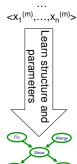


Where are we with learning BNs? Given structure, estimate parameters Maximum likelihood estimation Bayesian learning What about learning structure?

Learning the structure of a BN

<x₁⁽¹⁾,...,x_n⁽¹⁾>



Constraint-based approach

- □ BN encodes conditional independencies
- □ Test conditional independencies in data
- ☐ Find an I-map

Score-based approach

- ☐ Finding a structure and parameters is a density estimation task
- □ Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

10-708 - ©Carlos Guestrin 2006

3

Remember: Obtaining a P-map?

- Given the independence assertions that are true for P
 - Obtain skeleton
 - □ Obtain immoralities
- From skeleton and immoralities, obtain every (and any)
 BN structure from the equivalence class

Constraint-based approach:

- ☐ Use Learn PDAG algorithm
- ☐ Key question: Independence test

10-708 - @Carlos Guestrin 2006

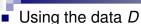
Independence tests

- Statistically difficult task!
- Intuitive approach: Mutual information

$$I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}$$

- Mutual information and independence:
 - \square X_i and X_i independent if and only if $I(X_i,X_i)=0$
- Conditional mutual information:

Independence tests and the constraint based approach

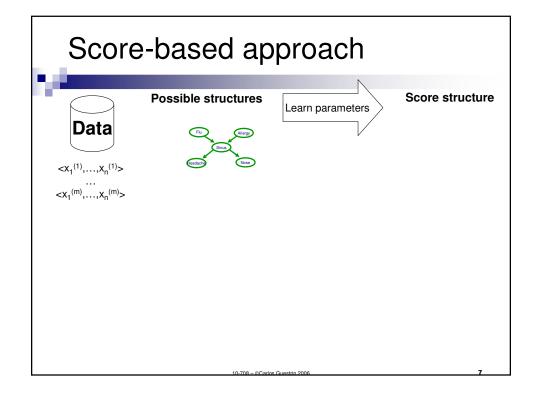


Jsing the data
$$D$$

$$\Box \text{ Empirical distribution:} \qquad \hat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

$$\ \, \square \ \, \text{Mutual information:} \quad \hat{I}(X_i,X_j) = \sum_{x_i,x_j} \hat{P}(x_i,x_j) \log \frac{\hat{P}(x_i,x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$$

- □ Similarly for conditional MI
- Use learning PDAG algorithm:
 - \square When algorithm asks: $(X \perp Y | \mathbf{U})$?
- Many other types of independence tests
 - □ See reading...



Information-theoretic interpretation of maximum likelihood

Given structure, log likelihood of data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{i=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_i}\right]\right)$$

1-708 - ©Carlos Guestrin 2006

Information-theoretic interpretation of maximum likelihood 2



$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{x_i, \mathbf{Pa}_{x_i, \mathcal{G}}} \hat{P}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) \log \hat{P}(x_i \mid \mathbf{Pa}_{x_i, \mathcal{G}})$$

10-708 - ©Carlos Guestrin 2006

Decomposable score

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

- Decomposable score:
 - □ Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!
 - \square Score(G:D) = \sum_{i} FamScore($X_{i}|\mathbf{Pa}_{X_{i}}:D$)

10-708 - ©Carlos Guestrin 2006

How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

Scoring a tree 1: I-equivalent trees

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Scoring a tree 2: similar trees

10-708 - ©Carlos Guestrin 2006

13

Chow-Liu tree learning algorithm 1

- For each pair of variables X_i,X_i
 - □ Compute empirical distribution:

$$\hat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

□ Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - \square Nodes $X_1,...,X_n$
 - $\hfill\Box$ Edge (i,j) gets weight $\widehat{I}(X_i,X_j)$

10-708 = @Carlos Guestrin 2006

Chow-Liu tree learning algorithm 2

- Optimal tree BN
 - ☐ Compute maximum weight spanning tree
 - □ Directions in BN: pick any node as root, breadth-firstsearch defines directions

10-708 - ©Carlos Guestrin 2006

15

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - $\hfill \square$ Same as Chow-Liu, but score edges with:

$$\hat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \hat{P}(c, x_i, x_j) \log \frac{\hat{P}(x_i, x_j \mid c)}{\hat{P}(x_i \mid c) \hat{P}(x_j \mid c)}$$

0-708 – ©Carlos Guestrin 2006

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - \square But, $O(n^{k+1})...$
 - and more subtleties

10-708 - @Carlos Guestrin 2006

17

What you need to know about learning BN structures so far

- Decomposable scores
 - □ Maximum likelihood
 - □ Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))

I0-708 – ©Carlos Guestrin 2006

Announcements

- Homework 2 ou
 - □ Due Oct. 11th
- Project description out next week

10-708 - ©Carlos Guestrin 2006

19

Maximum likelihood score overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_i)$$

Information never hurts:

Adding a parent always increases score!!!

10-708 = @Carlos Guestrin 2006

Bayesian score

- Prior distributions:
 - □ Over structures
 - □ Over parameters of a structure
- Posterior over structures given data:

$$\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

10-708 = @Carlos Guestrin 2006

21

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Structure 1: X and Y independent

- □ Score doesn't depend on alpha
- Structure 2: $X \rightarrow Y$

 $\begin{array}{l} P(Y=t|X=t) = 0.5 + \alpha \\ P(Y=t|X=f) = 0.5 - \alpha \end{array}$

- $\hfill\Box$ Data points split between P(Y=t|X=t) and P(Y=t|X=f)
- $\hfill\Box$ For fixed M, only worth it for large α
 - Because posterior over parameter will be more diffuse with less data

10-708 - ©Carlos Guestrin 2006

Bayesian, a decomposable score

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- As with last lecture, assume:
 - □ Local and global parameter independence
- Also, prior satisfies parameter modularity:
 - \Box If X_i has same parents in G and G', then parameters have same prior
- Finally, structure prior P(G) satisfies **structure modularity**
 - □ Product of terms over families
 - □ E.g., $P(G) \propto c^{|G|}$
- Bayesian score decomposes along families!

10-708 - ©Carlos Guestrin 2006

23

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
 - □ In the limit, we can forget prior!
 - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as $M \rightarrow \infty$:

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log M}{2} \text{Dim}(\mathcal{G}) + O(1)$$

10-708 - ©Carlos Guestrin 2006

BIC approximation, a decomposable score

- BIC: Score_{BIC}($\mathcal{G}: D$) = log $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) \frac{\log M}{2}$ Dim(\mathcal{G})
- Using information theoretic formulation:

$$\mathsf{Score}_{\mathsf{BIC}}(\mathcal{G}:D) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i,\mathcal{G}}) - M \sum_{i} \hat{H}(X_i) - \frac{\log M}{2} \sum_{i} \mathsf{Dim}(P(X_i \mid \mathbf{Pa}_{x_i,\mathcal{G}}))$$

10-708 = @Carlos Guestrin 2006

25

Consistency of BIC and Bayesian scores

scores

Consistency is limiting behavior, says nothing about finite sample size!!!

- A scoring function is **consistent** if, for true model G^* , as $M \rightarrow \infty$, with probability 1
 - \Box G^* maximizes the score
 - \square All structures **not l-equivalent** to G^* have strictly lower score
- **Theorem**: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

10-708 - ©Carlos Guestrin 2006

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior: fix an α , $P(\theta_{Xi|PaXi}) = Dirichlet(\alpha,...,\alpha)$
 - □ K2 is "inconsistent"

10-708 - ©Carlos Guestrin 2006

27

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i,Pa_{Xi})
 - □ Represent with a BN
 - ☐ Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

10-708 – ©Carlos Guestrin 2006

Score equivalence

- М
- If G and G'are I-equivalent then they have same score
- Theorem 1: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:
 - \square If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - □ and parameter prior is dirichlet
 - □ then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

10-708 - @Carlos Guestrin 2006

29

Chow-Liu for Bayesian score

- ٠
- Edge weight $w_{X_i o X_i}$ is advantage of adding X_i as parent for X_i

- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - $\hfill\Box$ But, if score satisfies score equivalence, then $w_{X_i\to X_i}=w_{X_i\to X_i}$!
 - □ Simple maximum spanning forest algorithm works

10-708 - ©Carlos Guestrin 2006

Structure learning for general graphs

- Ŋ,
- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - □ (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 - @Carlos Guestrin 2006

31

Understanding score decomposition Coherence Difficulty Grade SAT Happy Job 10.708... © Cateric Gueston 2006.

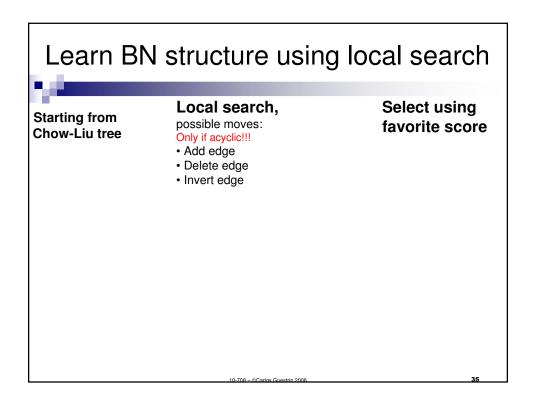
Fixed variable order 1

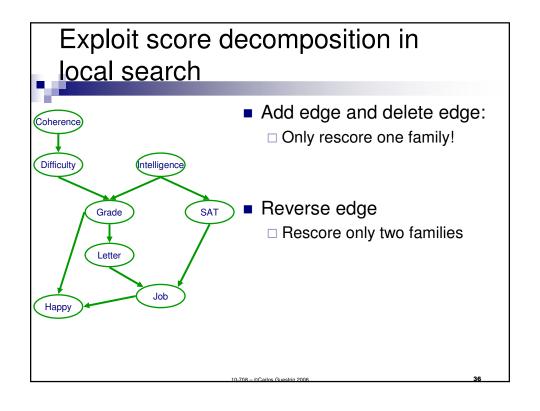
- Pick a variable order <</p>
 - \square e.g., $X_1,...,X_n$
- X_i can only pick parents in ${X_1,...,X_{i-1}}$
 - □ Any subset
 - □ Acyclicity guaranteed!
- Total score = sum score of each node

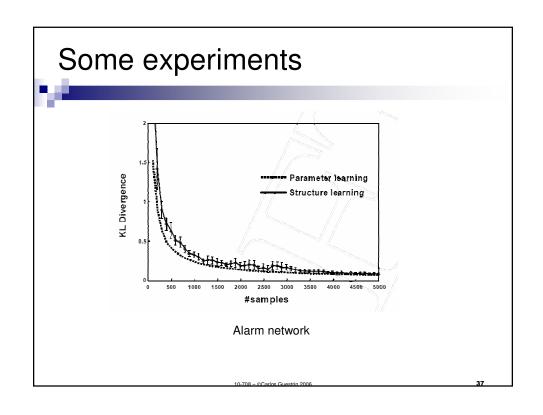
Fixed variable order 2

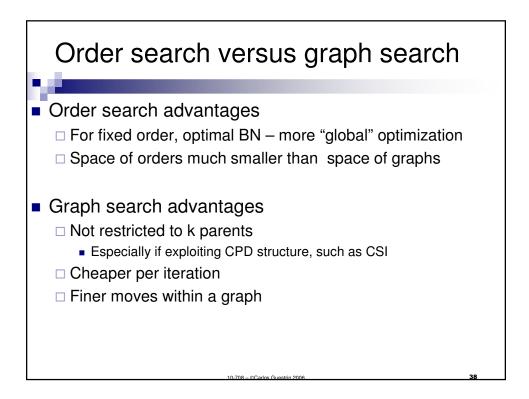
- Fix max number of parents to k
- For each *i* in order \prec
 - \square Pick $\mathbf{Pa}_{X_i} \subseteq \{X_1, \dots, X_{i-1}\}$

 - Exhaustively search through all possible subsets \mathbf{Pa}_{Xi} is maximum $\mathbf{U} \subseteq \{X_1, ..., X_{i-1}\}$ FamScore $(X_i | \mathbf{U} : D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - □ E.g., try switching pairs of variables in order
 - ☐ If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse









Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - \square Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - □ Clever tricks in reading

10-708 - ©Carlos Guestrin 2006

39

What you need to know about learning BN structures

- Decomposable scores
 - □ Data likelihood
 - □ Information theoretic interpretation
 - Bayesian
 - □ BIC approximation
- Priors
 - $\hfill \square$ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - Search through orders
 - Search through structures
- Bayesian model averaging

0-708 – ©Carlos Guestrin 2006