

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - □ (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 - ©Carlos Guestrin 2006

- 3

Understanding score decomposition Otherence Difficulty Intelligence Happy 10,708 = 6Carton Guestrio 2006

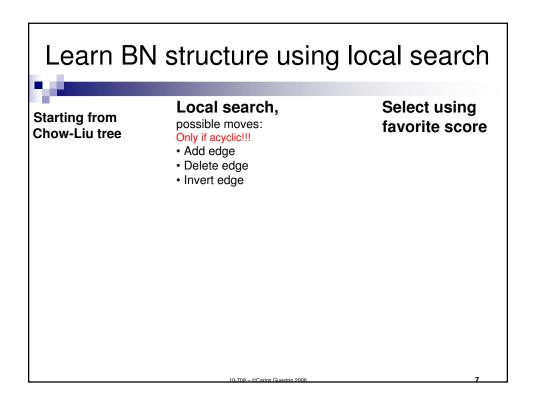
Fixed variable order 1

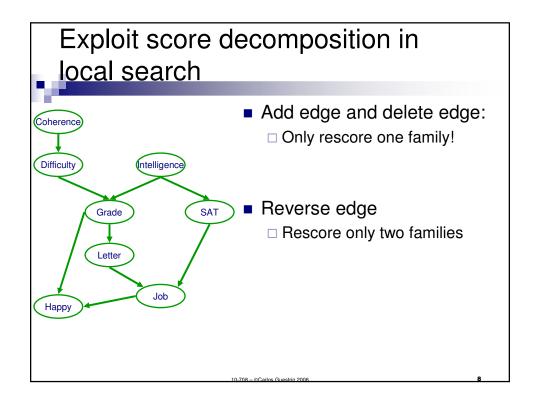
- Pick a variable order <</p>
 - \square e.g., $X_1,...,X_n$
- X_i can only pick parents in ${X_1,...,X_{i-1}}$
 - □ Any subset
 - □ Acyclicity guaranteed!
- Total score = sum score of each node

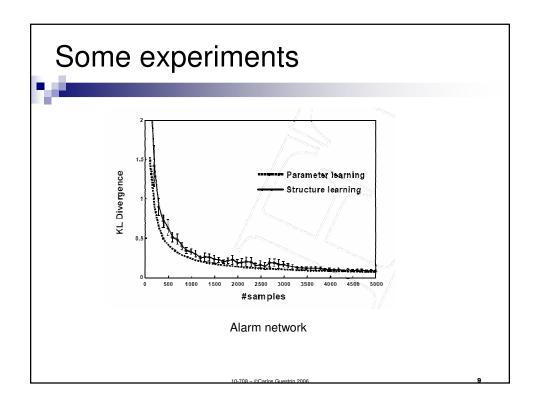
Fixed variable order 2

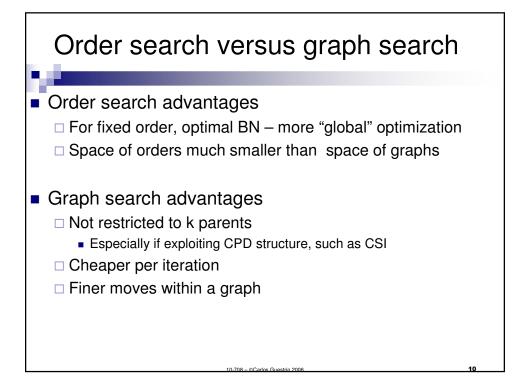
- Fix max number of parents to k
- For each *i* in order \prec
 - \square Pick $\mathbf{Pa}_{X_i} \subseteq \{X_1, \dots, X_{i-1}\}$

 - Exhaustively search through all possible subsets
 Pa_{xi} is maximum U⊆{X₁,...,X_{i-1}} FamScore(X_i|U: D)
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - □ E.g., try switching pairs of variables in order
 - ☐ If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse









Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - $$\label{eq:similar to averaging over parameters} \begin{split} & \square \text{ Similar to averaging over parameters} \\ & \log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} | \mathcal{G}) d\theta_{\mathcal{G}} \end{split}$$
- Inference for structure averaging is very hard!!!
 - □ Clever tricks in reading

10-708 = @Carlos Guestrin 2006

11

What you need to know about learning BN structures

- Decomposable scores
 - □ Data likelihood
 - □ Information theoretic interpretation
 - Bayesian
 - □ BIC approximation
- Priors
 - $\hfill \square$ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - Search through orders
 - Search through structures
- Bayesian model averaging

10-708 - ©Carlos Guestrin 2006

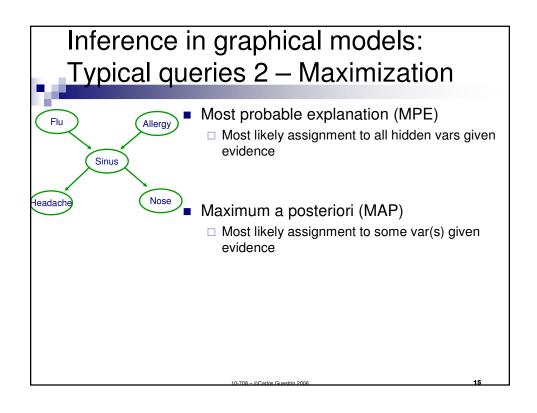
Announcements

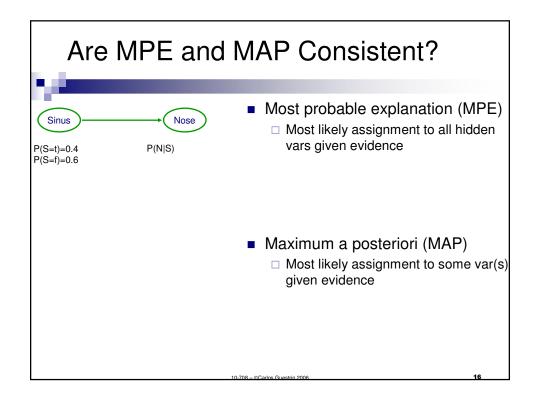
- Don't forget project proposals due this Wednesday
- Special recitation on advanced topic:
 - □ Ajit Singh on Optimal Structure Learning
 - □ On Monday Oct 9, 5:30-7:00pm in Wean Hall 4615A

10-708 - @Carlos Guestrin 2006

13

Inference in graphical models: Typical queries 1 Flu Allergy Conditional probabilities Distribution of some var(s). given evidence





Complexity of conditional probability queries 1

• How hard is it to compute P(X|E=e)?

Reduction - 3-SAT

$$(\overline{X}_1 \lor X_2 \lor X_3) \land (\overline{X}_2 \lor X_3 \lor X_4) \land \dots$$

0-708 - ©Carlos Guestrin 2006

17

Complexity of conditional probability queries 2

- How hard is it to compute P(X|E=e)?
 - ☐ At least NP-hard, but even harder!

I0-708 – ©Carlos Guestrin 2006

Inference is #P-hard, hopeless?

- Exploit structure!
- Inference is hard in general, but easy for many (real-world relevant) BN structures

10-708 - ©Carlos Guestrin 2006

19

Complexity for other inference questions

- Probabilistic inference
 - □ general graphs:
 - □ poly-trees and low tree-width:
- Approximate probabilistic inference
 - □ Absolute error:
 - □ Relative error:
- Most probable explanation (MPE)
 - □ general graphs:
 - □ poly-trees and low tree-width:
- Maximum a posteriori (MAP)
 - □ general graphs:
 - □ poly-trees and low tree-width:

10-708 - ©Carlos Guestrin 2006

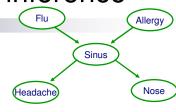
Inference in BNs hopeless?

- In general, yes!
 - □ Even approximate!
- In practice
 - □ Exploit structure
 - ☐ Many effective approximation algorithms (some with guarantees)
- For now, we'll talk about exact inference
 - □ Approximate inference later this semester

General probabilistic inference

Query:

$$P(X \mid e)$$



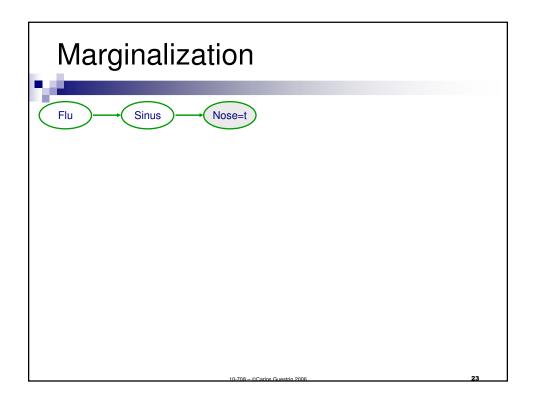
Using def. of cond. prob.:

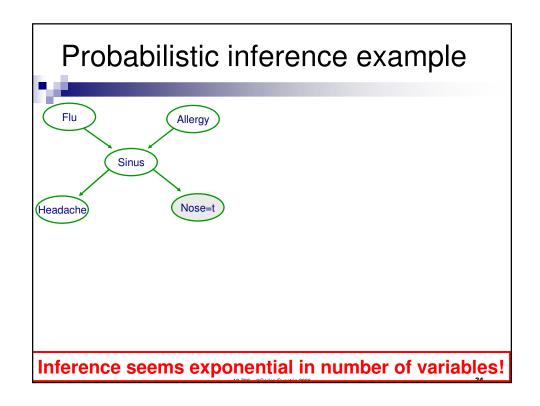
$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$

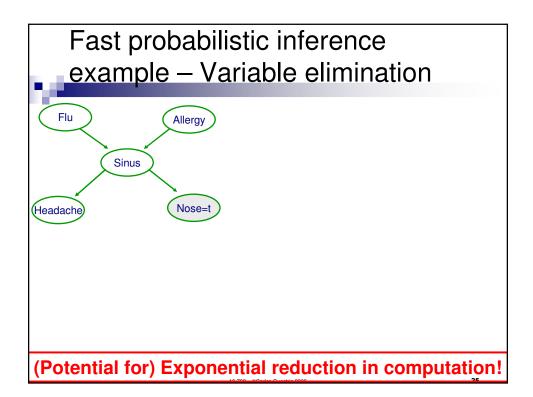
Normalization:

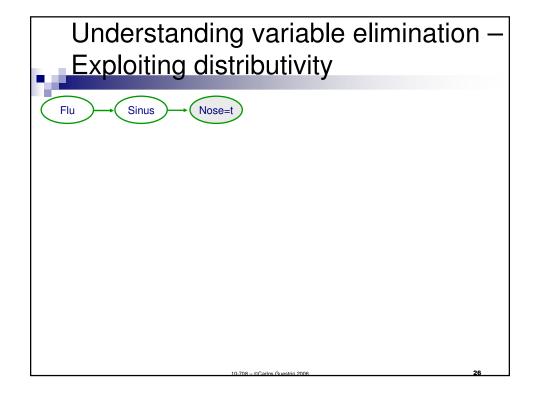
$$P(X \mid e) \propto P(X, e)$$

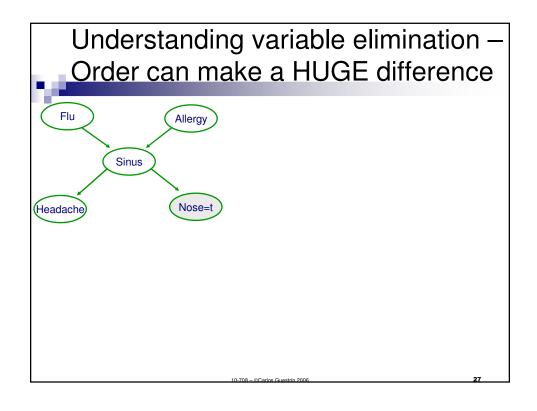
I0-708 – ©Carlos Guestrin 2006

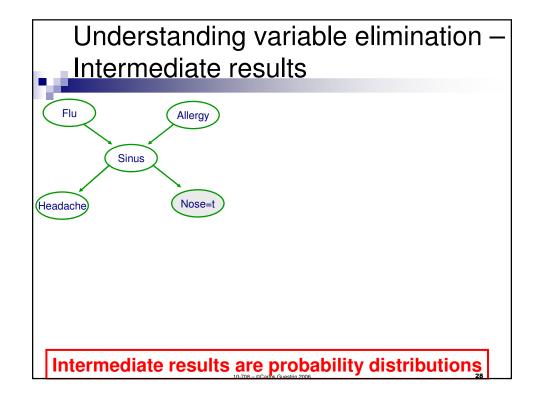


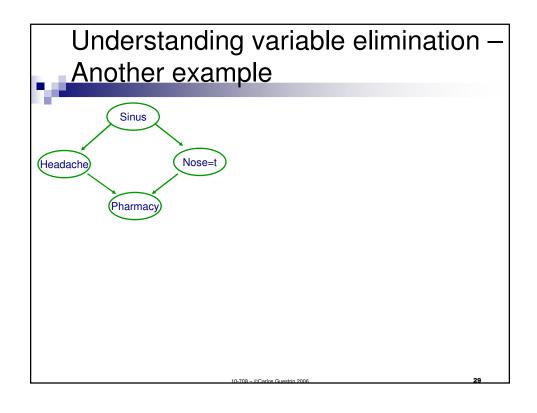


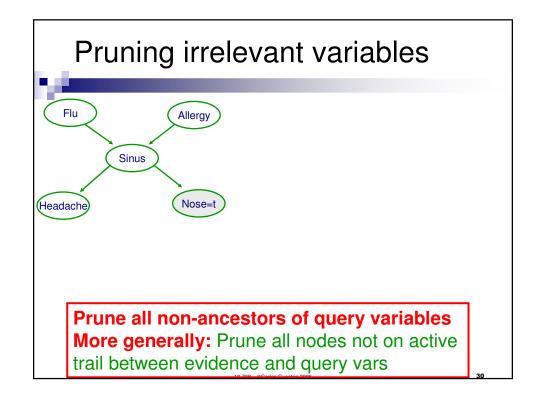












Variable elimination algorithm

- Instantiate evidence e
- Prune non-active vars for {X,**e**}

IMPORTANT!!!

- Choose an ordering on variables, e.g., X₁, ..., X_n
- Initial factors $\{f_1, ..., f_n\}$: $f_i = P(X_i | \mathbf{Pa}_{X_i})$ (CPT for X_i)
- For i = 1 to n, If $X_i \notin \{X, E\}$
 - \Box Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- □ Variable X_i has been eliminated!
- Normalize P(X,e) to obtain P(X|e)

10-708 = @Carlos Guestrin 2006

31

Operations on factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

Multiplication:

10-708 - ©Carlos Guestrin 2006

Operations on factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

Marginalization:

18 - ©Carlos Guestrin 2006

33

Complexity of VE – First analysis

Number of multiplications:

Number of additions:

0-708 – ©Carlos Guestrin 2006

