z closest pairs among the points in this region up to and including this prefix.
Since the points are given in a random order, with 1/4 probability, both points of a pair have
already been inserted prior to this round, and with 3/4 probability, at least one point is a newly
inserted point in this round. Although the pairs are not independent, there must be at least

√
z

independently chosen points among z pairs. Therefore, the probability that none of the z closest
pairs involve points prior to this round (which means a closer pair is found with a point in the

current prefix) is at most (3/4)
√

z . If a closer pair is found, then we will incurO (z) additional work
for checking these extra points in the region. Therefore, the expected work for checking a region is

O (1 +
∑n2

z=0 z · (3/4)
√

z) = O (1) for each point in the prefix. Each point in the current prefix checks
O (1) regions, and so the total work in checking is linear in the size of the prefix. The checks can
all be done in parallel in O (1) depth.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:18 G. E. Blelloch et al.

Finally, we take the minimum unfinished special iterations (if there are any), and rebuild the
hash table for all points up to and including the point corresponding to that iteration.

Applying Theorem 2.3 with d (n) = O (log∗ n) gives the following theorem.

Theorem 5.2. The randomized incremental algorithm for closest pair in constantd dimensions and

for n points can be parallelized to run in O (n) work in expectation and O (logn log∗ n) depth whp on

an arbitrary-CRCW PRAM.

5.3 Smallest Enclosing Disk

The smallest enclosing disk problem takes as input a set of points in two dimensions and returns
the smallest disk that contains all of the points. We assume that no four points lie on a circle. Linear-
work algorithms for this problem have been described [62, 82], and in this section we will study
Welzl’s randomized incremental algorithm [82]. The algorithm inserts the points one by one in
a random order and maintains the smallest enclosing disk so far (initialized to the smallest disk
defined by the first two points). Letvi be the point inserted on the ith iteration. If an inserted point
vi lies outside the current disk, then a new smallest enclosing disk is computed. We know that vi

must be on the smallest enclosing disk. We first define the smallest disk containing v1 and vi and
scan through v2 to vi−1, checking whether any are outside the disk (call this procedure Update1).
Whenever vj (j < i) is outside the disk, we update the disk by defining the disk containing vi and
vj and scanning through v1 to vj−1 to find the third point on the boundary of the disk (call this
procedure Update2). Update2 takes O (j) work, and Update1 takes O (i) work plus the work for
calling Update2. With the points given in a random order, the probability that the jth iteration of
Update1 calls Update2 is at most 2/j by a backwards analysis argument, so the expected work
of Update1 isO (i) +

∑i
j=1 (2/j) ·O (j) = O (i). The probability that Update1 is called when the ith

point is inserted is at most 3/i using a backwards analysis argument, so the expected work of this
algorithm is

∑n
i=1 (3/i) ·O (i) = O (n).

This is another Type 2 algorithm whose iteration dependence graph is similar to that of linear
programming and closest pair. The points are the iterations, and the special iterations are the ones
that cause Update1 to be called, which for iteration i has at most 3/i probability of happening.
The dependence depth is again O (logn)whp as discussed in Section 2.2.

Our work-efficient parallel algorithm again uses prefixes, both when inserting the points and
on every call to Update1. We repeatedly find the earliest point that is outside the current disk by
checking all points in the prefix with an in-circle test and taking the minimum among the ones that
are outside. Update1 is work-efficient and makes O (logn) calls to Update2 whp, where each call
takesO (1) depth whp as it does in-circle tests and takes a maximum. As in the sequential algorithm,
each iteration takes O (1) work in expectation. Applying Theorem 2.3 with d (n) = O (logn) whp

(the depth of a executing a iteration and calling Update1) gives the following theorem.

Theorem 5.3. The randomized incremental algorithm for smallest enclosing disk can be paral-

lelized to run in O (n) work in expectation and O (log2 n) depth whp on an arbitrary-CRCW PRAM.

In a similar way to linear programming, i.e., recursing on a lower dimension, the algorithm can

be extended to constant d dimension, with O (logd n) depth whp, and O (n) expected work.

6 ITERATIVE GRAPH ALGORITHMS (TYPE 3)

In this section, we study two sequential graph algorithms that can be viewed as offline versions
of randomized incremental algorithms. We show that the algorithms are Type 3 algorithms as de-
scribed in Section 2.3 and also that iterations executing in parallel can be combined efficiently.
This gives us simple parallel algorithms for the problems. The algorithms use single-source short-
est paths and reachability as (black-box) subroutines, which is the dominating cost. Our algorithms

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:19

ALGORITHM 6: The iterative LE-lists construction [28]

Input: A graph G = (V ,E) with V = {v1, . . . ,vn }
Output: The LE-lists L(·) of G

1 Set δ (v) ← +∞ and L(v) ← ∅ for all v ∈ V
2 for i ← 1 to n do

3 Let S = {u ∈ V | d (vi ,u) < δ (u)}
4 for u ∈ S do

5 δ (u) ← d (vi ,u)

6 append 〈vi ,d (vi ,u)〉 to the end of L(u)

7 return L(·)

are within a logarithmic factor in work and depth of a single call to these subroutines on the input
graph.

6.1 Least-Element Lists

The concept of Least-Element lists (LE-lists) for a graph (either unweighted or with non-negative
weights) was first proposed by Cohen [28] for estimating the neighborhood sizes of vertices. The
idea has subsequently been used in many applications related to estimating the influence of ver-
tices in a network (e.g., References [29, 38] among many others), and generating probabilistic tree
embeddings of a graph [16, 58], which itself is a useful component in a number of network op-
timization problems and in constructing distance oracles [16, 18]. For d (u,v) being the shortest
path from u to v in G, we have the following:

Definition 6.1 (LE-list). Given a graph G = (V ,E) with V = {v1, . . . ,vn }, the LE-lists are

L(vi) =

{
vj ∈ V | d (vi ,vj) <

j−1

min
k=1

d (vi ,vk)

}
,

sorted by d (vi ,vj).

In other words, a vertex u is in vertex v’s LE-list if and only if there are no earlier vertices (than
u) that are closer to v . Often one stores with each vertex vj in L(vi) the distance of d (vi ,vj).

Algorithm 6 provides a sequential iterative (incremental) construction of the LE-lists, where the
ith iteration is the ith iteration of the for-loop. The set S captures all vertices that are closer to
the ith vertex than earlier vertices (the previous closest distance is stored in δ (·)). Line 3 involves
computing S with a single-source shortest paths (SSSP) algorithm (e.g., Dijkstra’s algorithm for
weighted graphs and BFS for unweighted graphs or other algorithms [17, 60, 77, 80] with more
work but less depth). We note that the only minor change to these algorithms is to drop the initial-
ization of the tentative distances before we run SSSP and instead use the δ (·) values from previous
iterations in Algorithm 6. Thus the search will only explore S and its outgoing edges. Cohen [28]
showed that if the vertices are in random order, then each LE-list has size O (logn) whp and that
using Dijkstra with distances initialized with δ (·), the algorithm runs inO ((m + n logn) logn) time.

Parallel version. To parallelize the algorithm, we use the general approach of Type 3 algorithms
as described in Section 2.3 and in particular Algorithm 2. We treat the shortest paths algorithm as
a black box that computes the set S in depth DSP (n′,m′) and workWSP (n′,m′), where n′ = |S | and
m′ is the sum of the degrees of S . We assume the cost functions are concave, i.e., ,WSP (n1,m1) +
WSP (n2,m2) ≤WSP (n,m) for n1 + n2 ≤ n and m1 +m2 ≤ m, which holds for all existing shortest
paths algorithms. We also assume independent shortest path computations can run in parallel
(i.e., they do not interfere with each other’s state). We assume that the output of each shortest

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:20 G. E. Blelloch et al.

path computation from a source is a set of source-target-distance triples, one for each target that
is visited in Line 3.

For the separating dependencies: vj depends on vi if and only if vi ∈ L(vj), (i.e., was searched
by vi), and we use the total orderings i <k j if d (vk ,vi) < d (vk ,vj). This gives the following:

Lemma 6.2. Algorithm 6 has a separating dependence for the dependencies and orderings <v de-

fined above.

Proof. By Definition 2.4, we need to show that for any three vertices va ,vb ,vc ∈ V , if va <c

vb <c vc orvc <c vb <c va , thenvc can only be visited onva ’s iteration ifva ’s iteration is the first
among the three.

Clearly, the statement holds ifvc ’s iteration is the earliest among the three. We now consider the
case when vb ’s iteration is the first among the three. Since d (vc ,vc) = 0, va <c vb <c vc cannot
happen, we only need to consider the case vc <c vb <c va . Since d (vc ,vb) < d (vc ,va) and b < a,
based on the definition of the LE-lists,va � L(vc). As a result,vc can only be visited inva ’s iteration
if va ’s iteration is first among the three. �

As required by Line 6 of Algorithm 2, we need to combine the results from the iterations in a
round—the sets of source-target-distance triples. For LE-lists we need to collect the contributions
to each LE-list, remove extra entries, and write the minimum distance to each vertex for the next
round. There are extra entries, since running an iteration early could find a path not found by the
strict sequential order. Collecting the contributions to each LE-list can be done with a semisort on
the targets. The elements corresponding to each target can then be sorted based on the iteration
number of the source vertex. In the sequential order, distances can only decrease with increasing
source iteration index. Therefore, if any of the distances increase with increasing source index, then
they correspond to extra entries and are removed. Finally, the remaining elements are appended to
the end of the appropriate LE-lists, and the minimum distance is written to each vertex. At the end
of each round, the state corresponds exactly to the sequential state if all the iterations up to the
end of the round had been done one at a time incrementally. This leads to the following theorem:

Theorem 6.3. The LE-lists of a graph with the vertices in random order can be constructed in

O (WSP (n,m) logn) expected work andO ((DSP (n,m) + logn) logn) depth whp on the CRCW PRAM.

Proof. First, we bound the cost of the algorithm excluding the post-processing step. Because of
the separating dependencies in Algorithm 6 shown in Lemma 6.2, Theorem 2.8 indicates that each
vertex is visited no more thanO (logn) times in all iterations whp, assuming a random input order
of the vertices. Namely, at most O (logn) searches visit each vertex and its neighbors. Since we
assume concavity of the search cost, the overall work for all searches is O (logn) timesWSP (n,m),
the cost of the first search that visits all vertices.

The combining after each round requires a semisort on the target vertex, a sort on the source
vertex within each target, and a pass to remove extra entries. The semisort can be done in ran-
domized linear work and logarithmic depth [50, 67]. We now show that we can efficiently sort
by source. As shown in the proof of Lemma 2.7, the probability that we need to sort l elements
for a vertex in one round (i.e., the number of incoming dependencies) is bounded by 2−l . Assume
that we use a loose upper bound of quadratic work for sorting. The expected work for sorting the
elements for each vertex in one round is

∑
2−l · l2 for l ≥ 1, which solves to O (1). Filtering out is

clearly linear in the number of dependencies. Thus, the total work for combining is O (m logn) in
expectation.

The depth for the combining step of each round is bounded by the cost of the semisort, the
sort, and the filter, which can all be done within O (logn) depth whp. When including the depth

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:21

of each round for the shortest path algorithm (DSP (n,m)) this gives the stated bounds, since there
are O (logn) rounds. �

6.2 Strongly Connected Components

Given a directed unweighted graphG = (V ,E), a strongly connected component (SCC) is a max-
imal set of verticesC ⊆ V such that for every pair of vertices u andv inC , there are directed paths
both from u tov and fromv to u. Tarjan’s algorithm [78] finds all strongly connected components
of a graph using a single pass of depth-first search (DFS) in O (|V | + |E |) work. However, DFS is
generally considered to be hard to parallelize [68], and so a divide-and-conquer SCC algorithm [32]
is usually used in parallel settings [6, 55, 76, 79].

The basic idea of the divide-and-conquer algorithm is similar to quicksort. It applies forward
and backward reachability queries for a specific “pivot” vertex v , which partitions the remaining
vertices into four subsets of the graph based on whether the vertex is (1) only forward from v ,
(2) only backward reachable, (3) both forward and backwards reachable, or (4) neither forward
no backward reachable. The subset (3) of vertices reachable from both directions form a strongly
connected component, and the algorithm is applied recursively to the three remaining subsets.
Coppersmith et al. [32] show that if the vertex v is selected uniformly at random, then the algo-
rithm sequentially runs in O (m logn) work in expectation.1

Although divide-and-conquer is generally good for parallelism, the challenge in this algorithm
is that the divide-and-conquer tree can be very unbalanced. For example, if the input graph is
very sparse such that most of the reachability searches only visit a few vertices, then most of the
vertices can fall into the subset of unreachable vertices fromv , creating unbalanced partitions with
Θ(n) recursion depth. Schudy [70] describes a technique to better balance the partitions, which can
bound the depth of the algorithm to beO (log2 n) reachability queries. Unfortunately, his approach
requires a factor of O (logn) extra work compared to the original algorithm. Tomkins et al. [79]
describe another parallel approach, although the analysis is quite complicated.2

The divide-and-conquer algorithm [32] can also be viewed as an incremental algorithm, as given
in Algorithm 7. This is effectively the same relationship as between quicksort and insertion into a
BST in random order. More specifically the operations in the incremental algorithms are equivalent
to the operations in the divide and conquer algorithm within reordering, where operations are
comparisons in sorting, or found reachabilities fromvi tovj for SCC. This assumes the divide-and-
conquer algorithms maintain order among elements when partitioning and picks the first element
of a sequence as the pivot. Since the input is in random order, this is equivalent in terms of the
probability distribution of possible calls to picking random elements as pivots. We can analyze
Algorithm 7 as a Type 3 algorithm, using the general theorem shown in Section 2.3. Our analysis
is significantly simpler than those of References [70, 79], and the asymptotic work of our algorithm
matches that of the sequential algorithm.

As in previous work on parallel SCC algorithms, we treat the algorithm for performing reach-
ability queries as a black box with WR (n,m) work and DR (n,m) depth, where n are the number
of reachable vertices and m is the sum of their degrees. It can be implemented using a variety of
algorithms with strong theoretical bounds [43, 77, 80] or simply with a breadth-first search for

1We assume m ≥ n.
2Tomkins et al. [79] claim that their algorithm takes the same amount of work as the sequential algorithm, but it seems

that there are errors in their analysis. For example, the goal of the analysis is to show that in each round their algorithm

visits O (n) vertices in expectation, which they claimed to imply visiting O (m) edges in expectation. This is not generally

true, since the vertices do not necessarily have the same probabilities of being visited. Other than this, their work contains

many interesting ideas that motivated us to look at this problem.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:22 G. E. Blelloch et al.

ALGORITHM 7: The sequential iterative SCC algorithm

Input: A directed graph G = (V ,E) with V = {v1, . . . ,vn }.
Output: The set of strongly connected components of G.

1 V ← {{v1,v2, . . . ,vn }} (Initial Partition)

2 Sscc ← {}
3 for i ← 1 to n do

4 Let S ∈ V be the induced subgraph of the partition containing vi

5 if S = ∅ then go to the next iteration;

6 R+ ← Forward-Reachability(S,vi)

7 R− ← Backward-Reachability(S,vi)

8 Vscc ← R+ ∩ R−
9 V − ← R−\Vscc

10 V + ← R+\Vscc

11 VO ← S\(R+ ∪ R−)

12 V ← (V\{S }) ∪ {V +,V −,VO }
13 Sscc ← Sscc ∪ {Vscc }
14 return Sscc

low-diameter graphs. We also assume concavity on the work WR (n,m), which holds for existing
reachability algorithms, and that independent reachability computations can run in parallel.

We first show that the algorithm has separating dependencies. Here a dependence from i to
j corresponds to a forward or backward reachability search from i visiting j (Lines 6 and 7 in
Algorithm 7). Let T = (t1, t2, . . . , tn) be an arbitrary topological order of components in the given
graph G, in which vertices of the same component are arbitrarily ordered within the component.
T is not constructed explicitly but only used in analysis. To define the total order for vertex vi ,
i.e., <vi

, we take all vertices of T that are forward or backward reachable from vi (including vi

itself) and put them at the beginning of the ordering (maintaining their relative order) and put the
unreachable vertices after them. Given this ordering, we have the following lemma.

Lemma 6.4. Algorithm 7 has a separating dependence for the dependencies and orderings <v de-

fined above.

Proof. By Definition 2.4, we need to show that for any three vertices va ,vb ,vc ∈ V , if va <c

vb <c vc or vc <c vb <c va , vc can only be reached (forward or backward) in va ’s iteration if va ’s
iteration is the first among the three.

Clearly, the statement is true if vc is earliest. We now consider the case when vb ’s iteration is
first among the three vertices. We give the argument for the forward direction, and the backward
direction is true by symmetry. If vb is in the same SCC as either va or vc , then in vb ’s iteration,
eitherva orvc is marked in one SCC thatvb is in, and removed from the subgraph setV . Otherwise,
since vb and va are not in the same SCC, when vc <c vb <c va , vc cannot be forward reachable
in va ’s iteration, and when va <c vb <c vc , va cannot be forward reachable from vb ’s iteration.
In the second case, after vb ’s iteration, the forward reachability search from vb reaches vc but not
va , and sova andvc fall into different components inV (shown in Figure 2). As a result,vc is also
not reachable in va ’s iteration.

In conclusion, vc can only be reached (forward or backward) in va ’s iteration if va ’s iteration is
first among the three. �

This separating dependence implies that the sequential algorithm on a random ordering visits
O (m logn) edges whp, since by Corollary 2.9 each vertex vj , and hence each edge, is visited no

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:23

Fig. 2. An illustration for the proof of Lemma 6.4.

more thanO (logn) times whp. SinceWR (n,m) = O (m) sequentially, e.g., using BFS, this algorithm
does O (m logn) work whp.

We now consider the parallel version. We use the general approach of Type 3 algorithms as
described in Section 2.3 and in particular Algorithm 2. The iterations we run in parallel for each
round (consisting of increasing power of two) are the same as in Algorithm 7. Within the round, we
run the iterations independently (as in the assumptions) and then combine the results. The results
can be combined as follows. Each iteration identifies the SCC its vertex belongs in (VSCC) and the
edges that partition the four subsets (VSCC ,V

+,V −,VO). We call these edges the cut edges. We take
the union of all the SCCs. Note that an SCC will be found by multiple searches when there is more
than one vertex from the round in the same SCC. Giving a unique label can be implemented, for
example, by initializing the SCC identifier with infinity, and writing the index of each search to
the vertices in VSCC using write with minimum (priority write). Now all iterations use their cut
edges to cut all the corresponding edges in the graph. Again edges could be cut multiple times.

Observation 6.1. Running a contiguous sequence of steps of Algorithm 7 independently, and in

parallel, and then combining them as described above will find the same SCCs and cut all all the edges

that processing the iterations sequentially would. Furthermore, it will only cut edges that do not join

two vertices in the same SCC.

The parallel round will find the same SCCs, since it will search from the same vertices each
which will find its own SCC. It will cut all the edges cut by the sequential, since (a) the boundaries
of all the SCCs will be cut, and (b) each independent search will search at least as many reachable
vertices as the sequential search (in both directions), never search anything in SO (since these are
not reachable in the graph), and therefore cut at least as many edges from S− to SO or from SO

to S+. Note that the parallel version might cut additional edges, but these will never cut an SCC,
since if any vertex in an SCC is reached they all will be and therefore edges between them will not
appear in the cut.

Theorem 6.5. For a random order of the input vertices, the incremental SCC algorithm does

O (WR (n,m) logn) expected work and has O ((DR (n,m) + logn) logn) depth whp on the CRCW

PRAM.

Proof. Since we have a separating dependence (Lemma 6.4) we can apply Theorem 2.8 to bound
the number of times a vertex is visited across all rounds by O (logn) whp. Therefore, all edges are
also visited O (logn) times whp. Since we assume the work cost for the reachability queries is a
concave function, and the largest search is upper bounded bym vertices andn edges, the total work
across all reachability queries is bounded by O (WR (n,m) logn) whp. Furthermore, since there are
O (logn) rounds each of which is parallel, the total depth across reachability searches is bounded
by O (DR (n,m) logn) depth whp.

Beyond the reachability queries, the rest of the work is in combining the results from the
searches. All the combining work is proportional to the number of vertices and edges visited and

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:24 G. E. Blelloch et al.

hence across the O (logn) rounds is bounded by O (m logn) whp. In particular, all that is needed is
some priority writes to mark the SCCs, and some concurrent writes to cut the edges. The priority
writes can be implemented with in linear work and O (logn) depth using semisorting. All other
operations are easily with O (logn) depth, for a total of O (logn) depth per round. This gives the
overall bounds. �

Acquiring the same intermediate states as the sequential algorithm. The partitioning of
the vertex sets in the previously discussed parallel algorithm is more eager than the sequential
algorithm. If desired, the same intermediate states as generated by the sequential algorithm can be
retrieved in the parallel version. Let us consider the following case in one parallel round: vertices
x andy can reach z is the forward direction, and the priorities are ordered x ,y, and then z. Sequen-
tially, the search from y will reach z iff y is reachable from x ; otherwise, x ’s search will disconnect
(separate) y and z before y’s search. Our goal is to label every vertex with the last search in the
round that visited it if run sequentially. We just consider the forward direction, and the backward
direction can be done symmetrically.

To generate these labels, we run the iterations in parallel as before. For all iterations and for
all vertices in V + for the iteration, we create a source-visited pair and semisort by visited—i.e.,
for each vertex we collect the indices of all searches that have it in their V + set. Now for that
vertex we sort by index and set the current label i to the earliest. We now iterate over the rest in
increasing order, and for each search index j, if j is reachable from i (easy to look up in V + for
i , e.g., using hashing), then set i (the current label) to j; otherwise, leave it. Whenever we do not
change the label, this corresponds to a visit that happened in the parallel algorithm that would not
happen in the sequential one (i would have separated them). After generating the final label, we
cut any edge that has different labels on its two endpoints. Since each vertex is visited O (logn)
times whp, the sorting and scanning has low depth. The analysis of this approach would be similar
to Theorem 6.3.

7 CONCLUSION

In this article, we have analyzed the dependence structure in a collection of known randomized in-
cremental algorithms (or slight variants) and shown that there is inherently high parallelism in all
of the algorithms. The approach leads to particularly simple parallel algorithms for the problems—
only marginally more complicated (if at all) than some of the very simplest efficient sequential
algorithms that are known for the problems. Furthermore, the approach allows us to borrow much
of the analysis already developed for the sequential versions (e.g., with regard to total work and
correctness). We have presented three general types of dependencies of algorithms, and tools and
general theorems that are useful for multiple algorithms within each type. We expect that there
are many other algorithms that can be analyzed with these tools and theorems.

ACKNOWLEDGMENTS

We thank Laxman Dhulipala for catching a mistake in the SCC algorithm and Yiqiu Wang and
Shangdi Yu for catching a mistake in the closest pair algorithm in the original conference version
of this article. We have fixed these mistakes in this version of the article.

REFERENCES

[1] Miklos Ajtai and Nimrod Megiddo. 1992. A deterministic poly (log log n)-time n-processor algorithm for linear pro-

gramming in fixed dimension. In Proceedings of the ACM Symposium on Theory of Computing (STOC’92). 327–338.

[2] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. 2018. Relaxed schedulers can efficiently paral-

lelize iterative algorithms. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC’18).

377–386.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:25

[3] Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. 2019. Efficiency guarantees for parallel incremental algorithms un-

der relaxed schedulers. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’19).

145–154.

[4] Noga Alon and Nimrod Megiddo. 1994. Parallel linear programming in fixed dimension almost surely in constant

time. J. ACM 41, 2 (1994), 422–434.

[5] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. 1994. Parallel algorithms for higher-dimensional convex

hulls. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’94). 683–694.

[6] Jiří Barnat, Petr Bauch, Luboš Brim, and Milan Ceska. 2011. Computing strongly connected components in parallel

on CUDA. In Proceedings of the International Parallel & Distributed Processing Symposium (IPDPS’11). 544–555.

[7] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian

Shun. 2016. Parallel algorithms for asymmetric read-write costs. In Proceedings of the ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA’16).

[8] Daniel K. Blandford, Guy E. Blelloch, and Clemens Kadow. 2006. Engineering a compact parallel Delaunay algorithm

in 3D. In Proceedings of the ACM Symposium on Computational Geometry (SoCG’06). 292–300.

[9] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. 2015. Sorting with asymmetric read

and write costs. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’15).

[10] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. 2016. Efficient algorithms with

asymmetric read and write costs. In Proceedings of the European Symposium on Algorithms (ESA’16).

[11] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012. Internally deterministic algorithms

can be fast. In Proceedings of the Principles and Practice of Parallel Programming (PPoPP’12). 181–192.

[12] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy sequential maximal independent set and matching

are parallel on average. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’12).

308–317.

[13] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Parallelism in randomized incremental algorithms. In

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’16). 467–478.

[14] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel write-efficient algorithms and data structures

for computational geometry. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA’18).

[15] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized incremental convex hull is highly parallel.

In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’20).

[16] Guy E. Blelloch, Yan Gu, and Yihan Sun. 2017. Efficient construction of probabilistic tree embeddings. In Proceedings

of the International Colloquium on Automata, Languages and Programming (ICALP’17).

[17] Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. 2016. Parallel shortest-paths using radius stepping. In

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’17).

[18] Guy E. Blelloch, Anupam Gupta, and Kanat Tangwongsan. 2012. Parallel probabilistic tree embeddings, k-median,

and buy-at-bulk network design. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA’12). 205–213.

[19] Guy E. Blelloch, Gary L. Miller, Jonathan C. Hardwick, and Dafna Talmor. 1999. Design and implementation of a

practical parallel Delaunay algorithm. Algorithmica 24, 3–4 (1999).

[20] Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir. 2009. Parallel programming must be deterministic

by default. In Proceedings of the Usenix Conference on Hot Topics in Parallelism (HotPar’09).

[21] Jean-Daniel Boissonnat and Monique Teillaud. 1993. On the randomized construction of the delaunay tree. Theor.

Comput. Sci. 112, 2 (1993), 339–354.

[22] Richard P. Brent. 1974. The parallel evaluation of general arithmetic expressions. J. ACM 21, 2 (1974), 201–206.

[23] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford transactional

applications for multi-processing. In Proceedings of the IEEE International Symposium on Workload Characterization

(IISWC’08).

[24] Danny Z. Chen and Jinhui Xu. 2002. Two-variable linear programming in parallel. Comput. Geom. 21, 3 (2002), 155–

165.

[25] Paolo Cignoni, Claudio Montani, Raffaele Perego, and Roberto Scopigno. 1993. Parallel 3d delaunay triangulation.

Comput. Graph. Forum 12, 3 (1993), 129–142.

[26] Marcelo Cintra, Diego R. Llanos, and Belén Palop. 2004. International conference on computational science and its

applications. In Speculative Parallelization of a Randomized Incremental Convex Hull Algorithm. 188–197.

[27] Kenneth L. Clarkson and Peter W. Shor. 1989. Applications of random sampling in computational geometry, II. Discr.

Comput. Geom. 4, 5 (1989), 387–421.

[28] Edith Cohen. 1997. Size-estimation framework with applications to transitive closure and reachability. J. Comput.

Syst. Sci. 55, 3 (1997), 441–453.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

27:26 G. E. Blelloch et al.

[29] Edith Cohen and Haim Kaplan. 2004. Efficient estimation algorithms for neighborhood variance and other moments.

In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA;04). 157–166.

[30] Richard Cole. 1988. Parallel merge sort. SIAM J. Comput. 17, 4 (1988), 770–785.

[31] Richard Cole, Michael T. Goodrich, and Colm O’Dunlaing. 1996. A nearly optimal deterministic parallel Voronoi

diagram algorithm. Algorithmica 16, 6 (1996), 569–617.

[32] Don Coppersmith, Lisa Fleischer, Bruce Hendrickson, and Ali Pinar. 2003. A divide-and-conquer algorithm for iden-

tifying strongly connected components. Technical Report RC23744, IBM, 2003.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd

ed.). MIT Press.

[34] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms

and Applications. Springer-Verlag.

[35] Xiaotie Deng. 1990. An optimal parallel algorithm for linear programming in the plane. Inf. Process. Lett. 35, 4 (1990),

213–217.

[36] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically efficient parallel graph algorithms can be

fast and scalable. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’18).

393–404.

[37] Pedro Diaz, Diego R. Llanos, and Belen Palop. 2004. Parallelizing 2D-convex hulls on clusters: Sorting matters. Proc.

XV Jornadas de Paralelismo (2004), 247–252.

[38] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. 2013. Scalable influence estimation in continuous-

time diffusion networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS’13). 3147–3155.

[39] Martin Dyer. 1995. A parallel algorithm for linear programming in fixed dimension. In Proceedings of the Symposium

on Computational Geometry (SoCG’95). 345–349.

[40] Herbert Edelsbrunner. 2006. Geometry and Topology for Mesh Generation. Cambridge University Press.

[41] Herbert Edelsbrunner and Nimish R. Shah. 1996. Incremental topological flipping works for regular triangulations.

Algorithmica 15, 3 (1996), 223–241.

[42] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on approximating arbitrary metrics by tree

metrics. J. Comput. Syst. Sci. 69, 3 (2004), 485–497.

[43] Jeremy T. Fineman. 2018. Nearly work-efficient parallel algorithm for digraph reachability. In Proceedings of the ACM

Symposium on Theory of Computing (STOC’18). 457–470.

[44] Joseph Gil, Yossi Matias, and Uzi Vishkin. 1991. Towards a theory of nearly constant time parallel algorithms. In

Proceedings of the Foundations of Computer Science (FOCS’91). 698–710.

[45] Mordecai Golin, Rajeev Raman, Christian Schwarz, and Michiel Smid. 1995. Simple randomized algorithms for closest

pair problems. Nord. J. Comput. 2, 1 (1995), 3–27.

[46] Arturo Gonzalez-Escribano, Diego R. Llanos, David Orden, and Belen Palop. 2006. Parallelization alternatives and

their performance for the convex hull problem. Appl. Math. Model. 30, 7 (2006), 563–577.

[47] Michael T. Goodrich. 1996. Fixed-dimensional parallel linear programming via relative ϵ -approximations. In Proceed-

ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’96). 132–141.

[48] Michael T. Goodrich and Edgar A. Ramos. 1997. Bounded-independence derandomization of geometric partitioning

with applications to parallel fixed-dimensional linear programming. Discr. Comput. Geom. 18, 4 (1997), 397–420.

[49] Peter J. Green and Robin Sibson. 1978. Computing Dirichlet tessellations in the plane. Comput. J. 21, 2 (1978), 168–173.

[50] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A top-down parallel semisort. In Proceedings of the ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA’15). 24–34.

[51] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. 1992. Randomized incremental construction of Delaunay and

Voronoi diagrams. Algorithmica 7, 4 (1992), 381–413.

[52] Torben Hagerup. 1991. Fast parallel generation of random permutations. In Proceedings of the International Colloquium

on Automata, Languages and Programming. Springer, 405–416.

[53] Sariel Har-peled. 2011. Geometric Approximation Algorithms. American Mathematical Society.

[54] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2014. Ordering heuristics for parallel graph

coloring. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’14). 166–177.

[55] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On fast parallel detection of strongly connected com-

ponents (SCC) in small-world graphs. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’13). 1–11.

[56] Joseph Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[57] Svante Janson et al. 2018. Tail bounds for sums of geometric and exponential variables. Stat. Probab. Lett. 135, C (2018),

1–6.

[58] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. 2012. Efficient distributed approx-

imation algorithms via probabilistic tree embeddings. Distrib. Comput. 25, 3 (2012), 189–205.

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

Parallelism in Randomized Incremental Algorithms 27:27

[59] Samir Khuller and Yossi Matias. 1995. A simple randomized sieve algorithm for the closest-pair problem. Inf. Comput.

118, 1 (1995), 34–37.

[60] Philip N. Klein and Sairam Subramanian. 1997. A randomized parallel algorithm for single-source shortest paths.

J. Algor. 25, 2 (1997), 205–220.

[61] Diego R. Llanos, David Orden, and Belen Palop. 2005. Meseta: A new scheduling strategy for speculative paral-

lelization of randomized incremental algorithms. Proceedings of the International Conference on Parallel Processing

Workshops. 121–128.

[62] Nimrod Megiddo. 1983. Linear-time algorithms for linear programming in R3 and related problems. SIAM J. Comput.

12, 4 (1983), 759–776.

[63] Ketan Mulmuley. 1994. Computational Geometry—An Introduction Through Randomized Algorithms. Prentice Hall.

[64] Xinghao Pan, Dimitris Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchandran, and Michael I. Jordan.

2015. Parallel correlation clustering on big graphs. In Proceedings of the Advances in Neural Information Processing

Systems (NIPS’15).

[65] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien

Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. The tao of

parallelism in algorithms. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’11).

[66] Michael O. Rabin. 1976. Probabilistic algorithms. Algorithms and Complexity: New Directions and Recent Results. 21–39.

[67] Sanguthevar Rajasekaran and John H. Reif. 1989. Optimal and sublogarithmic time randomized parallel sorting algo-

rithms. SIAM J. Comput. 18, 3 (1989), 594–607.

[68] John H. Reif. 1985. Depth-first search is inherently sequential. Inf. Process. Lett. 20, 5 (1985), 229–234.

[69] John H. Reif and Sandeep Sen. 1992. Optimal parallel randomized algorithms for three-dimensional convex hulls and

related problems. SIAM J. Comput. 21, 3 (1992), 466–485.

[70] Warren Schudy. 2008. Finding strongly connected components in parallel using O (log2 n) reachability queries. In

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’08). 146–151.

[71] Raimund Seidel. 1991. Small-dimensional linear programming and convex hulls made easy. Discr. Comput. Geom. 6,

3 (1991), 423–434.

[72] Raimund Seidel. 1993. Backwards analysis of randomized geometric algorithms. In New Trends in Discrete and Com-

putational Geometry. 37–67.

[73] S. Sen. 1995. A deterministic poly (log log n) time optimal CRCW PRAM algorithm for linear programming in fixed

dimensions. Technical report, Department of Computer Science, University of Newcastle.

[74] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri, and

Kanat Tangwongsan. 2012. Brief announcement: The problem based benchmark suite. In Proceedings of the ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA’12). 68–70.

[75] Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. 2015. Sequential random permuta-

tion, list contraction and tree contraction are highly parallel. In Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA’15). 431–448.

[76] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS and Coloring-based parallel algo-

rithms for strongly connected components and related problems. In Proceedings of the International Parallel and Dis-

tributed Processing Symposium (IPDPS’14).

[77] Thomas H. Spencer. 1997. Time-work tradeoffs for parallel algorithms. J. ACM 44, 5 (1997), 742–778.

[78] Robert E. Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2 (1972), 146–160.

[79] Daniel Tomkins, Timmie Smith, Nancy M. Amato, and Lawrence Rauchwerger. 2015. Efficient, reachability-based,

parallel algorithms for finding strongly connected components. Technical report, Texas A&M University.

[80] Jeffrey D. Ullman and Mihalis Yannakakis. 1991. High-probability parallel transitive-closure algorithms. SIAM J. Com-

put. 20, 1 (1991), 100–125.

[81] Uzi Vishkin. 2010. Thinking in parallel: Some basic data-parallel algorithms and techniques, 2010. Class notes from

a course on parallel algorithms at UMD. Retrieved from http://users.umiacs.umd.edu/∼vishkin/PUBLICATIONS/

classnotes.pdf.

[82] Emo Welzl. 1991. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science.

Received October 2018; revised January 2020; accepted May 2020

Journal of the ACM, Vol. 67, No. 5, Article 27. Publication date: September 2020.

http://users.umiacs.umd.edu/~vishkin/PUBLICATIONS/classnotes.pdf
http://users.umiacs.umd.edu/~vishkin/PUBLICATIONS/classnotes.pdf

