Structure Learning in BNs 2:

(the good,) the bad, the ugly

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

October 4th, 2006

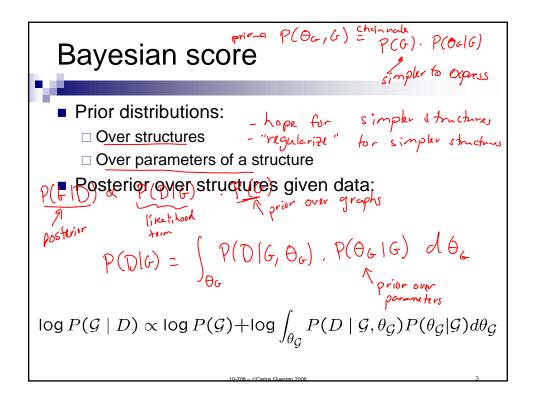
Maximum likelihood score overfits!

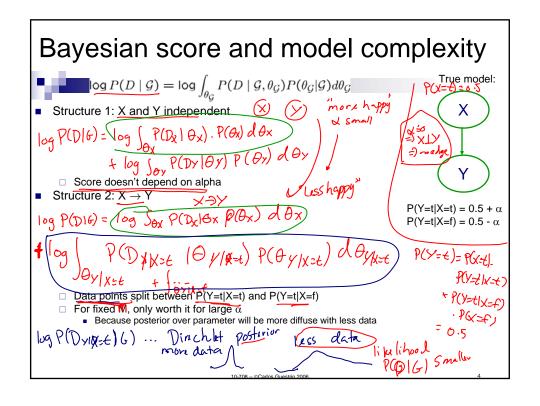
 $\underline{\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})} = m \sum_{i} \hat{I}(X_{i}, \mathbf{Pa}_{X_{i}, \mathcal{G}}) - m \sum_{i} \hat{H}(X_{i})$

Information never hurts: I(Xi, Paxi, 6) = H(Xi) - H(Xi)Paxid H(XIA) 7 H(XIAUY) I(Xi; Paxi, 6) ≤ I(Xi; Paxi, 6 UY) =) pick as many parents as possible =) fully connected graph if ophize =) Over fit!!

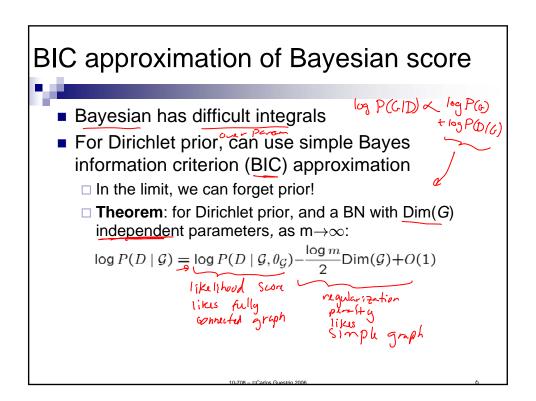
Adding a parent always increases score!!!

10-708 - ©Carlos Guestrio 2006





Bayesian, a decomposable score $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • As with last lecture, assume: $|\log P(D \mid \mathcal{G})| = \log \int_{\theta_{\mathcal{G}}} P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$ • Also, prove substituting the properties of the properties



BIC approximation, a decomposable score BIC: ScoreBIC(G:D) = log $P(D | G, \theta_G)$ - $\frac{\log m}{2}$ Dim(G) D:m(G) = $\frac{1}{2}$ Parans = $\frac{1}{2}$ Dim($\frac{1}{2}$ Paxis) = $\frac{1}{2}$ (K-1). K | Paxis | exponentially inhappy inhapp

Consistency of BIC and Bayesian scores

- Consistency is limiting behavior, says nothing about finite sample size!!!
- A scoring function is consistent if, for true model G*, as m→∞, with probability 1
 - □ G* maximizes the score
 - □ All structures **not I-equivalent** to G* have strictly lower score
- Theorem: BIC score is consistent () < m → 00
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?— true will score score?— true will score score?— but fally connected graph, not I-required score also eneximize score.

10-708 = @Carlos Guestrin 2006

BDe prior Remember that Dirichlet parameters analogous to "fictitious samples" Pick a fictitious sample size m' (10) For each possible family, define a prior distribution P(X_i, Pa_{Xi}) Represent with a BN Usually independent (product of marginals) P'(X i, Pa_{Xi}) = P'(X) ∏ P(X_i) BDe prior: P(A_X | Pa_X := u) = Dirichlet (m' P(Xi = 1, Pa_X := u), hypically : H; P(X_i) = Wisher Clarke Clarket Clarket (2006)

Announcements

- 30% of your
- Project description is out on class website:
- □ Individual or groups of two only
- Suggested projects on the class website, or do something related to your research (preferable)
 - Must be something you started this semester
 - The semester goes really quickly, so be realistic (and ambitious ©)
- Project deliverables:
 - □ one page proposal due next week (10/11)
 - □ 5-page milestone report Nov. 1st
 - □ Poster presentation on Dec. 1st, 3-6pm
 - □ Write up, 8-pages, due Dec. 8th
 - □ All write ups in NIPS format (see class website), page limits are strict
- Objective:
 - □ Explore and apply concepts in **probabilistic graphical models**
 - □ Doing a fun project!

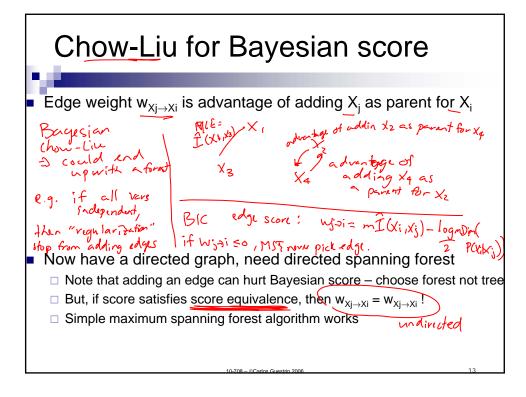
10-708 - ©Carlos Guestrin 2006

1

Score equivalence

- If G and G' are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:
 - If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - □ and parameter prior is dirichlet
 - □ then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

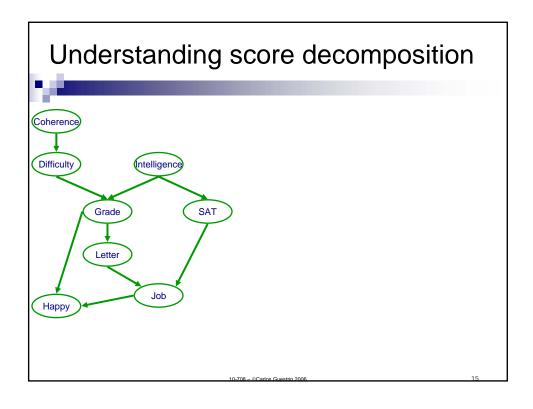
10-708 - ©Carlos Guestrin 2006



Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use <u>heuristics</u>
 - □ Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 - @Carlos Guestrin 2006



Fixed variable order 1

- ٠,
- Pick a variable order ≺
 - $\quad \square \text{ e.g., } X_1, \dots, X_n$
- X_i can only pick parents in {X₁,...,X_{i-1}}
 - □ Any subset
 - □ Acyclicity guaranteed!
- Total score = sum score of each node

0-708 - @Carlos Guestrin 2006

Fixed variable order 2

- Fix max number of parents to k
- For each *i* in order ≺
 - \square Pick $\mathbf{Pa}_{X_i} \subseteq \{X_1, \dots, X_{i-1}\}$
 - Exhaustively search through all possible subsets
 - Pa_{x_i} is maximum $U\subseteq \{X_1,...,X_{i-1}\}$ FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - ☐ E.g., try switching pairs of variables in order
 - If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse

10-708 - @Carlos Guestrin 2006

1

Learn BN structure using local search

Starting from Chow-Liu tree

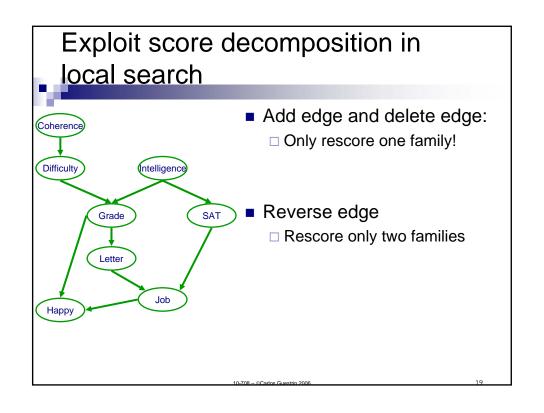
Local search,

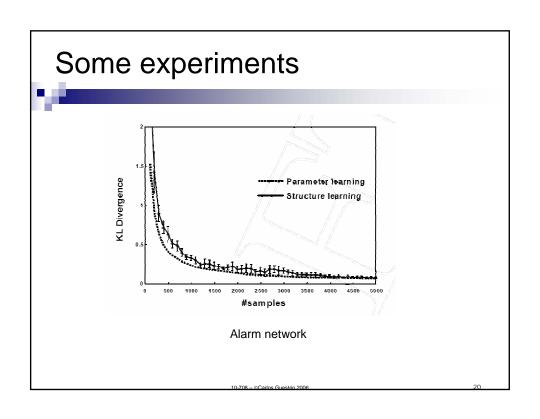
possible moves: Only if acyclic!!!

- Add edge
- Delete edge
- Invert edge

Select using favorite score

10-708 - ©Carlos Guestrin 2006





Order search versus graph search

- Order search advantages
 - ☐ For fixed order, optimal BN more "global" optimization
 - □ Space of orders much smaller than space of graphs
- Graph search advantages
 - □ Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - ☐ Cheaper per iteration
 - ☐ Finer moves within a graph

10-708 = @Carlos Guestrin 2006

2

Bayesian model averaging

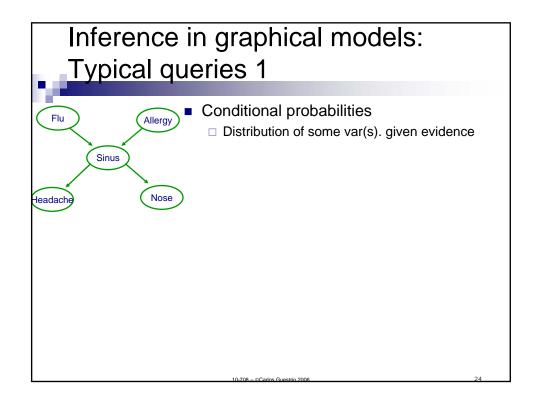
- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - □ Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - □ Clever tricks in reading

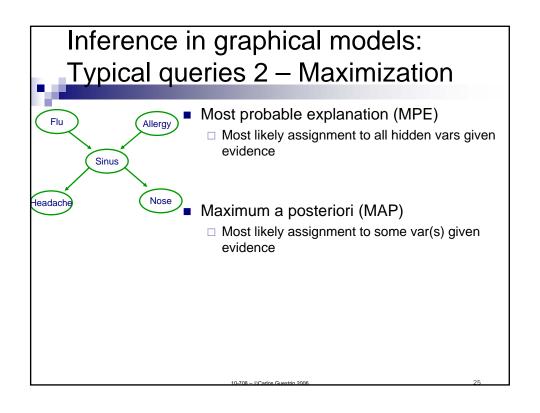
10-708 = @Carlos Guestrin 2006

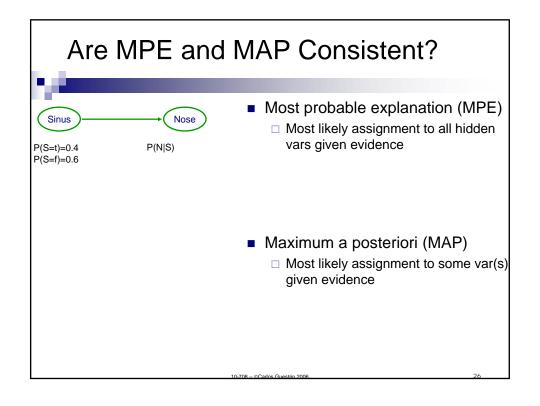
What you need to know about learning BN structures

- Decomposable scores
 - Data likelihood
 - □ Information theoretic interpretation
 - Bayesian
 - □ BIC approximation
- Priors
 - □ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - Search through orders
 - □ Search through structures
- Bayesian model averaging

10-708 - ©Carlos Guestrin 2006







Complexity of conditional probability queries 1

■ How hard is it to compute P(X|E=e)?

Reduction - 3-SAT

$$(\overline{X}_1 \lor X_2 \lor X_3) \land (\overline{X}_2 \lor X_3 \lor X_4) \land \dots$$

Complexity of conditional probability queries 2

- How hard is it to compute P(X|E=e)?
 - ☐ At least NP-hard, but even harder!

Inference is #P-hard, hopeless?

- Exploit structure!
- Inference is hard in general, but easy for many (real-world relevant) BN structures

10-708 - ©Carlos Guestrin 2006

29

What about the maximization problems? First, most probable explanation (MPE)

What's the complexity of MPE?

10-708 - ©Carlos Guestrin 2006

What about maximum a posteriori?

At least, as hard as MPE!

Actually, much harder!!! NPPP-complete!

-708 - ©Carlos Guestrin 2006

21

Can we exploit structure for maximization?

■ For MPE

For MAP

In-708 = @Carlos Guestrin 2006

Exact inference is hard, what about approximate inference?

- Must define approximation criterion!
- Relative error of ε>0
- Absolute error of ε>0

10-708 - ©Carlos Guestrin 2006

33

Hardness of approximate inference

- Relative error of ε
- Absolute error of ε

10-708 - ©Carlos Guestrin 2006

What you need to know about inference

- Types of queries
 - □ probabilistic inference
 - □ most probable explanation (MPE)
 - □ maximum a posteriori (MAP)
 - MPE and MAP are truly different (don't give the same answer)
- Hardness of inference
 - □ Exact and approximate inference are NP-hard
 - □ MPE is NP-complete
 - □ MAP is much harder (NPPP-complete)

10-708 - ©Carlos Guestrin 2006