Readings:

K&F: 14.1, 14.2, 14.3, 14.4, 15.1, 15.2, 15.3.1, 15.4.1

Parameter Learning 2

Structure Learning 1: The good

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

September 27th, 2006

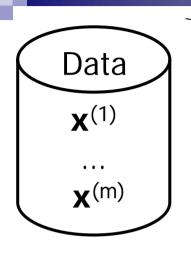
Your first learning algorithm

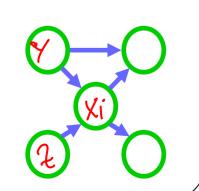
Set derivative to zero:

$$\frac{\partial}{\partial \theta} \ln P(D | \theta) = 0$$

$$\frac{\partial}{\partial \theta} \ln P(D | \theta$$

Learning the CPTs





MLE:
$$P(X_i = x_i \mid X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

Maximum likelihood estimation (MLE) of BN parameters – General case

- Data: **x**⁽¹⁾,...,**x**^(m)
- Restriction: $\mathbf{x}^{(j)}[\mathbf{Pa}_{Xi}] \rightarrow \text{assignment to } \mathbf{Pa}_{Xi} \text{ in } \mathbf{x}^{(j)}$
- Given structure, log likelihood of data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \log \prod_{j=1}^{n} \prod_{i=1}^{n} P(x_{i}=x_{i}^{(i)} \mid P_{ax_{i}} = \sum_{j=1}^{n} \sum_{i=1}^{n} \log P(x_{i}=x_{i}^{(i)} \mid P_{ax_{i}} = x_{i}^{(i)} \mid P_{ax_{i}} = x_{i}^{(i)} \mid P_{ax_{i}})$$

Taking derivatives of MLE of BN parameters – General case

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathbf{Pa}_{X_{i}} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_{i}}\right]\right)$$

$$P\left(X_{i} = \mathcal{X}_{i} \mid Pa_{X_{i}} = \mathbf{U}\right) = \underbrace{\partial_{X_{i} \in \mathcal{X}_{i}} \mid Pa_{X_{i}} = \mathbf{V}}_{X_{i} \in \mathcal{X}_{i}} = \underbrace{\partial_{X_{i} \in \mathcal{X}_{i}} \mid Pa_{X_{i}}}_{Q_{\mathcal{B}_{\mathcal{X}_{i}} \mid \mathcal{U}}} = \underbrace{\partial_{X_{i} \mid \mathcal{U}}}_{Q_{\mathcal{B}_{\mathcal{X}_{i}} \mid \mathcal{U}}} = \underbrace{\partial_$$

General MLE for a CPT

- Take a CPT: P(X|U)
- Log likelihood term for this CPT lag P(DIA)
- Parameter $\theta_{X=x|U=u}$:

MLE:
$$P(X = x \mid \mathbf{U} = \mathbf{u}) = \theta_{X=x|\mathbf{U}=\mathbf{u}} = \frac{\text{Count}(X = x, \mathbf{U} = \mathbf{u})}{\text{Count}(\mathbf{v} = \mathbf{u})}$$

Count
$$(X = x, U = u)$$

Count $(X = x, U = u)$

Count $(X = x, U = u)$

Announcements

- Late homeworks:
 - □ 3 late days for the semester
 - one late day corresponds to 24 hours! (i.e., 3 late days due Saturday by noon)
 - Give late homeworks to Monica Hopes, Wean Hall 4619
 - If she is not in her office, time stamp (date and time) your homework, sign it, and put it under her door
 - After late days are used up:
 - Half credit within 48 hours
 - Zero credit after 48 hours
 - ☐ All homeworks **must be handed in**, even for zero credit
- Homework 2 out later today
- Recitation tomorrow:
 - review perfect maps, parameter learning

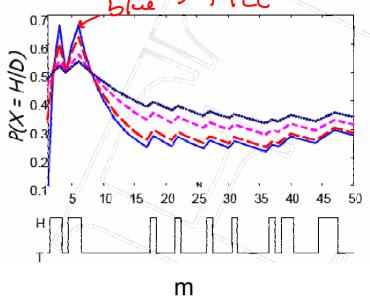
Can we really trust MLE?

- What is better?
 - □ 3 heads, 2 tails

$$\theta = \frac{3}{3+2} = 0.6$$

□ 30 heads, 20 tails

 \square 3x10²³ heads, 2x10²³ tails



Many possible answers, we need distributions over possible parameters

Bayesian Learning

■ Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Bayesian Learning for Thumbtack

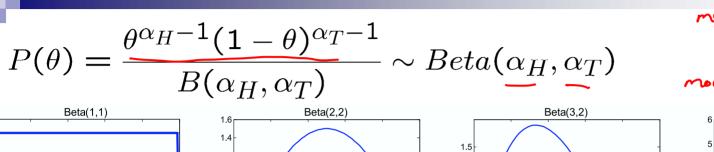
$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$
Posterior (inclinate) Prior

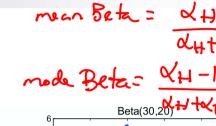
Likelihood function is simply Binomial:

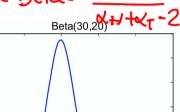
$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$

- What about prior?
 - Represent expert knowledge
 - □ Simple posterior form
- Conjugate priors:
 - □ Closed-form representation of posterior (more details soon)
 - □ For Binomial, conjugate prior is Beta distribution

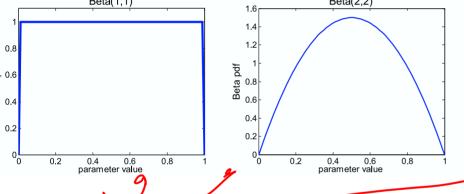
Beta prior distribution – $P(\theta)$







8.0



■ Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

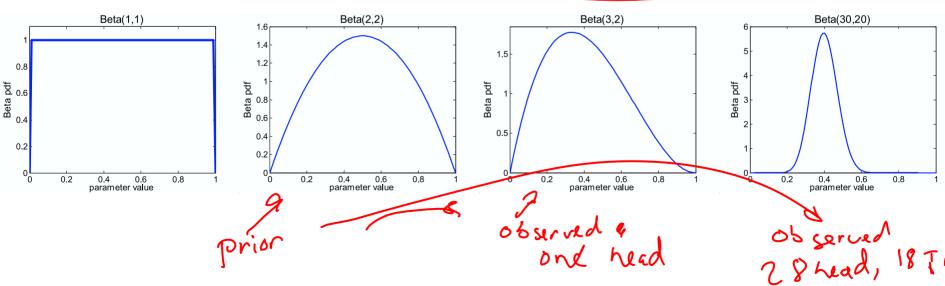
$$\theta^{m\mu}(1-\theta)^{m\tau} = \theta^{\kappa\theta}$$

likelihood ~ Beta (dytmy,

Posterior distribution

- Prior: $Beta(\alpha_H, \alpha_T)$
- Data: m_H heads and m_T tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$



2

Conjugate prior

- lacksquare Prior: $Beta(lpha_H,lpha_T)$
- Data: m_H heads and m_T tails (binomial likelihood)
- Posterior distribution:

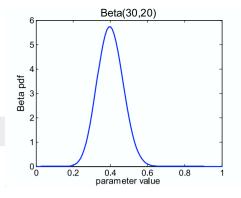
$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$

$$\alpha = (\alpha_H, \alpha_T)$$

$$\alpha' = (\alpha_H, \alpha_T + \alpha_T)$$

- Given likelihood function $P(D|\theta)$
- (Parametric) prior of the form P(θ|α) is conjugate to likelihood function if posterior is of the same parametric family, and can be written as:
 - \square P($\theta | \alpha'$), for some new set of parameters α'

Using Bayesian posterior



Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$

- Bayesian inference:
 - □ No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

Integral is often hard to compute

Bayesian prediction of a new coin flip

Beta(30,20)

5

4

1

0

0

0.2

0.4

0.6

0.8

1

- Prior: Beta (dy, dr)
- Observed m_H heads, m_T tails, what is the probability of m+1 flip is heads?

probability of m+1 flip is heads?

$$P(\chi_{m+1} = H \mid D) = \int P(\chi_{m+1} \mid \theta) \cdot P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

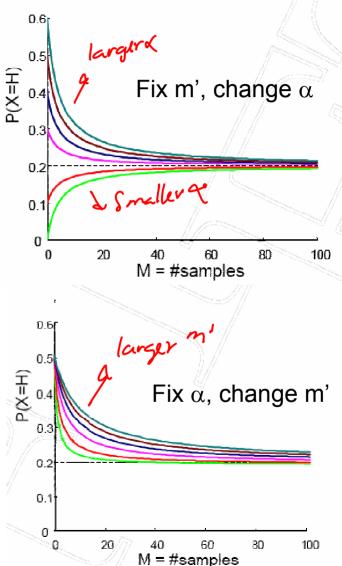
$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

$$= \int_{\theta = 0}^{\theta = 0} P(\theta \mid D) d\theta$$

Asymptotic behavior and equivalent sample size

- Beta prior equivalent to extra thumbtack flips:
 - $^{\square} E[\theta] = \frac{m_H + \alpha_H}{m_H + \alpha_H + m_T + \alpha_T}$
- As $m \to \infty$, prior is "forgotten" $m = m_{\parallel} + m_{\parallel}$
- But, for small sample size, prior is important!
- Equivalent sample size:
 - \square Prior parameterized by α_{H}, α_{T} , or
 - \square m' (equivalent sample size) and α

$$E[\theta] = \frac{m_H + \alpha m'}{m_H + m_T + m'}$$

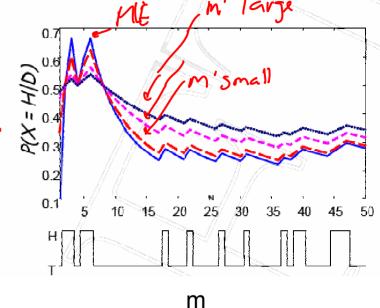


Bayesian learning corresponds to

smoothing

$$E[\theta] = \frac{m_H + \alpha m'}{m_H + m_T + m'}$$

- m=0 ⇒ prior parameter
- $m\rightarrow\infty\Rightarrow MLE$



Bayesian learning for multinomial

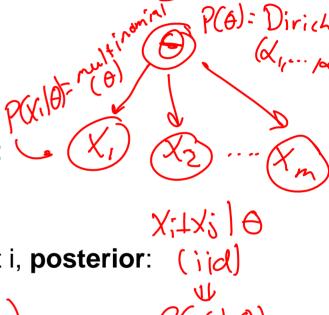
- What if you have a k sided coin???
- Likelihood function if **multinomial**:

$$P(X=i) = \theta i$$
 $i = 1 \dots K$

- □ Z0; =1 ; A; 20
- Conjugate prior for multinomial is Dirichlet:

$$oxdota \; heta \sim \mathsf{Dirichlet}(lpha_1, \dots, lpha_k) \sim \prod_i heta_i^{lpha_i - 1}$$

■ Prediction:
$$P(\chi_{m+1} = i|D) = \frac{\chi_{i+m}}{(\chi_{\alpha_{i}}) + m}$$



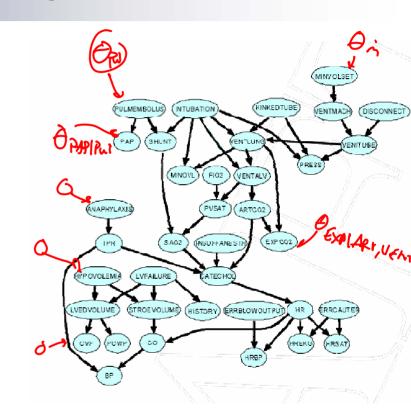
~ P(x;10)

Bayesian learning for two-node BN

- Parameters θ_X , $\theta_{Y|X}$
- Priors:
 - $\square P(\theta_x)$: Dirichlet $(\alpha_{x_{cl}}, \dots, \alpha_{x_{ck}})$
 - □ P(θ_{Y|X}): P(θ_{Y|X=x}) ~ Dinchlet (d_{y=1|X=x})·····, α_{y=x|X=x})

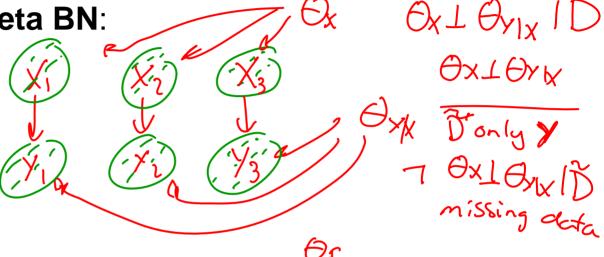
Very important assumption on prior: Global parameter independence

- Global parameter independence:
 - □ Prior over parameters is product of prior over CPTs



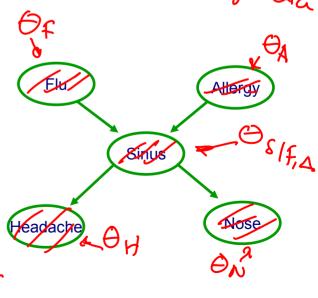
Global parameter independence, d-separation and local prediction

Independencies in meta BN:

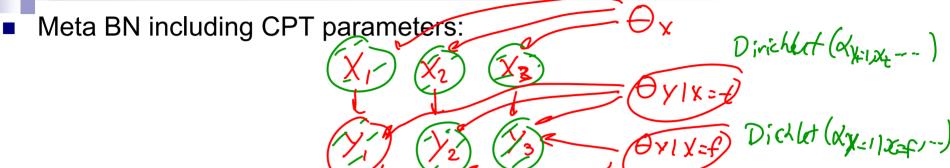


Proposition: For fully observable data D, if prior satisfies global parameter independence, then

$$P(\theta \mid \mathcal{D}) = \prod_{i} P(\theta_{X_i \mid \mathbf{Pa}_{X_i}} \mid \mathcal{D})$$



Within a CPT



- Are $\theta_{Y|X=t}$ and $\theta_{Y|X=f}$ d-separated given D?
- Are $\theta_{Y|X=t}$ and $\theta_{Y|X=f}$ independent given D? YRS !! □ Context-specific independence!!!

Posterior decomposes:

$$P(\Theta_{Y|X}|D) = P(\Theta_{Y|X=t}|D) \cdot P(\Theta_{Y|X=f}|D) \cdot P(\Theta_{Y|X=f}|D) \cdot P(\Theta_{Y|X=f}|D) \cdot P(\Theta_{Y|X=f}|D) \cdot P(\Theta_{Y|X=f}|D=f)$$

independence

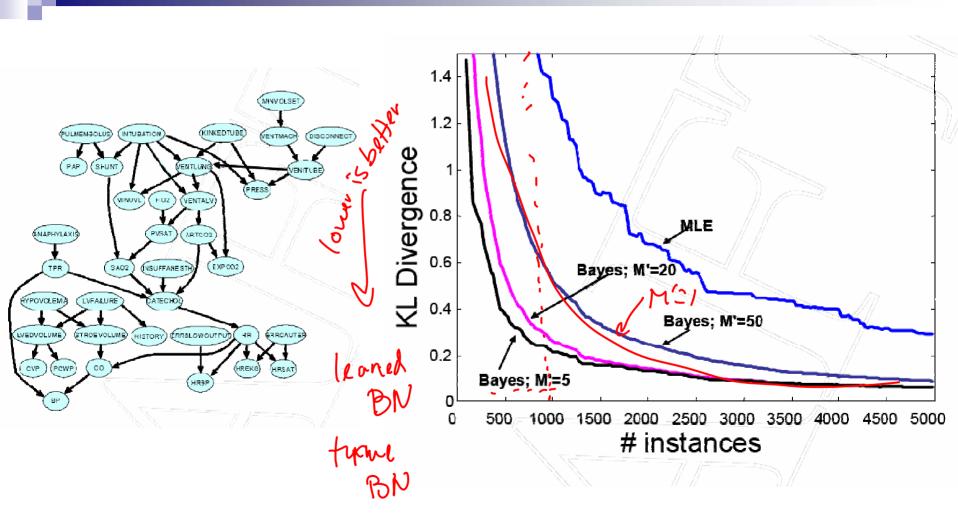
 $P(\Theta_{Y|X}|D) = P(\Theta_{Y|X=t}|D) \cdot P(\Theta_{Y|X=f}|D=f) \cdot P(\Theta_{Y|X=f}|$

Priors for BN CPTs

(more when we talk about structure learning)

- Consider each CPT: P(X|U=u)
- Conjugate prior:
 - \square Dirichlet($\alpha_{X=1|U=u},...,\alpha_{X=k|U=u}$)
- More intuitive:
 - □ "prior data set" D' with m' equivalent sample size
 - □ "prior counts": (out (X=1, (1=a)
 - □ prediction:

An example



What you need to know about parameter learning

MLE:

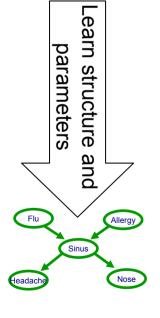
- score decomposes according to CPTs
- optimize each CPT separately
- Bayesian parameter learning:
 - □ motivation for Bayesian approach
 - Bayesian prediction
 - □ conjugate priors, equivalent sample size
 - □ Bayesian learning ⇒ smoothing
- Bayesian learning for BN parameters
 - □ Global parameter independence
 - Decomposition of prediction according to CPTs
 - Decomposition within a CPT

Where are we with learning BNs?

- Given structure, estimate parameters
 - Maximum likelihood estimation
 - □ Bayesian learning
- What about learning structure?

Learning the structure of a BN

$$< x_1^{(1)},...,x_n^{(1)} > \dots < x_1^{(m)},...,x_n^{(m)} > \dots$$



Constraint-based approach

- BN encodes conditional independencies
- □ Test conditional independencies in data
- □ Find an I-map

Score-based approach

- Finding a structure and parameters is a density estimation task
- □ Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.

Remember: Obtaining a P-map?

- Given the independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities
- From skeleton and immoralities, obtain every (and any)
 BN structure from the equivalence class

- Constraint-based approach:
 - □ Use Learn PDAG algorithm
 - □ Key question: Independence test

Independence tests

- Statistically difficult task!
- Intuitive approach: Mutual information

$$I(X_i, X_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \frac{P(x_i, x_j)}{P(x_i)P(x_j)}$$

- Mutual information and independence:
 - \square X_i and X_i independent if and only if $I(X_i,X_j)=0$

Conditional mutual information:

Independence tests and the constraint based approach

- Using the data D
 - ☐ Empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

□ Mutual information:
$$\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$$

- Similarly for conditional MI
- Use learning PDAG algorithm:
 - \square When algorithm asks: $(X \perp Y | \mathbf{U})$?

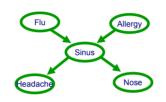
- Many other types of independence tests
 - □ See reading...

Score-based approach

$$< x_1^{(1)}, ..., x_n^{(1)} >$$

$$< x_1^{(m)}, ..., x_n^{(m)} >$$

Possible structures

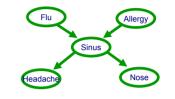


Learn parameters

Score structure

Information-theoretic interpretation of maximum likelihood

Given structure, log likelihood of data:

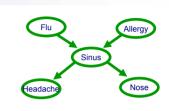


$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_i} \right] \right)$$

Information-theoretic interpretation of maximum likelihood 2

Given structure, log likelihood of data:

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{x_i, \mathbf{Pa}_{x_i, \mathcal{G}}} \hat{P}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) \log \hat{P}(x_i \mid \mathbf{Pa}_{x_i, \mathcal{G}})$$



Decomposable score

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

- Decomposable score:
 - □ Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!
 - \square Score(G:D) = \sum_{i} FamScore($X_{i}|Pa_{X_{i}}:D$)

How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

Scoring a tree 1: I-equivalent trees

Scoring a tree 2: similar trees

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

Chow-Liu tree learning algorithm 1

- For each pair of variables X_i,X_i
 - Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - \square Nodes $X_1,...,X_n$
 - \square Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$

Chow-Liu tree learning algorithm 2

- $\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) M \sum_{i} \widehat{H}(X_i)$
- Optimal tree BN
 - Compute maximum weight spanning tree
 - Directions in BN: pick any node as root, breadth-firstsearch defines directions

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - □ Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - □ But, O(n^{k+1})...
 - and more subtleties

What you need to know about learning BN structures so far

- Decomposable scores
 - ☐ Maximum likelihood
 - □ Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))