

Where are we with learning BNs?

- Given structure, estimate parameters
 - □ Maximum likelihood estimation MLE
 - □ Bayesian learning
 - What about learning structure?

10-708 = ©Carlos Guestrin 200

Learning the structure of a BN

Data

 $< x_1^{(1)}, ..., x_n^{(1)} >$

- Constraint-based approach
 - □ BN encodes conditional independencies
 - □ Test conditional independencies in data
 - ☐ Find an I-map
 - Score-based approach
 - Finding a structure and parameters is a density estimation task
 - □ Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

10-708 = @Carlos Guestrin 200

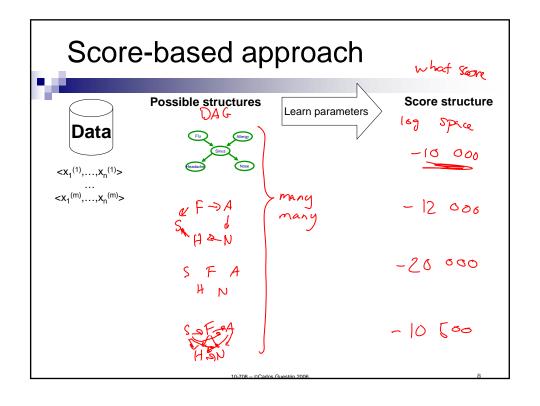
Remember: Obtaining a P-map?

- Given the independence assertions that are true for P
 - □ Obtain skeleton
 - Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class
- Constraint-based approach:
 - ☐ Use Learn PDAG algorithm
 - ☐ Key question: Independence test

10-708 - ©Carlos Guestrin 2006

Independence tests = $\mathcal{E}_{\mathcal{Z}}[I(x_i,x_j|\mathcal{Z})]$ Statistically-difficult task! (x_j) Intuitive approach: Mutual information $I(x_i,x_j) = \sum_{x_i,x_j} P(x_i,x_j) \log \frac{P(x_i,x_j)}{P(x_i)P(x_j)} > 0$ Mutual information and independence: X_i and X_j independent if and only if $I(X_i,X_j)=0$ Suppose $X_i \perp X_j$ $P(X_i,X_j) = P(X_i)$. $P(X_j)$ Conditional mutual information: $X_i \perp X_j \mid \mathcal{Z}$ $X_i \mid X_j \mid \mathcal{Z}$

Independence tests and the constraint based approach Using the data DEmpirical distribution: $\hat{P}(x_i, x_j) = \frac{1}{m} \hat{P}(x_i, x_j) = \frac{1}{$



Information-theoretic interpretation of maximum likelihood

Given structure, log likelihood of data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}}\right]\right)$$

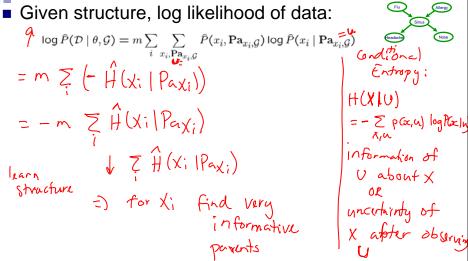
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}}\right]\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}}\right]\right)$$

$$= \sum_{i=1}^{m} \sum_{x_{i}, u} \frac{Count\left(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = u\right)}{m} \log P\left(X_{i} = x_{i}, \mathbf{Pa}_{X_{i}} = u\right)$$

Information-theoretic interpretation if estimated from of maximum likelihood 2

Given structure, log likelihood of data:



Decomposable score
$$= H(x_i) - H(x_i|P_{X_i,G})$$

• Log data likelihood $= I(X_i + P_{aX_i}) = I(X_i) - H(x_i|P_{X_i,G})$

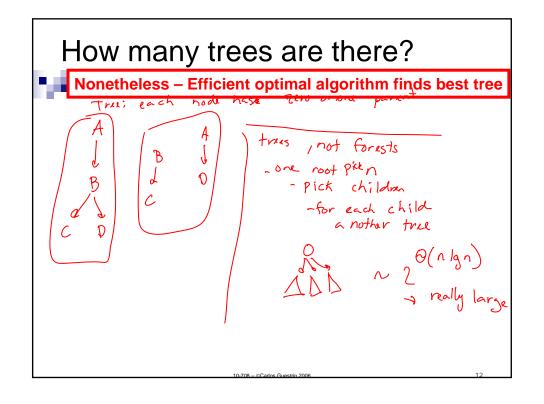
• Log data likelihood $= I(X_i + P_{aX_i}) = I(X_i) = I(X_i)$

• Decomposable score: $I(X_i) = I(X_i) = I(X_i)$

• Decomposable score: $I(X_i) = I(X_i) = I(X_i)$

• Decomposable score: $I(X_i) = I(X_i) = I(X_i) = I(X_i)$

• Will lead to significant computational efficiency!!! $I(X_i) = I(X_i) = I(X_i)$

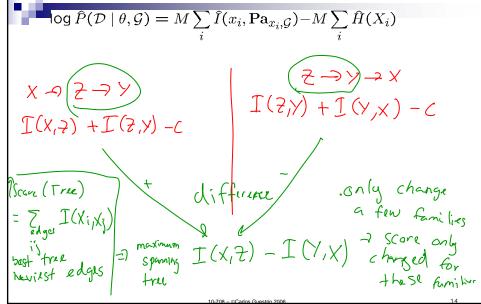


Scoring a tree 1: I-equivalent trees

Tog
$$\hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_{i}, Pa_{x_{i}}, \mathcal{G}) - M \sum_{i} \hat{H}(X_{i})$$

The form $\mathbf{P}(X_{i}, X_{i}) = \mathbf{P}(X_{i}, X$

Scoring a tree 2: similar trees



Chow-Liu tree learning algorithm 1



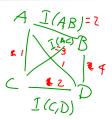
□ Compute empirical distribution: $\bar{P}(x_i, x_j) \stackrel{\text{MLE Count}(x_i, x_j)}{=}$

□ Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i)\widehat{P}(x_j)}$$

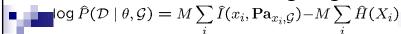
Define a graph

- \square Nodes $X_1,...,X_n$
- \square Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$



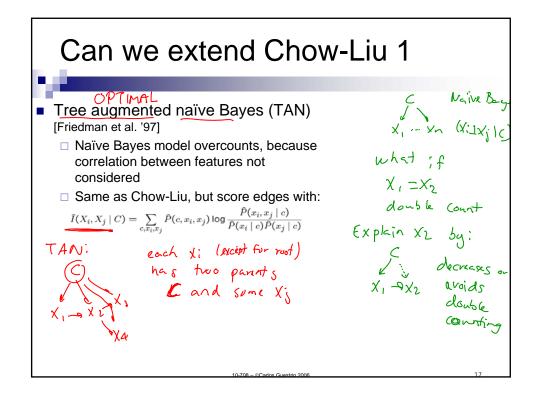
MST:

Chow-Liu tree learning algorithm 2



Optimal tree BN

- □ Compute maximum weight spanning tree
- ☐ Directions in BN: pick any node as root, breadth-first- $\widetilde{\text{search defines directions}}$



Can we extend Chow-Liu 2

- P.
- (Approximately learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - □ But, O(n^{k+1})...
 - and more subtleties

10-708 – ©Carlos Guestrin 2006

What you need to know about learning BN structures so far

- Decomposable scores
 - ☐ Maximum likelihood 5~~~
 - ☐ Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))

10-708 - ©Carlos Guestrin 2006

19

Announcements

- Homework 2 out
 - □ Due Oct. 11th
- Project description out next week

0-708 - ©Carlos Guestrin 2006

Maximum likelihood score overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

Information never hurts:

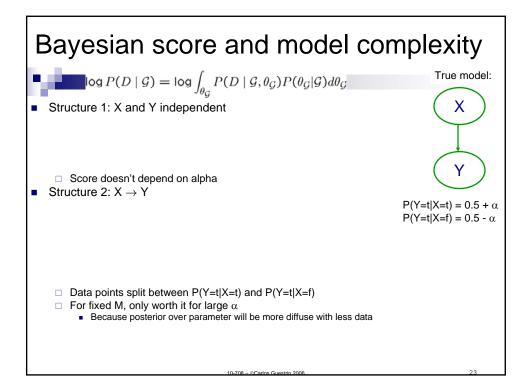
Adding a parent always increases score!!!

Bayesian score

- Prior distributions:
 - □ Over structures
 - □ Over parameters of a structure
- Posterior over structures given data:

$$\log P(\mathcal{G}\mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D\mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}}|\mathcal{G}) d\theta_{\mathcal{G}}$$

10-708 - ©Carlos Guestrin 2006



Bayesian, a decomposable score

- $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- As with last lecture, assume:
- Local and global parameter independence
- Also, prior satisfies parameter modularity:
 - \Box If X_i has same parents in G and G', then parameters have same prior
- Finally, structure prior P(G) satisfies structure modularity
 - □ Product of terms over families
 - \square E.g., $P(G) \propto c^{|G|}$
- Bayesian score decomposes along families!

10-708 = @Carlos Guestrin 2006

BIC approximation of Bayesian score

- Bayesian has difficult integrals
- For Dirichlet prior, can use simple Bayes information criterion (BIC) approximation
 - ☐ In the limit, we can forget prior!
 - □ **Theorem**: for Dirichlet prior, and a BN with Dim(G) independent parameters, as $M \rightarrow \infty$:

$$\log P(D \mid \mathcal{G}) = \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\log M}{2} \mathrm{Dim}(\mathcal{G}) + O(1)$$

10-708 = @Carlos Guestrin 2006

a.e.

BIC approximation, a decomposable score

- BIC: Score_{BIC}($\mathcal{G}: D$) = log $P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) \frac{\log M}{2} \text{Dim}(\mathcal{G})$
- Using information theoretic formulation:

$$\mathsf{Score}_{\mbox{\footnotesize BIC}}(\mathcal{G}:D) = M \sum_{i} \hat{I}(x_i, \mbox{\footnotesize Pa}_{x_i,\mathcal{G}}) - M \sum_{i} \hat{H}(X_i) - \frac{\log M}{2} \sum_{i} \mbox{\footnotesize Dim}(P(X_i \mid \mbox{\footnotesize Pa}_{x_i,\mathcal{G}}))$$

10-708 = ©Carlos Guestrin 2006

Consistency of BIC and Bayesian scores

Consistency is limiting behavior, says nothing about finite sample size!!!

- A scoring function is **consistent** if, for true model G*, as M→∞, with probability 1
 - □ G* maximizes the score
 - \square All structures **not l-equivalent** to G^* have strictly lower score
- Theorem: BIC score is consistent
- Corollary: the Bayesian score is consistent
- What about maximum likelihood score?

10-708 - ©Carlos Guestrin 2006

27

Priors for general graphs

- For finite datasets, prior is important!
- Prior over structure satisfying prior modularity
- What about prior over parameters, how do we represent it?
 - \square K2 prior. fix an α , $P(\theta_{Xi|PaXi}) = Dirichlet(\alpha,...,\alpha)$
 - □ K2 is "inconsistent"

10-708 = @Carlos Guestrin 2006

BDe prior

- Remember that Dirichlet parameters analogous to "fictitious samples"
- Pick a fictitious sample size m'
- For each possible family, define a prior distribution P(X_i,Pa_{Xi})
 - □ Represent with a BN
 - □ Usually independent (product of marginals)
- BDe prior:
- Has "consistency property":

10-708 - @Carlos Guestrin 2006

29

Score equivalence

- If G and G' are I-equivalent then they have same score
- **Theorem 1**: Maximum likelihood score and BIC score satisfy score equivalence
- Theorem 2:
 - $\ \square$ If P(G) assigns same prior to I-equivalent structures (e.g., edge counting)
 - □ and parameter prior is dirichlet
 - □ then Bayesian score satisfies score equivalence if and only if prior over parameters represented as a BDe prior!!!!!!

0-708 = ©Carlos Guestrin 2006

Chow-Liu for Bayesian score

Edge weight $w_{X_j \to X_i}$ is advantage of adding X_j as parent for X_i

- Now have a directed graph, need directed spanning forest
 - □ Note that adding an edge can hurt Bayesian score choose forest not tree
 - $\hfill\Box$ But, if score satisfies score equivalence, then $w_{\chi_{j\to\chi_{i}}}=w_{\chi_{j\to\chi_{i}}}$!
 - □ Simple maximum spanning forest algorithm works

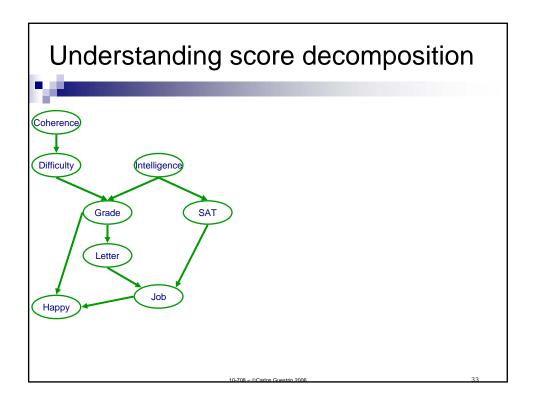
10-708 - ©Carlos Guestrin 2006

3

Structure learning for general graphs

- Ŋ
- In a tree, a node only has one parent
- Theorem:
 - □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2
- Most structure learning approaches use heuristics
 - ☐ Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

10-708 = ©Carlos Guestrin 2006



Fixed variable order 1

- Pick a variable order ≺
 - \square e.g., $X_1,...,X_n$
- X_i can only pick parents in {X₁,...,X_{i-1}}
 - □ Any subset
 - □ Acyclicity guaranteed!
- Total score = sum score of each node

10-708 = @Carlos Guestrin 2006

Fixed variable order 2

- Fix max number of parents to k
- For each i in order
 - \square Pick $\mathbf{Pa}_{X_i} \subseteq \{X_1, \dots, X_{i-1}\}$
 - Exhaustively search through all possible subsets
 - Pa_{x_i} is maximum $U\subseteq \{X_1,...,X_{i-1}\}$ FamScore $(X_i|U:D)$
- Optimal BN for each order!!!
- Greedy search through space of orders:
 - □ E.g., try switching pairs of variables in order
 - If neighboring vars in order are switch, only need to recompute score for this pair
 - O(n) speed up per iteration
 - Local moves may be worse

10-708 - @Carlos Guestrin 2006

35

Learn BN structure using local search

٧

Starting from Chow-Liu tree

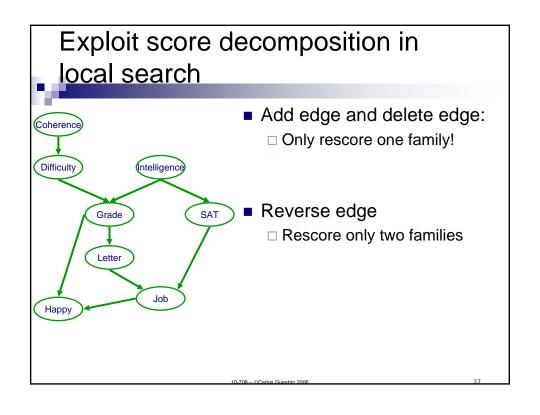
Local search,

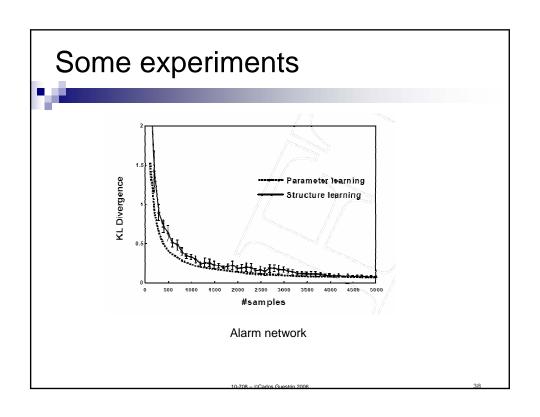
possible moves: Only if acyclic!!!

- Add edge
- Delete edge
- Invert edge

Select using favorite score

10-708 = @Carlos Guestrin 2006





Order search versus graph search

- Order search advantages
 - □ For fixed order, optimal BN more "global" optimization
 - □ Space of orders much smaller than space of graphs
- Graph search advantages
 - □ Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - □ Cheaper per iteration
 - ☐ Finer moves within a graph

10-708 = @Carlos Guestrin 2006

3

Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - \square Similar to averaging over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$
- Inference for structure averaging is very hard!!!
 - □ Clever tricks in reading

10-708 = @Carlos Guestrin 2006

What you need to know about learning BN structures

- N
- Decomposable scores
 - □ Data likelihood
 - □ Information theoretic interpretation
 - □ Bayesian
 - □ BIC approximation
- Priors
 - □ Structure and parameter assumptions
 - □ BDe if and only if score equivalence
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))
- Search techniques
 - □ Search through orders
 - □ Search through structures
- Bayesian model averaging

10-708 - ©Carlos Guestrin 2006