

What if variables are independent?

- What if variables are independent?
 - $\square (X_{\underline{i}} \perp X_{\underline{j}}), \forall \underline{i}, \underline{j} \qquad (\{x_{i} \times_{3} : \underline{j} : \{x_{7} \times_{7} : \underline{j}\}\})$
 - □ Not enough!!! (See homework 1 ©) 1.7
 - \square Must assume that $(\mathbf{X} \perp \mathbf{Y}), \ \forall \ \mathbf{X}, \mathbf{Y} \text{ subsets of } \{X_1, \dots, X_n\}$
- Can write

$$P(X_1,...,X_n) = \prod_{i=1...n} P(X_i)$$

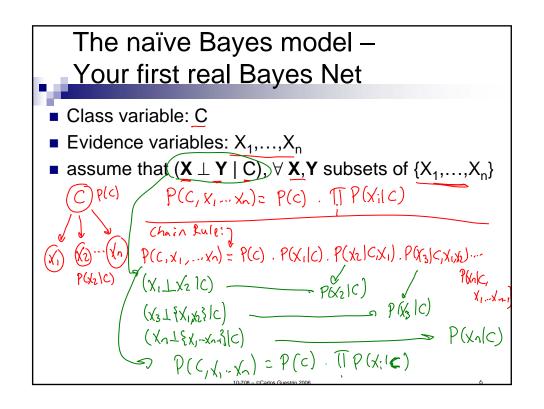
How many independent parameters now?

in 2006

Conditional parameterization – two nodes

■ Grade is determined by Intelligence

Conditional parameterization — three nodes Grade and SAT score are determined by Intelligence (G \(\) S \(\) I) P(GI) G Prob. of Var given parents



What you need to know (From last class)

- Basic definitions of probabilities
- Independence
- Conditional independence
- The chain rule
- Bayes rule
- Naïve Bayes

10-708 - ©Carlos Guestrin 2006

Announcements

- Homework 1:
 - Out yesterday
 - □ Due September 27th beginning of class!
 - □ It's hard start early, ask questions
- Collaboration policy
 - □ OK to discuss in groups
 - □ Tell us on your paper who you talked with
 - ☐ Each person must write their **own unique paper**
 - □ No searching the web, papers, etc. for answers, we trust you want to learn
- Upcoming recitation
 - □ Monday 5:30-7pm in Wean 4615A Matlab Tutorial
- Don't forget to register to the mailing list at:
 - □ https://mailman.srv.cs.cmu.edu/mailman/listinfo/10708-announce

This class

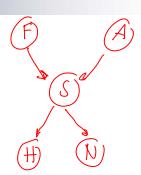
- We've heard of Bayes nets, we've played with Bayes nets, we've even used them in your research
- This class, we'll learn the semantics of BNs, relate them to independence assumptions encoded by the graph

0-708 - ©Carlos Guestrin 200

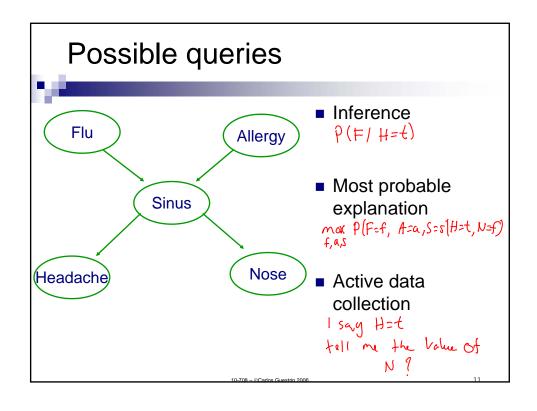
0

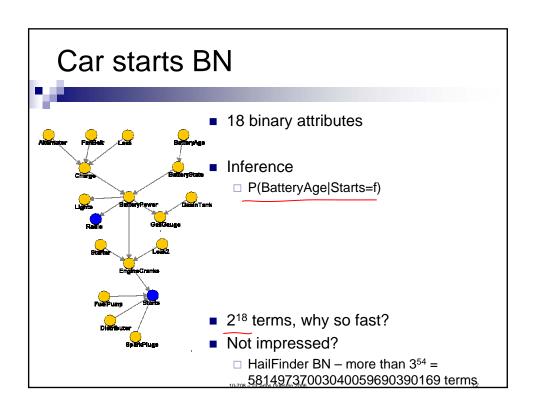
Causal structure

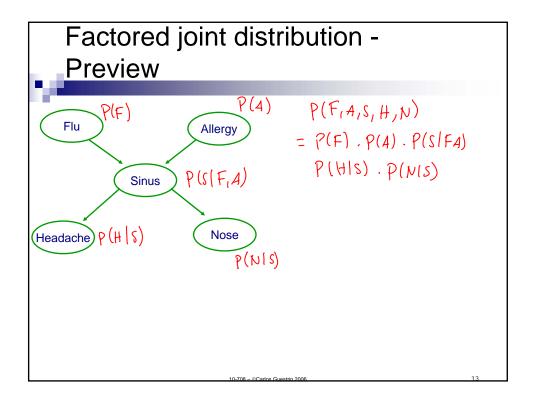
- Suppose we know the following:
 - ☐ The flu causes sinus inflammation
 - □ Allergies cause sinus inflammation
 - □ Sinus inflammation causes a runny nose
 - □ Sinus inflammation causes headaches
- How are these connected?

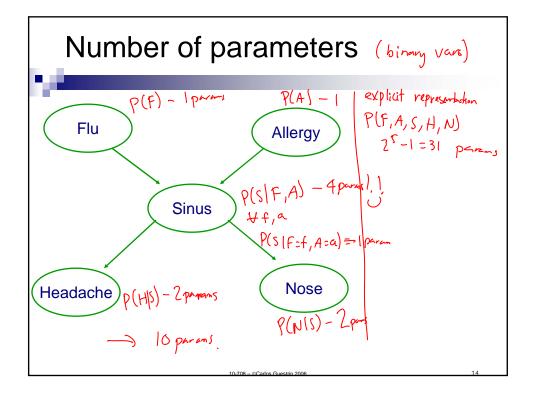


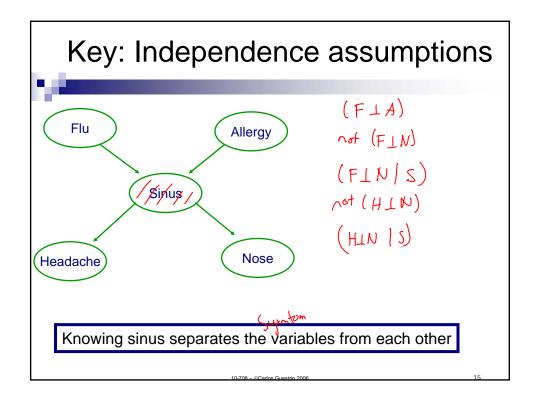
10-708 = @Carlos Guestrin 2006

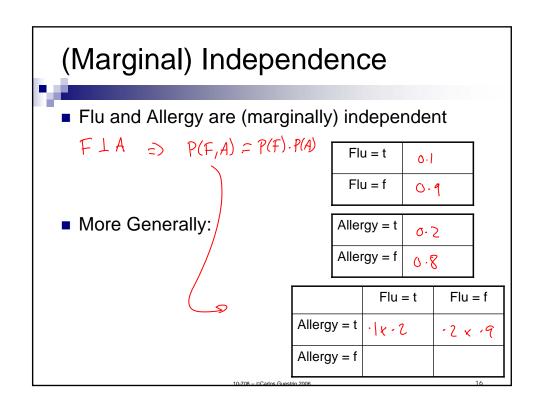










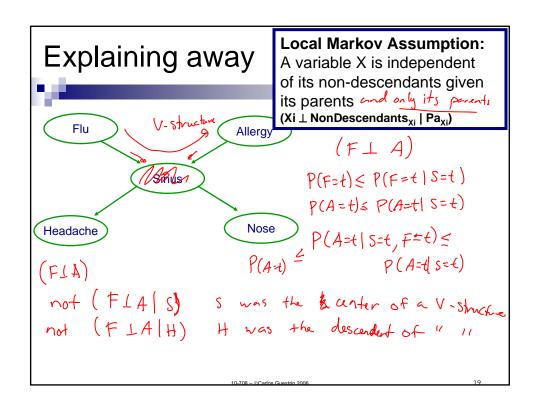


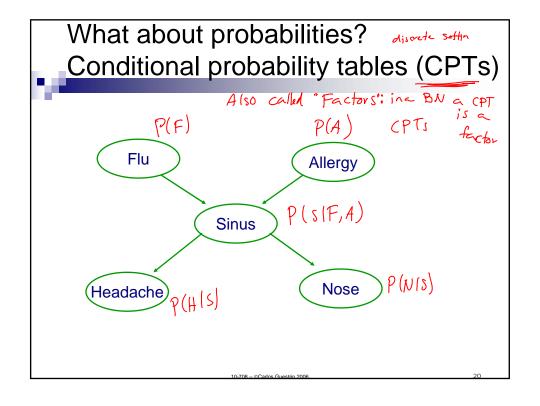
Conditional independence

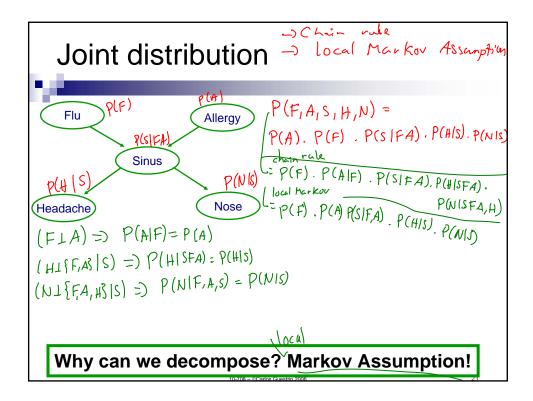
- not (F_H)
- Flu and Headache are not (marginally) independent
- Flu and Headache are independent given Sinus infection $(F \perp H \mid S) \rightarrow P(F \mid S, H) = P(F \mid S)$
- More Generally: $(\chi_{\perp} \gamma | \overline{z}) \Rightarrow P(\chi | \gamma, \overline{z})$ = $P(\chi | \overline{z})$

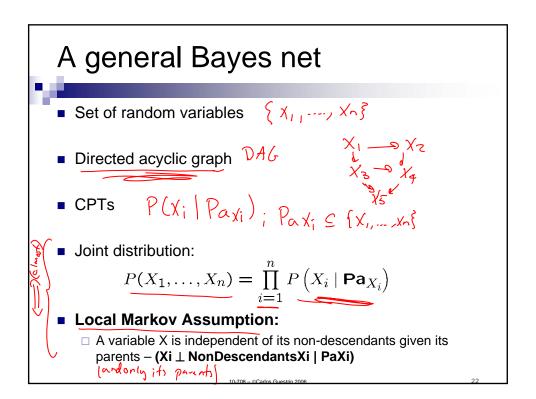
10-708 - ©Carlos Guestrin 2006

1









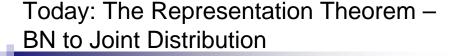
Questions????

- What distributions can be represented by a BN?
- What BNs can represent a distribution?
- What are the independence assumptions encoded in a BN?
 - □ in addition to the local Markov assumption

estrin 2006

Today: The Representation Theorem – Joint Distribution to BN

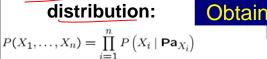
BN: Encodes independence assumptions $I_{\varrho}(G)$ If conditional independencies in BN are subset of conditional independencies in P $I_{\varrho}(G)$ Joint probability distribution: $I_{\varrho}(G)$ $I_{\varrho}(G)$ $I_{\varrho}(G)$ $I_{\varrho}(G)$ $I_{\varrho}(G)$ $I_{\varrho}(G)$



BN:

Encodes independence assumptions

If joint probability distribution:



Then conditional independencies in BN are subset of conditional independencies in P

Ie(G) CI(P)

10-708 = @Carlos Guestrin 2006

Let's start proving it for naïve Bayes From joint distribution to BN

- Independence assumptions:
 - □ X_i independent given C
- Let's assume that <u>P satisfies independencies</u> must prove that <u>P factorizes according to BN:</u>
 - $\square P(C,X_1,...,X_n) = P(C) \prod_i P(X_i|C)$
- Use chain rule!

10-708 = @Carlos Guestrin 2006

Let's start proving it for naïve Bayes From BN to joint distribution 1

- Let's assume that P factorizes according to the BN:
 - \square P(C,X₁,...,X_n) = P(C) \prod_i P(X_i|C)
- Prove the independence assumptions:
 - □ X_i independent given C

$$\mathbf{X} = \{x_1, x_2\}$$
 $\mathbf{Y} = \{x_3, x_4\}$ $P(x_1, x_4|c) = P(x_1x_2|c) \cdot P(x_3x_4|c)$

$$P(X_{1}-X_{4}|C) = P(C) \cdot P(X_{1}|C) \cdots P(X_{4}|C) = P(X_{1}|C) \cdot P(X_{2}|C) \cdot P(X_{3}|C) \cdot P(X_{4}|C)$$

$$P(X_{1},X_{2}|C) = \sum_{M \in X_{4}} P(X_{1} \cdots X_{4}|C) \qquad P(X_{3},X_{4}|C)$$

$$P(X_{1},X_{2}|C) = \sum_{M \in X_{4}} P(X_{1} \cdots X_{4}|C) \qquad P(X_{3},X_{4}|C)$$

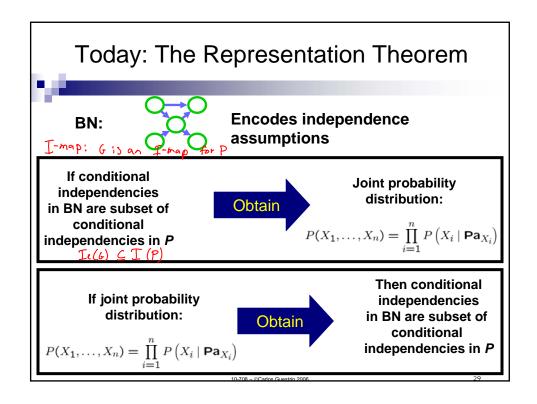
$$P(X_{1},X_{2}|C) = \sum_{M \in X_{4}} P(X_{1} \cdots X_{4}|C) \qquad P(X_{3},X_{4}|C)$$

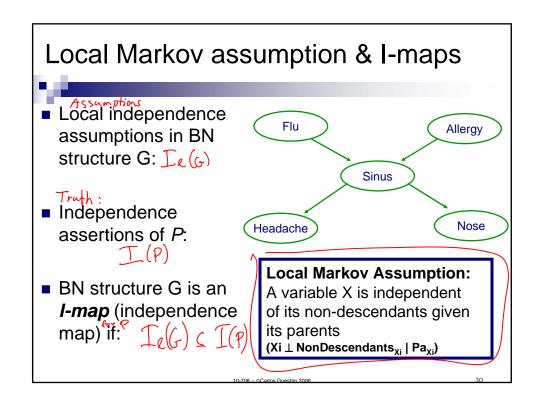
$$P(X_{1},X_{2}|C) = \sum_{M \in X_{4}} P(X_{1} \cdots X_{4}|C) \qquad P(X_{3},X_{4}|C)$$

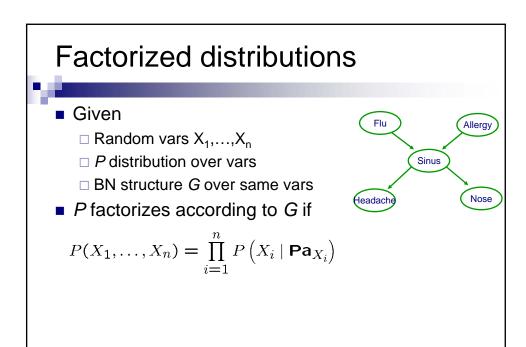
$$P(X_{1},X_{2}|C) = \sum_{M \in X_{4}} P(X_{1} \cdots X_{4}|C) \qquad P(X_{3}|C) \qquad P(X_{3}|C) \qquad P(X_{3}|C) \qquad P(X_{3}|C)$$

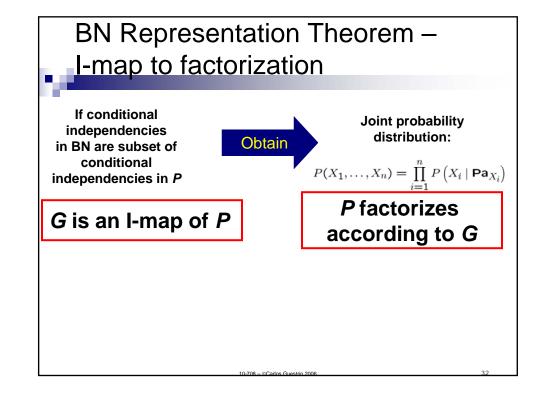
Let's start proving it for naïve Bayes From BN to joint distribution 2

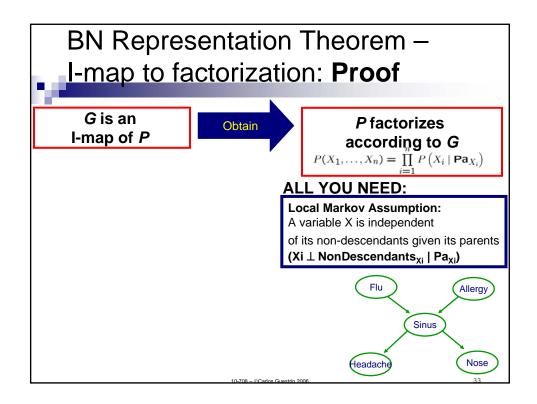
- Let's consider a simpler case
 - ☐ Grade and SAT score are determined by Intelligence
 - \square P(I,G,S) = P(I)P(G|I)P(S|I)
 - \square Prove that P(G,S|I) = P(G|I) P(S|I)







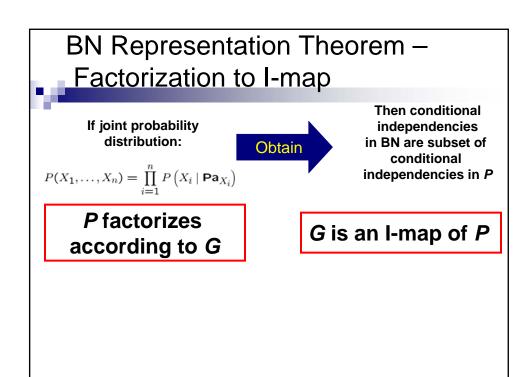


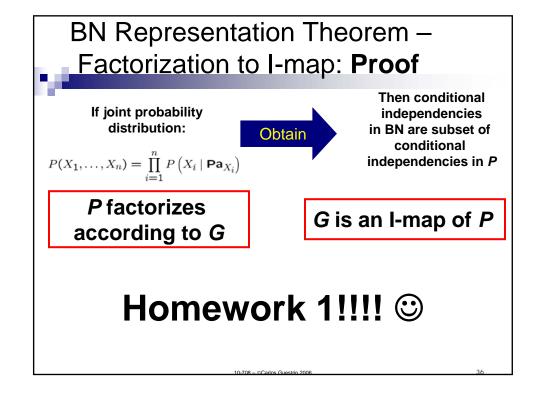


Defining a BN

- Given a set of variables and conditional independence assertions of P
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i, Pa_{Xi}, in graph as the minimal subset of {X₁,...,X_{i-1}} such that local Markov assumption holds X_i independent of rest of {X₁,...,X_{i-1}}, given parents Pa_{Xi}
 - □ Define/learn CPT P(X_i| **Pa**_{Xi})

10-708 - ©Carlos Guestrin 2006





The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Every P has at least one BN structure G

If joint probability distribution:

Obtain

Then conditional independencies in BN are subset of conditional independencies in P

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$

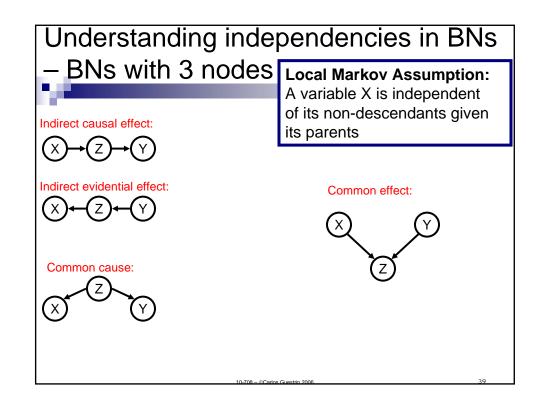
Important because:

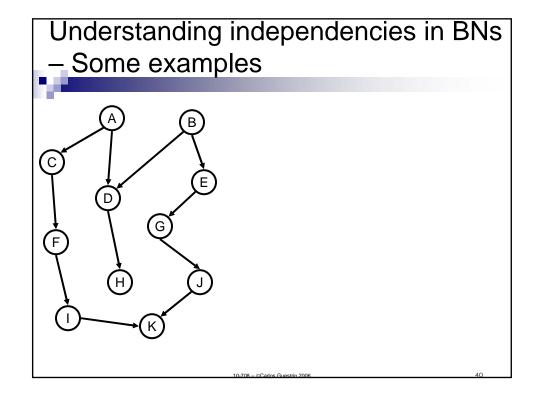
Read independencies of P from BN structure G

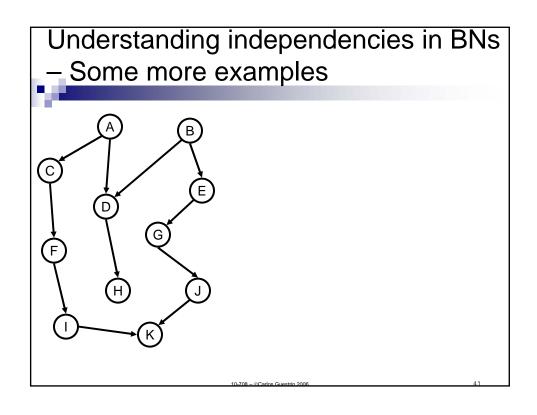
Independencies encoded in BN

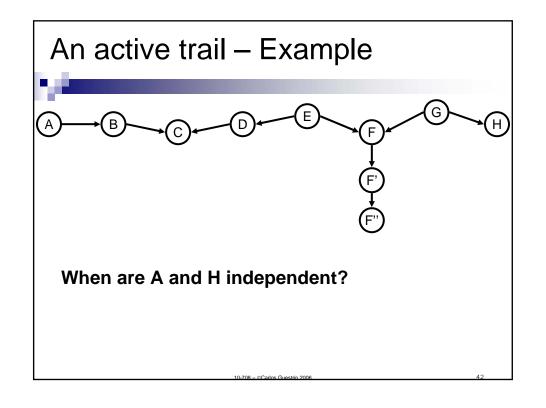
- We said: All you need is the local Markov assumption
 - \square (X_i \perp NonDescendants_{Xi} | \mathbf{Pa}_{Xi})
- But then we talked about other (in)dependencies
 - □ e.g., explaining away
- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - □ But many others can be derived using the algebra of conditional independencies!!!

10-708 = @Carlos Guestrin 2006









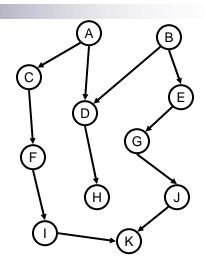
Active trails formalized

- A trail $X_1 X_2 \cdots X_k$ is an **active trail** when variables $\mathbf{O} \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\ \ \, \square \,\, X_{i\text{--}1} \!\!\leftarrow\!\! X_i \!\!\rightarrow\!\! X_{i\text{+-}1} \text{, and } X_i \text{ is not observed } (X_i \!\not\in\! \textbf{\textit{0}})$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in \textbf{\textit{O}})$, or one of its descendents

0-708 = ©Carlos Guestrin 2006

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed



10-708 = @Carlos Guestrin 2006

More generally: Soundness of d-separation

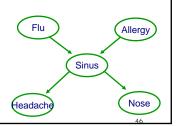
- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - \square I(G) = {(X \perp Y|Z) : d-sep_G(X;Y|Z)}
- Theorem: Soundness of d-separation
 - \square If P factorizes over G then $I(G)\subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

10-708 = ©Carlos Guestrin 2006

4.5

Adding edges doesn't hurt

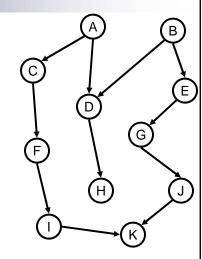
- **Theorem**: Let **G** be an I-map for **P**, any DAG **G**' that includes the same directed edges as **G** is also an I-map for **P**.
- Proof sketch:



10-708 - @Carlos Guestrin 2006

Existence of dependency when not d-separated

- Theorem: If X and Y are not d-separated given Z, then X and Y are dependent given Z under some P that factorizes over G
- Proof sketch:
 - Choose an active trail between X and Y given Z
 - □ Make this trail dependent
 - □ Make all else uniform (independent) to avoid "canceling" out influence



10-708 - ©Carlos Guestrin 2006

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
 - □ "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)
- Proof sketch:

10-708 = @Carlos Guestrin 2006

Interpretation of completeness

- Ŋ
- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\square P \models (X=x\perp Y=y \mid Z=z), \forall x \in Val(X), y \in Val(Y), z \in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\ \ \ \ \ \exists \ x \in Val(X), \ y \in Val(Y), \ z \in Val(Z): \ P \models (X=x \perp Y=y \mid Z=z)$
 - □ Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ☺

10-708 = ©Carlos Guestrin 2006

49

What you need to know

- Independence & conditional independence
- Definition of a BN
- The representation theorems
 - □ Statement
 - Interpretation
- d-separation and independence
 - soundness
 - □ existence
 - completeness

10-708 - ©Carlos Guestrin 2006

Acknowledgements

- JavaBayes applet
 - □ http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho me/index.html

0-708 = @Carlos Guestrin 2006