Structure Learning in BNs 2:

(the good,) the bad, the ugly

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

October 4th, 2006

Maximum likelihood score overfits!

 $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$

Information never hurts:

Adding a parent always increases score!!!

0-708 - ©Carlos Guestrin 2006

Bayesian score

- Ŋ
- Prior distributions:
 - □ Over structures
 - □ Over parameters of a structure
- Posterior over structures given data:

$$\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

10-708 - ©Carlos Guestrin 2006

Bayesian score and model complexity

Structure 1: X and Y independent

True model:

- Score doesn't depend on alpha
- Structure 2: X → Y

 $P(Y=t|X=t) = 0.5 + \alpha$ $P(Y=t|X=f) = 0.5 - \alpha$

- $\hfill\Box$ Data points split between P(Y=t|X=t) and P(Y=t|X=f)
- $\hfill\Box$ For fixed M, only worth it for large α
 - Because posterior over parameter will be more diffuse with less data

10-708 - @Carlos Guestrin 2006

Bayesian, a decomposable score

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- As with last lecture, assume:
 - □ Local and global parameter independence
- Also, prior satisfies parameter modularity:
 - \Box If X_i has same parents in G and G', then parameters have same prior
- Finally, structure prior P(G) satisfies structure modularity
 - □ Product of terms over families
 - □ E.g., $P(G) \propto c^{|G|}$
- Bayesian score decomposes along families!

10-708 - ©Carlos Guestrin 2006

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
 - □ In the limit, we can forget prior!
 - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as $m\rightarrow\infty$:

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log m}{2} \text{Dim}(\mathcal{G}) + O(1)$$

10-708 = @Carlos Guestrin 2006

BIC approximation, a decomposable score

- BIC: Score_{BIC}($\mathcal{G}: D$) = log $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) \frac{\log m}{2}$ Dim(\mathcal{G})
- Using information theoretic formulation:

$$\mathsf{Score}_{\mathsf{BIC}}(\mathcal{G}:D) = m \sum_{i} \hat{I}(X_i, \mathbf{Pa}_{X_i,\mathcal{G}}) - m \sum_{i} \hat{H}(X_i) - \frac{\log m}{2} \sum_{i} \mathsf{Dim}(P(X_i \mid \mathbf{Pa}_{X_i,\mathcal{G}}))$$

10-708 - ©Carlos Guestrin 2006

Consistency of BIC and Bayesian scores

- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is **consistent** if, for true model G^{*}, as m→∞, with probability 1
 - □ G* maximizes the score
 - \square All structures **not l-equivalent** to G^* have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

10-708 = @Carlos Guestrin 2006

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior: fix an α , $P(\theta_{Xi|PaXi}) = Dirichlet(\alpha,...,\alpha)$
 - □ K2 is "inconsistent"

10-708 - ©Carlos Guestrin 2006

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i,Pa_{Xi})
 - □ Represent with a BN
 - ☐ Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

0-708 - ©Carlos Guestrin 2006

Announcements

Project description is out on class website:

- □ Individual or groups of two only
- Suggested projects on the class website, or do something related to your research (preferable)
 - Must be something you started this semester
 - The semester goes really quickly, so be realistic (and ambitious ②)

Project deliverables:

- □ one page proposal due next week (10/11)
- □ 5-page milestone report Nov. 1st
- □ Poster presentation on Dec. 1st, 3-6pm
- □ Write up, 8-pages, due Dec. 8th
- □ All write ups in NIPS format (see class website), page limits are strict

Objective:

- □ Explore and apply concepts in **probabilistic graphical models**
- □ Doing a fun project!

10-708 - @Carlos Guestrin 2006

11

Score equivalence

- If G and G' are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence

Theorem 2:

- \square If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
- □ and parameter prior is dirichlet
- □ then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

10-708 - @Carlos Guestrin 2006

Chow-Liu for Bayesian score

Edge weight $w_{X_j o X_i}$ is advantage of adding X_j as parent for X_i

- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - $\hfill\Box$ But, if score satisfies score equivalence, then $w_{\chi_{j\to\chi_{i}}}=w_{\chi_{j\to\chi_{i}}}$!
 - □ Simple maximum spanning forest algorithm works

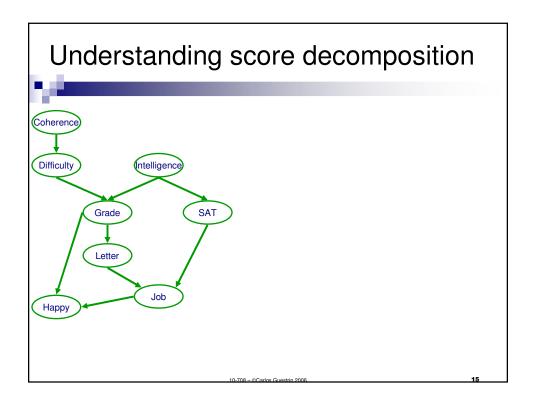
10-708 - ©Carlos Guestrin 2006

13

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - □ (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 - ©Carlos Guestrin 2006



Fixed variable order 1

- Pick a variable order <</p>
 - \square e.g., $X_1,...,X_n$
- X_i can only pick parents in {X₁,...,X_{i-1}}
 - $\hfill \Box$ Any subset
 - ☐ Acyclicity guaranteed!
- Total score = sum score of each node

0-708 – ©Carlos Guestrin 2006

Fixed variable order 2

- Fix max number of parents to k
- For each i in order <</p>
 - \square Pick $\mathbf{Pa}_{X_i} \subseteq \{X_1, \dots, X_{i-1}\}$
 - Exhaustively search through all possible subsets
 - Pa_{x_i} is maximum $U\subseteq \{X_1,...,X_{i-1}\}$ FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - □ E.g., try switching pairs of variables in order
 - If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse

10-708 - @Carlos Guestrin 2006

17

Learn BN structure using local search

Starting from Chow-Liu tree

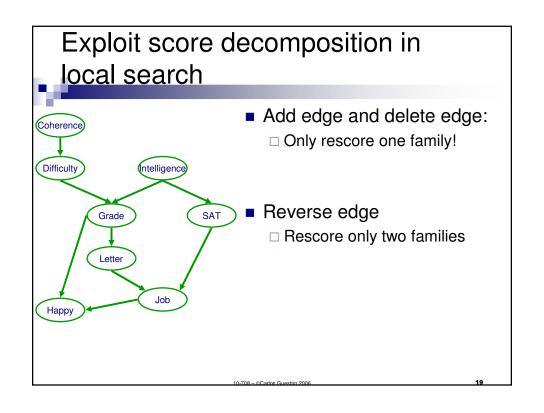
Local search,

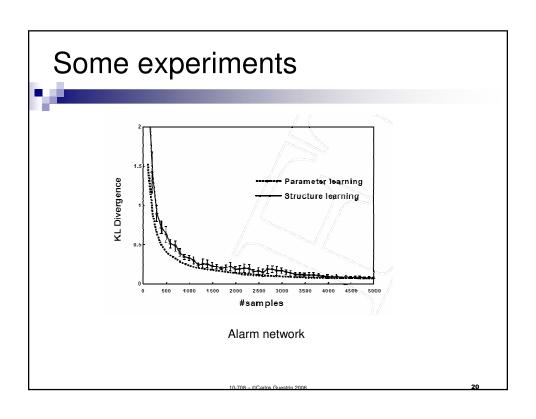
possible moves: Only if acyclic!!!

- Add edge
- · Delete edge
- Invert edge

Select using favorite score

10-708 - ©Carlos Guestrin 2006





Order search versus graph search

- Order search advantages
 - □ For fixed order, optimal BN more "global" optimization
 - □ Space of orders much smaller than space of graphs
- Graph search advantages
 - □ Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - ☐ Cheaper per iteration
 - □ Finer moves within a graph

10-708 - @Carlos Guestrin 2006

21

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - □ Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{C}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - ☐ Clever tricks in reading

0-708 - ©Carlos Guestrin 2006

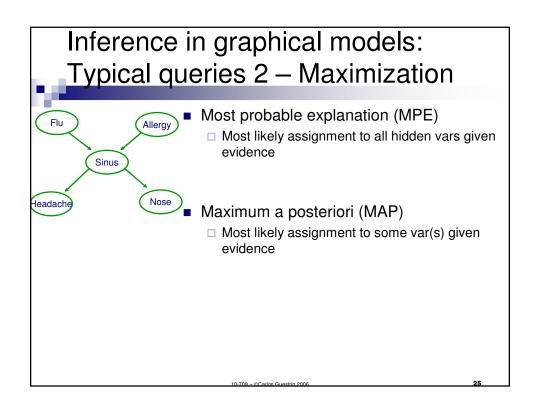
What you need to know about learning BN structures

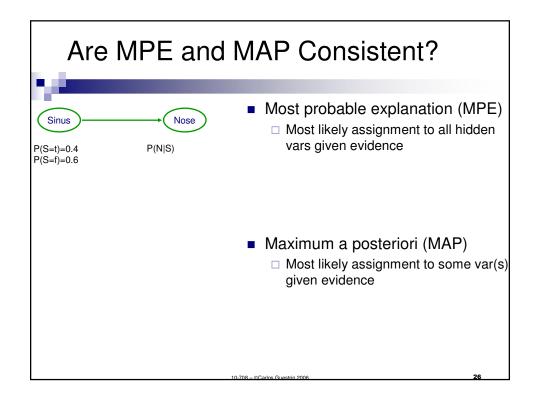
- Decomposable scores
 - Data likelihood
 - □ Information theoretic interpretation
 - Bayesian
 - □ BIC approximation
- Priors
 - □ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - □ Search through orders
 - Search through structures
- Bayesian model averaging

10-708 - ©Carlos Guestrin 2006

23

Inference in graphical models: Typical queries 1 Flu Allergy Conditional probabilities Distribution of some var(s). given evidence





Complexity of conditional probability queries 1

• How hard is it to compute P(X|E=e)?

Reduction - 3-SAT

$$(\overline{X}_1 \lor X_2 \lor X_3) \land (\overline{X}_2 \lor X_3 \lor X_4) \land \dots$$

0-708 - ©Carlos Guestrin 2006

27

Complexity of conditional probability queries 2

- How hard is it to compute P(X|E=e)?
 - ☐ At least NP-hard, but even harder!

10-708 – ©Carlos Guestrin 2006

Inference is #P-hard, hopeless?

- Exploit structure!
- Inference is hard in general, but easy for many (real-world relevant) BN structures

09 - @Carlos Guastrin 2006

What about the maximization problems?

What's the complexity of MPE?

10-708 - ©Carlos Guestrin 2006

First, most probable explanation (MPE)

)

What about maximum a posteriori?

At least, as hard as MPE!

Actually, much harder!!! NPPP-complete!

0-708 - ©Carlos Guestrin 2006

31

Can we exploit structure for maximization?

For MPE

For MAP

10-708 – ©Carlos Guestrin 2006

Exact inference is hard, what about approximate inference?

- Must define approximation criterion!
- Relative error of ε>0
- Absolute error of ε>0

10-708 - ©Carlos Guestrin 2006

33

Hardness of approximate inference

Relative error of ε

Absolute error of ε

10-708 – ©Carlos Guestrin 2006

What you need to know about inference

- - Types of queries
 - □ probabilistic inference
 - □ most probable explanation (MPE)
 - □ maximum a posteriori (MAP)
 - MPE and MAP are truly different (don't give the same answer)
 - Hardness of inference
 - □ Exact and approximate inference are NP-hard
 - ☐ MPE is NP-complete
 - $\hfill \mbox{MAP}$ is much harder (NPPP-complete)

10-708 - ©Carlos Guestrin 2006