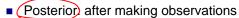


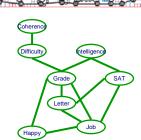
Approximate inference overview So far: VE & junction trees exact inference exponential in tree-width There are many many many many approximate inference algorithms for PGMs We will focus on three representative ones: sampling variational inference loopy belief propagation and generalized belief propagation There will be a special recitation by Pradeep Ravikumar on more advanced methods

Approximating the posterior v. approximating the prior

- Prior model represents entire world
 - world is complicated
 - □ thus prior model can be very complicated



- sometimes can become much more sure about the way things are
- □ sometimes can be approximated by a simple model
- First approach to approximate inference: find simple model that is "close" to posterior
- Fundamental problems:
 - what is close?
 - posterior is intractable result of inference, how can we approximate what we don't have?



KL divergence: "I'go x 100 x 1

Given two distributions p and q KL divergence:

$$D(p||q) = \sum_{x} p(x) \cdot \log_{x} \frac{p(x)}{q(x)}$$

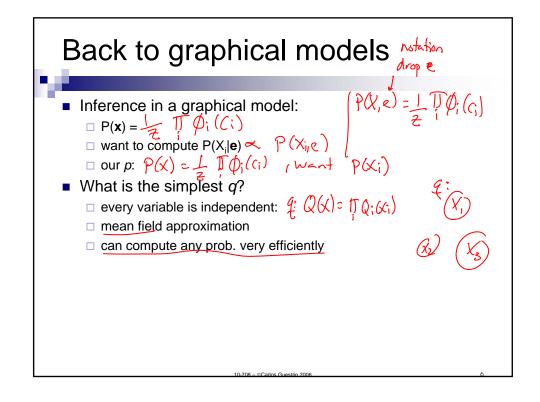
- D(p||q) = 0 iff p=q
- Not symmetric p determines where difference is important.

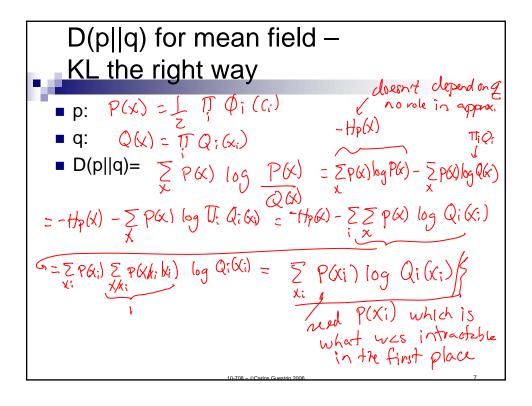
$$\sqrt[3]{\Box} p(x)=0$$
 and $q(x)\neq 0$

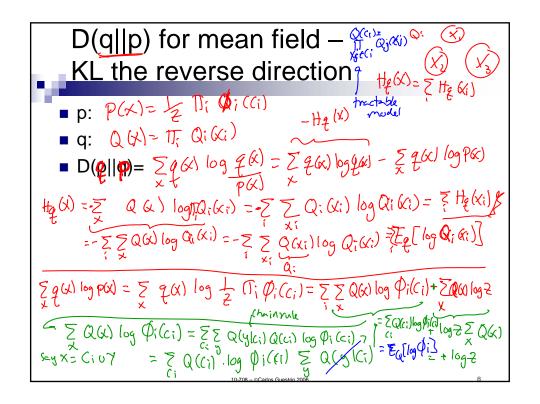
P(x) · 105 P(x) = 0 · log 0

□ $p(x)\neq 0$ and q(x)=0 $p(x)\neq 0$ $p(x)\neq 0$

Find simple approximate distribution Suppose p is intractable posterior Want to find simple q that approximates p KL divergence not symmetric D(p||q) true distribution p defines support of diff. the "correct" direction will be intractable to compute D(q||p) approximate distribution defines support tends to give overconfident results will be tractable q Simple - Gransvian w. I barry







What you need to know so far

- ٧
- Goal:
 - ☐ Find an efficient distribution that is close to posterior
- Distance:
 - □ measure distance in terms of KL divergence
- Asymmetry of KL:
 - $\square D(p||q) \neq D(q||p)$

Dp (12)

■ Computing right KL is intractable, so we use the reverse KL D (なりp)

10-708 = @Carlos Guestrin 2006

0

Announcements

- Tomorrow's recitation
 - □ Khalid on Variational Methods
- Monday's special recitation
 - ☐ Khalid on Dirichlet Processes
 - An exciting way to deal with model selection using graphical models, e.g., selecting (or averaging over) number of clusters in unsupervised learning
 - you even get to see a BN with infinitely many variables

10-708 = @Carlos Guestrin 2006

Understanding Reverse KL, Energy Function & The Partition Function

 $\ln Z = F[P_{\mathcal{F}}, Q] + D(Q||P_{\mathcal{F}}) \qquad \qquad \widehat{f}_{F[P_{\mathcal{F}}, Q]} = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + H_Q(\mathcal{X})$

- Maximizing Energy Functional ⇔ Minimizing Reverse KL

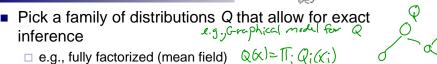
 ↑ F (Pf, Q) ← J D (Q || Pf) → NQ D(Q || Pf) >0
- Theorem: Energy Function is lower bound on partition function

Int=F[P=,Q] iff Q=P=

 Maximizing energy functional corresponds to search for tight lower bound on partition function

10-708 = @Carlos Guestrin 2006

Structured Variational Approximate



- Find $Q \in Q$ that maximizes $F[P_F, Q]$ F is graphical model for P
- For mean field: $F(P_F,Q) = \sum_{\varphi \in F} E_Q[\log \varphi] + \sum_{i} H_Q(X_i)$ $\forall X_i \quad \sum_{x_i} Q_i(X_i) = I \quad Q_i(X_i) \ge \delta \ \forall X_i$

10-708 = ©Carlos Guestrin 200

Optimization for mean field

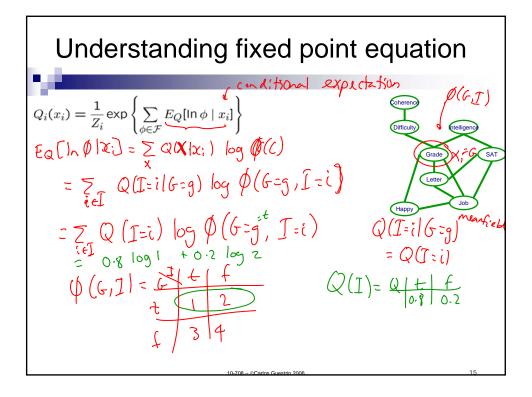
$$\max_{Q} F[P_{\mathcal{F}},Q] = \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi] + \sum_{j} H_{Q_j}(X_j), \quad \forall j, \ \sum_{x_j} Q_j(x_j) = 1$$

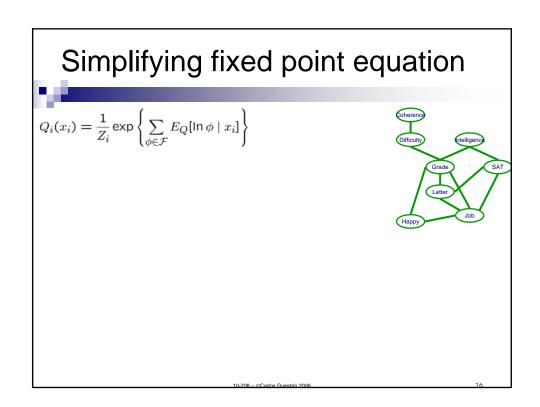
Constrained optimization, solved via Lagrangian multiplier

■ **Theorem**: Q is a stationary point of mean field approximation iff for each i.

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

I-708 - ©Carlos Guestrin 2006





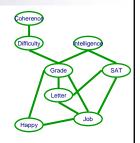
Q_i only needs to consider factors that intersect X_i

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid x_i] \right\}$$

is equivalent to:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

 $\quad \ \ \, \square \ \, \text{where the Scope}[\varphi_j] = \boldsymbol{U}_j \cup \{X_i\}$



10-708 - ©Carlos Guestrin 2006

17

There are many stationary points!

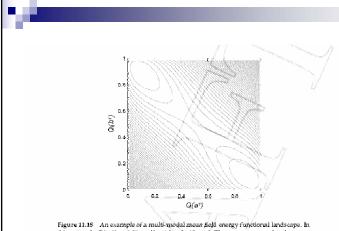
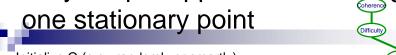


Figure 11.18 An example of a multi-modal mean field energy functional landscape. In this network, $P(a,b)=0.25-\epsilon$ if $a\neq b$ and ϵ if a=b. The axes correspond to the mean field marginal for A and B and the contours show equi-values of the energy functional.

10-708 = @Carlos Guestrin 2006

Very simple approach for finding



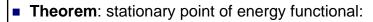
- Initialize Q (e.g., randomly or smartly)
- Set all vars to unprocessed
- Pick unprocessed var X_i
 - □ update Q_i:

$$Q_i(x_i) = \frac{1}{Z_i} \exp \left\{ \sum_{\phi_j: X_i \in \mathsf{Scope}[\phi_j]} E_Q[\ln \phi_j(\mathbf{U}_j, x_i)] \right\}$$

- set var i as processed
- □ if Q_i changed
 - set neighbors of X_i to unprocessed
- Guaranteed to converge

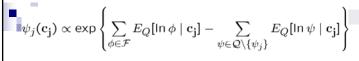
More general structured approximations

- Mean field very naïve approximation
- Consider more general form for Q
 - □ assumption: exact inference doable over Q



$$\psi_j(\mathbf{c_j}) \propto \exp \left\{ \sum_{\phi \in \mathcal{F}} E_Q[\ln \phi \mid \mathbf{c_j}] - \sum_{\psi \in \mathcal{Q} \backslash \{\psi_j\}} E_Q[\ln \psi \mid \mathbf{c_j}] \right\}$$

Computing update rule for general case



■ Consider one ϕ :



10-708 - ©Carlos Guestrin 2006

21

Structured Variational update requires inferece

requires inferece $\psi_{j}(\mathbf{c_{j}}) \propto \exp \left\{ \sum_{\phi \in \mathcal{F}} E_{Q}[\ln \phi \mid \mathbf{c_{j}}] - \sum_{\psi \in \mathcal{Q} \setminus \{\psi_{j}\}} E_{Q}[\ln \psi \mid \mathbf{c_{j}}] \right\}$

- Compute marginals wrt Q of cliques in original graph and cliques in new graph, for all cliques
- What is a good way of computing all these marginals?
- Potential updates:
 - $\ \square$ sequential: compute marginals, update ψ_i , recompute marginals
 - \square parallel: compute marginals, update all ψ 's, recompute marginals

10-708 - @Carlos Guestrin 2006

What you need to know about variational methods

- Structured Variational method:
 - □ select a form for approximate distribution
 - □ minimize reverse KL
- Equivalent to maximizing energy functional
 - □ searching for a tight lower bound on the partition function
- Many possible models for Q:
 - □ independent (mean field)
 - □ structured as a Markov net
 - cluster variational
- Several subtleties outlined in the book

10-708 - ©Carlos Guestrin 2006