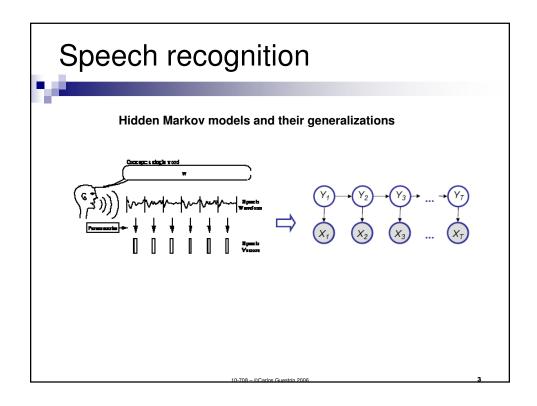
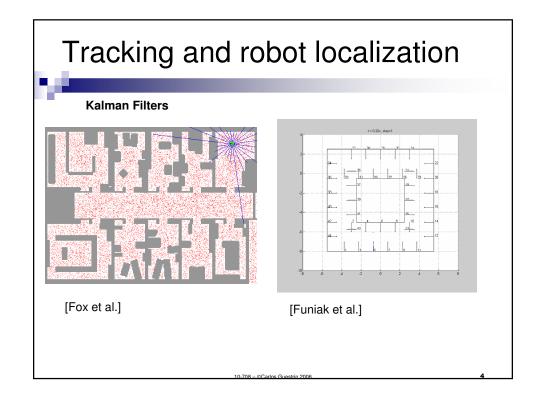


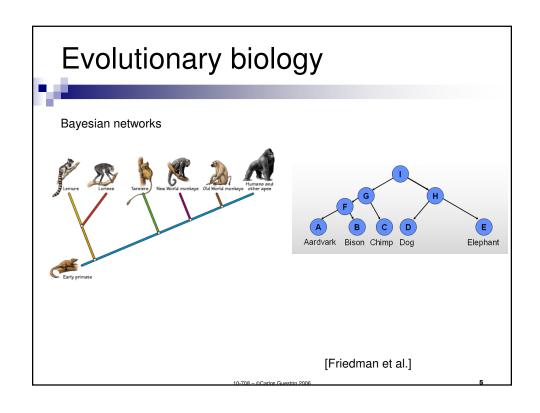
One of the most exciting developments in machine learning (knowledge representation, AI, EE, Stats,...) in the last two (or three, or more) decades...

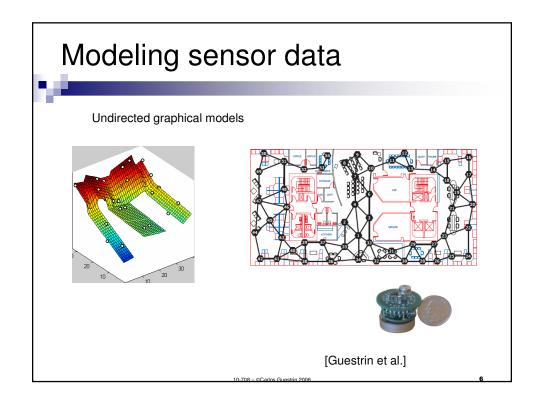
My expectations are already high... ©

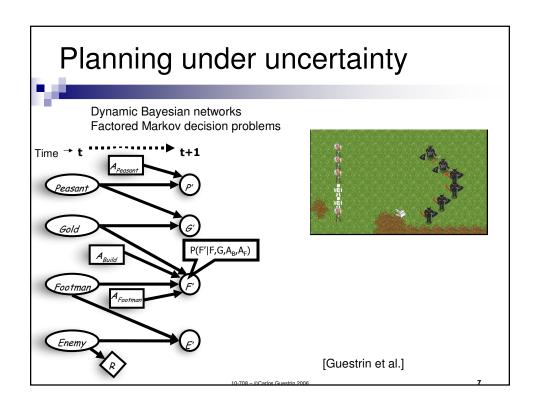
10-708 = @Carlos Guestrin 2006

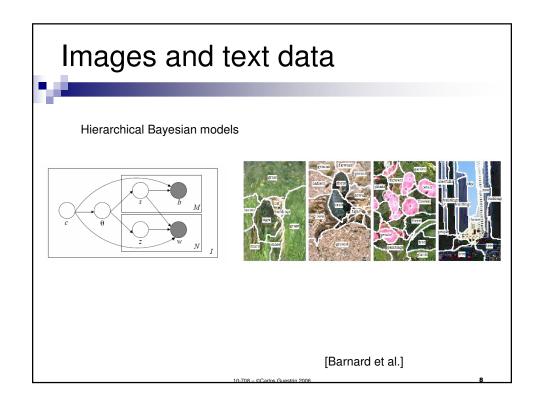


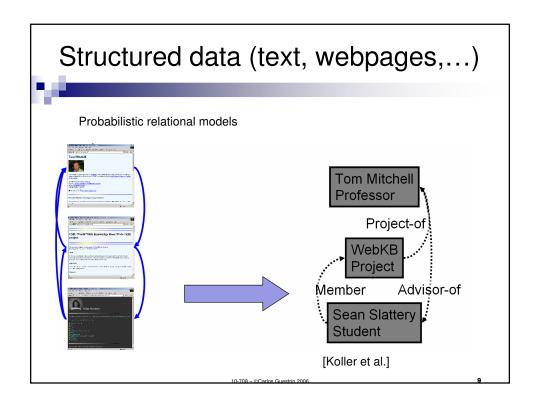


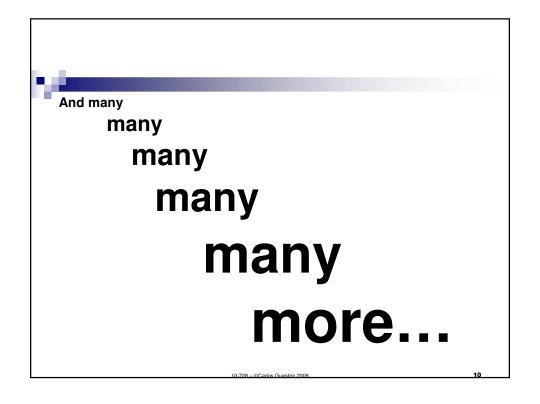












Syllabus

- Covers a wide range of Probabilistic Graphical
 Models topics from basic to state-of-the-art
- You will learn about the methods you heard about:
 - □ Bayesian networks, Markov networks, factor graphs, decomposable models, junction trees, parameter learning, structure learning, semantics, exact inference, variable elimination, context-specific independence, approximate inference, sampling, importance sampling, MCMC, Gibbs, variational inference, loopy belief propagation, generalized belief propagation, Kikuchi, Bayesian learning, missing data, EM, Chow-Liu, structure search, IPF for tabular MRFs, Gaussian and hybrid models, discrete and continuous variables, temporal and template models, hidden Markov Models, Forwards-Backwards, Viterbi, Baum-Welch, Kalman filter, linearization, switching Kalman filter, assumed density filtering, DBNs, BK, Relational probabilistic models, Causality,...
- Covers algorithms, theory and applications
- It's going to be fun and hard work ☺

10-708 - @Carlos Guestrin 2006

11

Prerequisites

- 10-701 Machine Learning, especially:
 - Probabilities
 - Distributions, densities, marginalization...
 - Basic statistics
 - Moments, typical distributions, regression...
- Algorithms
 - □ Dynamic programming, basic data structures, complexity...
- Programming
 - Matlab will be very useful
- We provide some background, but the class will be fast paced
- Ability to deal with "abstract mathematical concepts"

10-708 - ©Carlos Guestrin 2006

Review Sessions

- Very useful!
 - □ Review material
 - □ Present background
 - Answer questions
- Thursdays, 5:00-6:30 in Wean Hall 4615A
- First recitation is tomorrow
 - □ Review of probabilities & statistics
- Sometimes this semester: Especial recitations on Mondays 5:30-7pm in Wean Hall 4615A
 - ☐ Cover special topics that we can't cover in class
 - ☐ These are optional, but you are here to learn... ☺
- Do we need a Matlab review session?

10-708 - @Carlos Guestrin 2006

13

Staff

- Two Great TAs: Great resource for learning, interact with them!
 - ☐ Khalid El-Arini <kbe@cs.cmu.edu>

□ Ajit Paul Singh <ajit@cs.cmu.edu>

- Administrative Assistant
 - □ Monica Hopes, Wean 4619, x8-5527, meh@cs.cmu.edu

10-708 - ©Carlos Guestrin 2006

First Point of Contact for HWs

- To facilitate interaction, a TA will be assigned to each homework question – This will be your "first point of contact" for this question
 - ☐ But, you can always ask any of us
 - □ (Due to logistic reasons, we will only start this policy for HW2)
- For e-mailing instructors, always use:
 - □ 10708-instructors@cs.cmu.edu
- For announcements, subscribe to:
 - □ 10708-announce@cs
 - □ https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

10-708 - @Carlos Guestrin 2006

15

Text Books

- Primary: Daphne Koller and Nir Friedman, Bayesian Networks and Beyond, in preparation. These chapters are part of the course reader. You can purchase one from Monica Hopes.
- Secondary: M. I. Jordan, An Introduction to Probabilistic Graphical Models, in preparation. Copies of selected chapters will be made available.

10-708 - ©Carlos Guestrin 2006

Grading

- 5 homeworks (50%)
 - ☐ First one goes today!
 - □ Homeworks are long and hard ☺
 - please, please, please, please, please, please start early!!!
- Final project (30%)
 - □ Done individually or in pairs
 - □ Details out October 4th
- Final (20%)
 - □ Take home, out Dec. 1st, due Dec. 15th

10-708 - ©Carlos Guestrin 2006

17

Homeworks

- Homeworks are hard, start early ©
- Due in the beginning of class
- 3 late days for the semester
- After late days are used up:
 - □ Half credit within 48 hours
 - □ Zero credit after 48 hours
- All homeworks must be handed in, even for zero credit
- Late homeworks handed in to Monica Hopes, WEH 4619
- Collaboration
 - □ You may **discuss** the questions
 - □ Each student writes their own answers
 - □ Write on your homework anyone with whom you collaborate

IMPORTANT:

□ We may use some material from previous years or from papers for the homeworks. Unless otherwise specified, please only look at the readings when doing your homework → You are taking this advanced graduate class because you want to learn, so this rule is self-enforced ⑤

10-708 - ©Carlos Guestrin 2006

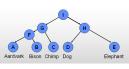
Enjoy!

- Probabilistic graphical models are having significant impact in science, engineering and beyond
- This class should give you the basic foundation for applying GMs and developing new methods
- The fun begins...

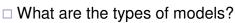
10-708 - ©Carlos Guestrin 2006

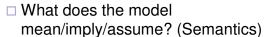
19

What are the fundamental questions of graphical models?



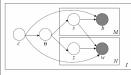
Representation:





Inference:

☐ How do I answer questions/queries with my model?



Learning:

□ What model is the right for my data?

More details??? Representation:

- - ☐ Graphical models represent exponentially large probability distributions compactly
 - □ **Key concept**: Conditional Independence
- Inference:
 - □ What is the probability of X given some observations?
 - ☐ What is the most likely explanation for what is happening?
 - □ What decisions should I make?
- Learning:
 - □ What are the right/good parameters for the model?
 - □ How do I obtain the structure of the model?

Where do we start?

- From Bayesian networks
- "Complete" BN presentation first
 - Representation
 - □ Exact inference
 - Learning
 - □ Only discrete variables for now
- Later in the semester
 - □ Undirected models
 - □ Approximate inference
 - □ Continuous
 - □ Temporal models
 - □ And more...
- Class focuses on fundamentals Understand the foundation and basic concepts

Today

- Probabilities
- Independence
- Two nodes make a BN
- Naïve Bayes
- Should be a review for everyone Setting up notation for the class

10-708 - ©Carlos Guestrin 2006

23

Event spaces

- Outcome space Ω
- Measurable events S
 - \square Each $\alpha \in S$ is a subset of Ω
- Must contain
 - □ Empty event ∅
 - \square Trivial event Ω
- Closed under
 - □ Union: $\alpha \cup \beta \in S$
 - \square Complement: $\alpha \in S$, then Ω - α also in S

10-708 - ©Carlos Guestrin 2006

Probability distribution P over (Ω, S)

- $P(\alpha) \ge 0$
- P(Ω)=1
- If $\alpha \cap \beta = \emptyset$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$
- From here, you can prove a lot, e.g.,
 - $\square P(\emptyset)=0$
 - $\Box P(\alpha \cup \beta) = P(\alpha) + P(\beta) P(\alpha \cap \beta)$

10-708 – ©Carlos Guestrin 2006

25

Interpretations of probability – A can of worms!

Frequentists

- \Box P(α) is the frequency of α in the limit
- ☐ Many arguments against this interpretation
 - What is the frequency of the event "it will rain tomorrow"?
- Subjective interpretation
 - \square P(α) is my degree of belief that α will happen
 - □ What the does "degree of belief mean?
 - □ If I say $P(\alpha)=0.8$, then I am willing to bet!!!
- For this class, we (mostly) don't care what camp you are in

10-708 - @Carlos Guestrin 2006

Conditional probabilities

- After learning that α is true, how do we feel about β?
- P(β|α)

10-708 - ©Carlos Guestrin 2006

27

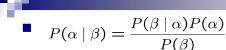
Two of the most important rules of the semester: 1. The chain rule

■ $P(\alpha \cap \beta) = P(\alpha)P(\beta | \alpha)$

- More generally:
 - $\square P(\alpha_1 \cap ... \cap \alpha_k) = P(\alpha_1) P(\alpha_2 | \alpha_1) \cdots P(\alpha_k | \alpha_1 \cap ... \cap \alpha_{k-1})$

10-708 – ©Carlos Guestrin 2006

Two of the most important rules of the semester: 2. Bayes rule



• More generally, external even γ :

$$P(\alpha \mid \beta \cap \gamma) = \frac{P(\beta \mid \alpha \cap \gamma)P(\alpha \mid \gamma)}{P(\beta \mid \gamma)}$$

08 = ©Carlos Guestrin 2006

29

Most important concept:

a) Independence

• α and β *independent*, if $P(\beta|\alpha)=P(\beta)$ $\square P \models (\alpha \perp \beta)$

■ **Proposition:** α and β *independent* if and only if $P(\alpha \cap \beta) = P(\alpha)P(\beta)$

10-708 = @Carlos Guestrin 2006

Most important concept:

b) Conditional independence

- Independence is rarely true, but conditionally...
- α and β *conditionally independent* given γ if $P(\beta|\alpha\cap\gamma)=P(\beta|\gamma)$ $\Box P \models (\alpha \perp \beta \mid \gamma)$

Proposition: $P \models (\alpha \perp \beta \mid \gamma)$ if and only if $P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma)P(\beta \mid \gamma)$

-

Random variable

- Events are complicated we think about attributes
 - □ Age, Grade, HairColor
- Random variables formalize attributes:
 - □ Grade=A shorthand for event $\{\omega \in \Omega: f_{Grade}(\omega) = A\}$
- Properties of random vars, X:
 - \square Val(X) = possible values of random var X
 - \Box For discrete (categorical): $\sum_{i=1...|Val(X)|} P(X=x_i) = 1$
 - □ For continuous: $\int_X p(X=x)dx = 1$

I0-708 – ©Carlos Guestrin 2006

Marginal distribution

■ Probability P(X) of possible outcomes X

10-708 - ©Carlos Guestrin 2006

33

Joint distribution, Marginalization

Two random variables – Grade & Intelligence

■ Marginalization – Compute marginal over single var

10-708 - ©Carlos Guestrin 2006

Marginalization - The general case

■ Compute marginal distribution P(X_i):

$$P(X_1, X_2, \dots, X_i) = \sum_{x_{i+1}, \dots, x_n} P(X_1, X_2, \dots, X_i, x_{i+1}, \dots, x_n)$$

$$P(X_i) = \sum_{x_1, \dots, x_{i-1}} P(x_1, \dots, x_{i-1}, X_i)$$

10-708 - ©Carlos Guestrin 2006

25

Basic concepts for random variables

- Atomic outcome: assignment $x_1,...,x_n$ to $X_1,...,X_n$
- Conditional probability: P(X,Y)=P(X)P(Y|X)
- Bayes rule: P(X|Y)=
- Chain rule:

$$\label{eq:posterior} \ \square\ P(X_1,\dots,X_n) = P(X_1)P(X_2|X_1)\cdots P(X_k|X_1,\dots,X_{k-1})$$

10-708 - ©Carlos Guestrin 2006

Conditionally independent random variables

- - Sets of variables X, Y, Z
 - X is independent of Y given Z if
 - $\square P \models (X=x\perp Y=y|Z=z), \forall x \in Val(X), y \in Val(Y), z \in Val(Z)$
 - Shorthand:
 - \square Conditional independence: $P \models (X \perp Y \mid Z)$
 - \square For $P \models (\mathbf{X} \perp \mathbf{Y} \mid \emptyset)$, write $P \models (\mathbf{X} \perp \mathbf{Y})$
 - Proposition: P statisfies (X ⊥ Y | Z) if and only if
 - $\square P(X,Y|Z) = P(X|Z) P(Y|Z)$

10-708 - ©Carlos Guestrin 2006

37

Properties of independence

- Symmetry:
 - $\quad \ \Box \ (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{Y} \perp \textbf{X} \mid \textbf{Z})$
- Decomposition:
 - $\quad \ \square \ \, (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y} \mid \textbf{Z})$
- Weak union:
 - \square (X \perp Y,W | Z) \Rightarrow (X \perp Y | Z,W)
- Contraction:
 - $\ \ \square \ (\textbf{X} \perp \textbf{W} \mid \textbf{Y}, \textbf{Z}) \ \& \ (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{X} \perp \textbf{Y}, \textbf{W} \mid \textbf{Z})$
- Intersection:
 - \square (X \perp Y | W,Z) & (X \perp W | Y,Z) \Rightarrow (X \perp Y,W | Z)
 - □ Only for positive distributions!
 - \square P(α)>0, $\forall \alpha$, $\alpha \neq \emptyset$
- **Notation**: *I(P)* independence properties entailed by *P*

10-708 - @Carlos Guestrin 2006

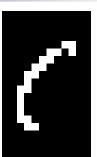
Bayesian networks

- One of the most exciting recent advancements in statistical AI
- Compact representation for exponentially-large probability distributions
- Fast marginalization too
- Exploit conditional independencies

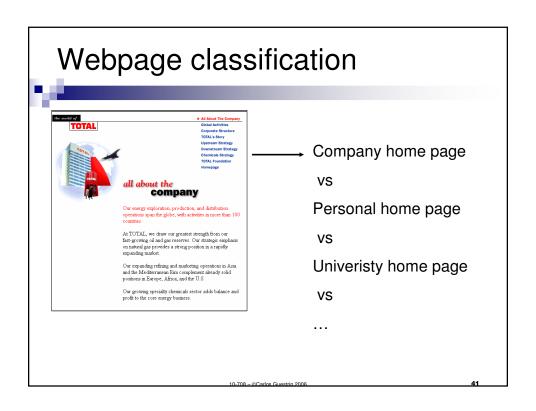
10-708 - ©Carlos Guestrin 2006

39

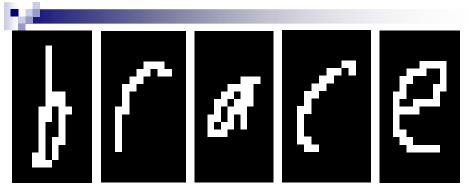
Handwriting recognition



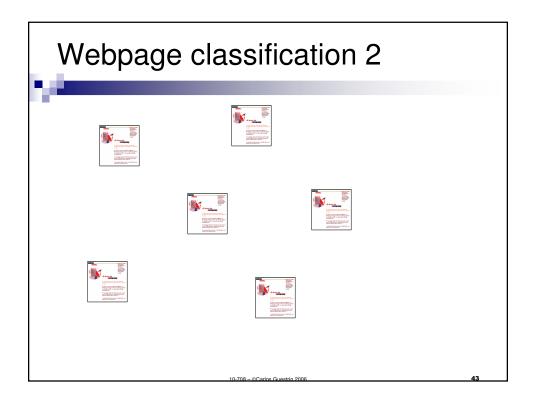
10-708 - ©Carlos Guestrin 2006

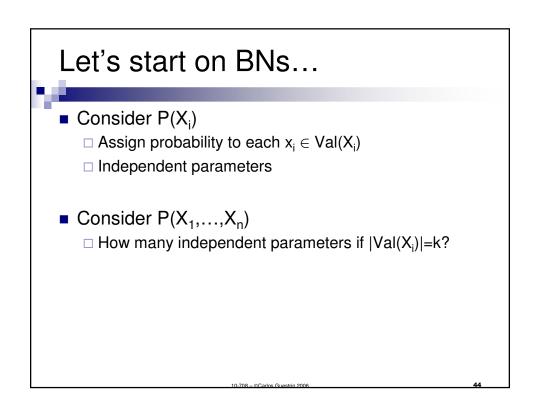


Handwriting recognition 2



10-708 - ©Carlos Guestrin 2006





What if variables are independent?

- What if variables are independent?
 - \square ($X_i \perp X_i$), $\forall i,j$
 - □ Not enough!!! (See homework 1 [©])
 - $\hfill\Box$ Must assume that (**X** \perp **Y**), \forall **X,Y** subsets of {X₁,...,X_n}
- Can write

$$\square$$
 $P(X_1,...,X_n) = \prod_{i=1...n} P(X_i)$

How many independent parameters now?

4E

Conditional parameterization – two nodes

Grade is determined by Intelligence

10-708 - ©Carlos Guestrin 2006

Conditional parameterization – three nodes

- ٠,
- Grade and SAT score are determined by Intelligence
- (G ⊥ S | I)

0-708 = ©Carlos Guestrin 2006

47

The naïve Bayes model – Your first real Bayes Net

- Class variable: C
- Evidence variables: X₁,...,X_n
- assume that $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{C})$, $\forall \mathbf{X},\mathbf{Y}$ subsets of $\{X_1,...,X_n\}$

10-708 - @Carlos Guestrin 2006

What you need to know

- Basic definitions of probabilities
- Independence
- Conditional independence
- The chain rule
- Bayes rule
- Naïve Bayes

10-708 - @Carlos Guestrin 2006

40

Next class

- We've heard of Bayes nets, we've played with Bayes nets, we've even used them in your research
- Next class, we'll learn the semantics of BNs, relate them to independence assumptions encoded by the graph

I0-708 – ©Carlos Guestrin 2006