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Abstract

A common modeling choice in syntax-based statistical machine translation
is the use of synchronous context-free grammars, or SCFGs. When train-
ing a translation model in a supervised setting, an SCFG is extracted from
parallel text that has been statistically word-aligned and parsed by monolin-
gual statistical parsers. However, the set of syntactic category labels used in
a monolingual statistical parser is decided upon quite independently of the
machine translation task, and there is no guarantee that it is optimal for a
bilingual SCFG or for machine translation at all.

In this thesis, we first demonstrate that the set of category labels used in
a machine translation system’s grammar strongly affects three inter-related
characteristics of the system: spurious ambiguity, rule sparsity, and reordering
precision. We propose using these characteristics as the basis for evaluating
the properties of an SCFG both outside of and within an actual translation
task. Finally, as our main work, we propose three automatic relabeling meth-
ods that will create a better set of category labels for a given language pair
and choice of automatic parsers. These methods involve clustering and col-
lapsing unnecessary labels, splitting existing labels into multiple subtypes,
and swapping specific instances of existing labels to correct for local errors.
Improved properties of the grammar and improved translation results will be
demonstrated for at least two language pairs.
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Chapter 1

Introduction and Setup

1.1 MT with Synchronous Context-Free Grammar

In the last decade, researchers working on syntax-based statistical machine translation have been
increasingly successful at developing hierarchical models of translation that explicitly incorporate
the structure of the sentences being translated. Syntactic models have proved particularly useful
for language pairs, such as German–English or Chinese–English, where long-distance reordering of
words or phrases must be carried out. Models of hierarchical structure provide a way of generalizing
a very large number of possible word strings to a more manageable number of abstract patterns.
Word grouping and reordering, then, can be carried out in a principled way according to the
linguistic divergences between languages that are captured in the patterns.

A common modeling choice in syntax-based statistical MT is the use of synchronous context-
free grammars, or SCFGs (Aho and Ullman, 1969). Under an SCFG, a source-language string and
a target-language string are produced simulaneously by applying a series of re-write rules. For
example, in French we may have a grammar rule that specifies how to create a noun phrase (NP)
such as la voiture bleue out of a determiner (DET), a noun (N), and an adjective (ADJ). This CFG
rule is shown in Rule 1.1. A corresponding NP rule in English for the blue car, using the Penn
Treebank part-of-speech labels for a determiner (DT), base adjective (JJ), and a singular common
noun (NN), is shown in Rule 1.2.

NP → DET N ADJ (1.1)

NP → DT JJ NN (1.2)

We can produce both the French NP and the English NP simultaneously in the single SCFG rule
shown in Rule 1.3.

NP :: NP → [DET1 N2 ADJ3] :: [DT1 JJ3 NN2] (1.3)

In an SCFG rule, we use the string “::” to separate the source and target languages, which may
use different labels, on each side of the rule. On the right-hand side, we indicate correspondences
between nonterminals with coindexes on the labels. For instance, the superscript “2” in Rule 1.3
means that the translation of the N in French (e.g. voiture) corresponds to the NN in English (e.g.
car).

Whereas in the past SCFG rules like these would have been written by human experts with
knowledge of both English and French, in modern syntax-based MT they are extracted automati-
cally, according to various schemes, from parallel text that has been statistically parsed and word-
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aligned.1 The focus of this thesis will be the particular nonterminal category labels that appear in
a given SCFG. As we have introduced them so far, these labels ℓs :: ℓt are made up of a nonter-
minal ℓs from the source-language parse tree and a nonterminal ℓt from the target-language tree.
Distinguishing ℓs from ℓt — and copying them both directly from parse trees — is only one point
in the space of possible labelings that could be given to an SCFG. In practice, grammar extraction
schemes have varied on the level of labeling detail used in their implementations of SCFG-based
translation.

David Chiang’s Hiero system (Chiang, 2005), one of the most well-known SCFG-based decoders,
represents the simplest extreme of the label spectrum, using the single label X for all rules and
phrase pairs. Grammar extraction in Hiero is actually not based on linguistic syntax at all: the
parallel corpus is not parsed, and SCFG rules are extracted by finding subphrases with standard
phrase-based statistical MT heuristics (Koehn, Och, and Marcu, 2003).

Moving into linguistic syntax, GHKM rule extraction (Galley et al., 2004) operates on a parallel
corpus that has been parsed on the target side only. Labels from the target-side parse trees are
used in the rules, but source-side labels remain as generic Xs. Liu, Liu, and Lin (2006) present a
symmetric approach, with syntactic labels on the source side and generic X labels on the target
side. The numerous grammar extraction techniques that use parse trees on both sides (Lavie,
Parlikar, and Ambati, 2008; Zhechev and Way, 2008; Liu, Lü, and Liu, 2009) result in SCFG rules
labeled with the more complex joint labels we have already introduced. Again, the exact inventory
of source- and target-side labels used comes directly from the underyling parse trees.

Other systems have extended the label space beyond that defined by the parsers. The so-called
Syntax-Augmented MT (SAMT) system (Zollmann and Venugopal, 2006), though it is still based
on Hiero-style non-linguistic phrase extraction heuristics, replaces the generic X category label with
labels derived from a target-side parse tree. If the target side of a phrase pair corresponds to a
syntactic constituent in the sentence from which it was extracted, it is labeled with that constituent.
For the majority of phrase pairs, where this is not the case, a more complex label is created: a
label of the form A+B if the phrase spans adjacent syntactic nodes of type A and B in the parse
tree, a label of the form A/B if the phrase would span a node of type A if it had a node of type B
immediately to the right, and a label of the form A\B if the phrase would span a node of type A if
it had a node of type B immediately to the left. A new SCFG-based MT system by Chiang (2010)
applies the SAMT labeling conventions to the source side as well, again producing joint labels from
two parse trees.

In summary, the exact labels in use within an SCFG-based MT system fall into three broad
types: (1) completely generic X labels, (2) labels taken directly from the underlying parser or
parsers, and (3) expanded labels based on creative combinations of parser labels. In the latter two
cases, there is an additional dimension of expressive power: whether the labels are based on syntax
from one or both sides of the language pair being translated. Put together, these schemes define a
large space of possible labelings, with many intermediate points left unexplored. Most SCFG-based
MT systems that extract rules from a parallel parsed corpus take a middle ground: the node labels
assigned by the parser or parsers are directly used in the SCFG rules of the system.

However, there is a fundamental problem with this approach. The set of part-of-speech and
nonterminal labels used in a statistical parser to annotate each word and constituent is decided
upon quite independently of the MT task. The set is typically defined by the human linguists who

1The scope of this thesis is limited to syntax-based MT systems that learn their grammars in a supervised way
from parse trees; we are not considering systems that perform unsupervised grammar induction from unparsed texts.
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constructed the treebank that the statistical parser was trained from, and it can vary greatly by
language and treebank. There is no a priori guarantee that the set of parts of speech and non-
terminal labels separately decided upon for treebank development is optimal even for monolingual
statistical parsing, let alone MT done in conjunction with a set of labels equally separately decided
upon in the other language. We will discuss this problem and its fallout in more detail in Chapter
2; here, we will simply summarize the issue and state some conclusions.

At model-training time, the estimation of the translation model is tightly bound up in the
choice of SCFG category labels, as many models include scoring features that take into account
the label of each phrase pair or grammar rule. The optimal set of category labels is one that
avoids modeling spurious ambiguity on the one hand while not throwing out important distinctions
between nonterminals on the other. A bilingual label set that is too coarse risks generalizing over
systematic divergences in languages, while an overly fine label set fragments the observed data into
spurious categories. Thus, a key aspect of getting the “right” category labels is balancing spurious
ambiguity with labeling granularity.

At run time, a syntactic decoder must keep track of many alternative derivations, even if their
target-language output strings are the same, because derivation pieces with different labels may
allow for different rules to be applied on top of them. Rule applications drive reordering in syntax-
based MT systems, so it is important to have parsed translation fragments with the correct labels to
plug into the right-hand sides of larger rules. On the other hand, duplicating the same output string
with many different labelings also leads to extra work for the decoder, and what would otherwise
be a high-scoring translation fragment may instead have its probability mass split over a needlessly
large collection of alternative labelings. Again we note the problem of spurious ambiguity — this
time in opposition to a problem we call rule sparsity, when important rules cannot apply because
their nonterminals do not match.

In sum, we frame what we call the “label problem” in syntax-based MT as a search over the
space of possible SCFG labeling schemes given a particular language pair and choice of automatic
parsers. This search must evaluate the fitness of a labeling scheme according to a number of
dimensions. As introduced above, a labeling scheme must not lead to a grammar that allows too
many possible labelings for a particular rule; this leads to spurious ambiguity in the grammar and
wasted effort in the decoder. Nor, given a large overall label set, should there be too few possible
labelings for an individual reordering pattern; this makes it less likely that the correctly labeled
right-hand-side items will be available to plug into a reordering rule at run time. A third dimension
is the notion of precision. While a small label set will largely avoid problems of spurious ambiguity
or rule sparsity, it will also by necessity be less precise, smoothing out differences between syntactic
categories and allowing reordering rules to overapply.

1.2 Thesis Statement

We have now introduced the setup for syntactic machine translation based on synchronous context-
free grammars and quickly surveyed the space of labels that may be used in SCFGs for MT. We have
also introduced the claim that finding the optimal point within the label space for a given language
pair is important, as suboptimal points could have large effects on the performance and efficiency
of syntactic MT systems. Although existing MT systems use grammar extraction algorithms that
inhabit various points in the label space, there is much territory in between, and techniques geared
towards finding better points in that space remain a largely unaddressed challenge in the field.
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In this thesis, we therefore propose to explore the space of possible SCFG labels with a series
of automatic relabeling methods that will create a better label set for a given language pair and
choice of syntactic parsers. First of all, we propose the creation of a general-purpose grammar
extractor to address a number of shortcomings in our baseline method (Section 3.1). We then
intend to develop three techniques for automatic relabeling: collapsing of category labels based on
alignment (Section 3.2), refining of category labels based on bilingual information (Section 3.3),
and correction of mislabeled parse tree nodes based on an existing grammar (Section 3.4).

The automatic relabeling methods proposed in this thesis will result in an overall scheme for
selecting an improved label set for a given language pair and choice of parsers (Section 3.5). We
claim that the improved label set will demonstrate:

• a statistically significant increase in overall translation quality as measured by automatic
metric scores;

• a significant reduction in spurious ambiguity as measured by properties of the grammar, the
number of chart entries present during decoding, and overall system run time; and

• a significant reduction in rule sparsity as measured by properties of the grammar and test-set
reference reachability.

As part of demonstrating these claims, we define spurious ambiguity (Section 2.1), rule sparsity
(Section 2.2), and reordering precision (Section 2.3) as three characteristics of an SCFG that are
significantly influenced by the choice of label set. Precise definition and meaningful measurements
of these characteristics (Section 2.4) will be a contribution of this thesis. As listed above, they will
also serve as part of our evaluation metrics for determining improvements.

1.3 Experimental Environment

We plan to carry out experiments in French–English, Chinese–English, and Arabic–English transla-
tion, plus the reverse direction (English–foreign) for one of these language pairs. All three language
pairs have large parallel corpora and monolingual parsers available for our experimental work, and
there are community-standard test sets on which to compare results. French, Arabic, and Chinese
also represent increasing distances from English in terms of language typology and the amount of
reordering required in translation. Each relabeling technique from Chapter 3 will be tested on at
least two language pairs.

For French–English we have used, and plan to continue using, corpora released as part of the
Workshop on Machine Translation (WMT) series. The most recent release, for WMT 2010, was
made up of 31.5 million sentence pairs from four domains.2 After throwing out Web-crawled data,
this leaves 8.6 million sentence pairs of high-quality European Parliament, news commentary, and
United Nations data. The WMT workshop series also includes an open competition each year for
MT systems built using the provided data. We have already participated in WMT 2008, 2009, and
2010; going forward, we plan to contribute improved systems to WMT 2011 and 2012, which will
allow a direct comparision of our relabeling techniques with the state of the art.

Large Arabic–English and Chinese–English corpora are provided periodically at another series
of workshops, the NIST Open MT evaluations.3 The NIST 2009 Arabic–English data, for example,

2See www.statmt.org/wmt10/translation-task.html for details on the WMT 2010 data.
3Details on the NIST Open MT evaluation series can be found at www.itl.nist.gov/iad/mig/tests/mt.
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was made up of approximately 5 million parallel sentences. NIST evaluations also include the
release of standard test sets for system-to-system comparison. We previously participated in the
NIST 2009 Arabic–English evaluation; future plans are to contribute improved systems to either
the Arabic–English or Chinese–English tracks of future NIST evaluations as they are announced.

For both Arabic and Chinese, we also plan to conduct more rapid prototyping using a subset
of all available training data in order to run initial experiments and test techniques. In Chinese–
English, we plan to make use of the FBIS corpus of approximately 300,000 sentence pairs. In
Arabic–English, we will create a similarly sized corpus by making a selection from the most recent
NIST data. Although performance on standard test sets will consequently be artificially low until
construction of a full-sized system, the smaller prototypes will lead to more efficient experimentation
in the early stages.

Figure 1.1: Our experimental setup for building SCFG-based MT systems. Components shaded in
grey fall within the scope of this thesis.

We define a common experimental platform for our MT systems as follows, shown graphically
in Figure 1.1. First, the initial parallel training data is preprocessed, statistically word-aligned with
MGIZA++ (Gao and Vogel, 2008), and parsed with the applicable monolingual statistical parsers
— typically those created at the University of California at Berkeley (Petrov and Klein, 2007) or
Stanford University (Klein and Manning, 2003) that are freely available online. As an additional
step, the resulting parse trees may be systematically transformed, such as by binarization or the
removal of unary rule chains. Next, we extract SCFG rules according to the generalized method of
Section 3.1.4 Extracted rule instances are counted and scored according to the syntactic translation
model features defined by Hanneman, Clark, and Lavie (2010) using Jon Clark’s PhraseDozer
package.5

Previous MT systems built in this way have included non-syntactic phrase pairs in addition to
syntactic phrase pairs and grammar rules. Hanneman and Lavie (2009) extracted non-syntactic
phrase pairs from the same training corpus according to standard phrase-based SMT extraction
heuristics, then retained those that provided coverage for source sides that had not been extracted
syntactically. The additional phrase pairs were given dummy syntactic labels, then dumped into the
translation model and scored as if they were syntactic. Hanneman, Clark, and Lavie (2010) used a
more sophisticated approach, sharing extraction counts between syntactic and non-syntactic copies
of the same phrase pair and providing extra translation model features for distinguishing between

4Currently existing baseline systems referred to later in this document as being constructed according to this setup
do not yet use the generalized rule extractor.

5With large amounts of training data, the construction of the translation model is a signficant computational
challenge. In our pipeline, many of the data-intensive steps are carried out as MapReduce jobs on Yahoo’s M45
research computing cluster or as multi-core jobs on the Language Technologies Institute’s departmental cluster.
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the use of syntactic and non-syntactic rules at decoding time. While including more phrase pairs in
the system improved automatic metric scores in both cases, the non-syntactic phrases clouded the
analysis of what derivations could be built using only syntactic rules. Since our focus in this thesis
is very much on the power of different syntactic grammars, we choose to exclude non-syntactic
phrases in our experimental systems in order to support a cleaner analysis of the syntactic rules’
behavior and effectiveness during decoding.

Decoding itself will be carried out with the Joshua decoder (Li et al., 2009), an open-source
platform for SCFG-based MT. Using the entire extracted grammar, particularly when its label set
is large, presents a significant engineering and computational challenge to the decoder. We combat
this in three ways: first by restricting the number of hierarchical grammar rules present in the final
translation model, second by filtering terminal phrase pairs and the system’s language model to
only those portions relevant to the test set being translated, and third by running Joshua as a seven-
threaded job on a server with 32 GB of RAM. In the case of rule filtering, recent experiments have
settled on preserving the top 10,000 most frequently extracted hierarchical rules as a compromise
between insufficiently complete grammars and prohibitiviely long decoding times.

Components shaded in grey in Figure 1.1 fall within the scope of this thesis. The central project,
of course, is developing and testing the updated grammar extraction module and the series of rela-
beling techniques proposed in Chapter 3. We identify two further components whose improvement,
in a practical sense, goes hand-in-hand with the success of improved grammar extraction and la-
beling. Grammar selection, as we have stated, currently involves skimming off some number of the
most frequently extracted hierarchical rules. Unfortunately, this method does not distinguish be-
tween partially lexicalized rules, which may only apply in limited contexts, and fully abstract rules,
which apply much more productively (or over-productively). Their all-nonterminal right-hand sides
also cannot be filtered in advance to a particular test set. Additionally, our current filtering step
does not filter even partially lexicalized rules given a test set; it only affects the (admittedly more
numerous) phrase pairs. We envision making updates to both of these modules to allow for more
sophisticated grammar selection and filtering.

The overall experimental pipeline is designed and managed with the LoonyBin workflow man-
ager (Clark and Lavie, 2010). LoonyBin contributes to the re-use of code by wrapping each exper-
imental step in a separate “tool descriptor” that can subsequently be dropped into any LoonyBin
pipeline. We expect to release the final relabeling techniques developed in this thesis as individual
LoonyBin tools that can be easily re-used by other experimenters.

1.4 Related Work

There has been surprisingly little work to date in syntax-based MT on analyzing, modifying, or
optimizing the label set chosen for any language or pair of languages, despite the important role
that the choice of labels plays in the construction of an MT system.

Working still in the domain of monolingual statistical parsing, Petrov et al. (2006) describe
an EM-style algorithm for automatically splitting a set of category labels used in a monolingual
treebank to learn a more informative parsing grammar. During each iteration’s expectation step,
rule probabilities for the current grammar are calculated from a Penn Treebank traning set; to match
the training tree labels, any categories that have been refined in earlier iterations are collapsed
together for the estimation. In the maximization step of the algorithm, each existing label is split
into two copies, the rule probabilities are slightly perturbed, and then the grammar is retrained
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using the larger set of symbols. The interesting result is a surprisingly detailed set of refined
syntactic categories — for example, an NNP-15 subcategory for the first part of a two-word proper
place name (San or Wall) and a separate NNP-3 category for the second part (Francisco or Street).
At the nonterminal level, 32 different VP subcategories separately handle infinitive verb phrases,
main-clause verb phrases, subordinate-clause verb phrases, and others. These promising results
show that meaningful hidden categories can be automatically detected in a monolingual setting,
but the technique has not yet been applied bilingually.

Huang and Knight (2006) discuss two methods for relabeling parse trees in order to boost the
quality of an MT system with syntax on one side. Also taking the position that the baseline Penn
Treebank tag set is too coarse, most of their experiments focus on splitting existing category labels
by lexicalizing certain types of tree nodes. Nodes can be annotated either with head information
from their descendents (such as renaming DT nodes to DT this or DT these, etc., depending on the
exact determiner found under the node) or with contextual information from their surroundings
in the tree (such as the label of the node’s parent, or whether the node is its parent’s left, right,
or medial child). While the authors report significant gains in the output quality of a Chinese–
English system for a refined model using five types of relabeling, their modifications were carried
out monolingually in a string-to-tree translation system with parses on the English side only. In
concentrating in this thesis on systems that model both source- and target-side syntactic structure,
we believe further label refinements can be made.

Garera, Callison-Burch, and Yarowsky (2009) address the relabeling problem bilingually and at
the part-of-speech level, but in the context of extracting a word-to-word translation lexicon from
two monolingual corpora. Their tag-matching algorithm uses source- and target-side monolingual
corpora that have been part-of-speech tagged in order to estimate a distribution of labels for each
source or target word. Then, given a small gold-standard lexicon, the likelihood of mapping from
a particular source-side part-of-speech tag to a target-side tag is computed by accumulating the
monolingual tag probabilities over all entries in the lexicon.

Among MT applications, Venugopal et al. (2009) and Chiang (2010) implement on-the-fly
grammar modification by allowing SCFG rules to apply in the decoder even when their labels do
not match. In the first case (Venugopal et al., 2009), rules are extracted with the linguistically
motivated expanded label set of the Syntax-Augmented MT (SAMT) system, but rules that are
identical up to labelings are abstracted into a single rule using only the default X nonterminal as in
Hiero. The unlabeled rule’s distribution over possible labelings is saved as a “preference grammar,”
which can be used at decoding time to provide a soft measure of the label of any parsed subtree.
Chiang’s (2010) system, in the second case, also uses expanded SAMT-style labels, but they are
explicitly preserved in the extracted rules. Instead, a rule may apply at a non-matching label site
during decoding, and the translation model is augmented with a number of features keeping track
of which labels have been substituted for which other labels. Weights for these numerous features
are learned during tuning of the entire translation model, so that a test-time match or mismatch
can be assigned a label-specific penalty or bonus score.
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Chapter 2

Label-Based SCFG Properties

We introduced the “label problem” in SCFG-based MT in Section 1.1 as stemming from the fact
that the category labels used in a monolingual statistical parser were developed independently from
any machine translation task — and even from any monolingual statistical parsing task. Instead,
the labels typically come from those used in monolingual treebanks: sets of sentences that have
been manually labeled and parsed by human linguists. Treebanks exist for a growing number
of languages, including English (Marcus, Santorini, and Marcinkiewicz, 1993), French (Abeillé,
Clément, and Toussenel, 2003), and Chinese (Xue et al., 2005). Let us now investigate in more
detail what happens when the syntactic category labels decided on in these treebanks are used in
MT systems.

The Berkeley statistical parser (Petrov and Klein, 2007) trained on the English Penn Treebank
produces a total of 71 different syntactic labels: 45 at the word level and 26 for multi-word con-
stituents. Trained from the French Paris 7 Treebank, the parser produces 21 word-level and 12
constituent-level tags, for a total of 33. In simple SCFG grammar extraction, such as the method
described in Section 3.1.1, this potentially leads to rules involving up to 33 · 71 = 2343 unique
labels. The number can be reduced by adding a constraint to the SCFG extraction that prohibits
preterminal (word-level) nodes from corresponding to nonterminal (multi-word) nodes, and vice
versa. In that case, the number of possible unique labels drops to (12 · 26) + (21 · 45) = 1257.
In a quick motivational experiment, we extracted a grammar using the correspondence constraint
from 9.6 million French and English parallel sentences parsed with the Berkeley parsers.1 In the
results, we found 1078 of the 1257 possible label pairs, or 86 percent. The 31 most common among
them each appeared more than a million times; however, 336 (31 percent) were seen fewer than 100
times each, a sort of conventional-wisdom cutoff for the number of data points needed to reliably
estimate a model parameter.

But is 1078 unique category labels a reasonable number for French–English translation? If not,
is it too high or too low? These are research questions that so far have been very little explored in
the context of syntax-based MT, and in this chapter we claim that they are important.

The annotation guide for the Penn Treebank specifies three separate tags for adjectives. The tag
for most adjectives (e.g. good, large) is JJ, but comparative adjectives (e.g. better, larger) are marked
as JJR and superlative adjectives (e.g. best, largest) are marked as JJS (Santorini and MacIntyre,
1995). In the Paris 7 French treebank, on the other hand, adjectives of any type are simply given

1This corpus is derived from data resources made available for the 2009 Workshop on Machine Translation; see
http://www.statmt.org/wmt09.
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the A tag (Abeillé and Clément, 2003), with subtypes that are not reflected in treebank-derived
parsers. Whether or not an SCFG-based MT system preserves six possible joint labels for adjective
translation — as part of the grammar’s overall inventory of labels for all types of words and phrases
— can have far-reaching effects on the capabilities of the system.

In the following sections, we identify three aspects of an SCFG-based MT system that are
influenced by the system’s choice of label set. We define and illustrate each one precisely, and then
we conclude this chapter by proposed methods by which to measure them meaningfully for a given
grammar.

2.1 Spurious Ambiguity

Spurious ambiguity is a well-known problem in both monolingual parsing (as stated by e.g. Pareschi
and Steedman (1987)) and in parsing-based MT. Chiang (2005) defined it as the condition of having
“many derivations that are distinct yet have the same model feature vectors and give the same
translation,” but the term is more generally used without the constraint that the derivations must
appear model-identical in terms of score. Examples of spurious ambiguity include a phrase pair with
an excessive number of possible left-hand-side labelings, or the instantiation of the same reordering
pattern on the right-hand side of a rule with an overly large number of possible right-hand-side
labelings. In brief, it is the problem of having “too many labels.” Spurious ambiguity has its
roots in the creation of the parsed parallel corpus itself, as word alignment errors, tagging errors,
bracketing errors, and non-compositional translations combine to produce evidence for incorrect
labelings of a right-hand side. The effects of spurious ambiguity are felt both in the estimation of
the translation model at training time and in the application of that model at run time.

In model estimation, each additional left-hand-side label for a given right-hand side weakens any
model score that conditions on all or part of the right-hand side, as that right-hand side’s probability
mass is further and further divided. Assume a generic SCFG rule of the form ℓs :: ℓt → [rs ] :: [rt ].
The Stat-XFER decoder used left-hand-side labels as a component of its joint probability distri-
butions, computing P (ℓs, ℓt, rs | rt) and P (ℓs, ℓt, rt | rs). More recent work by the Carnegie Mellon
statistical transfer MT group (Hanneman, Clark, and Lavie, 2010) has used label probability fea-
tures P (ℓs, ℓt | rs), P (ℓs, ℓt | rt), and P (ℓs, ℓt | rs, rt). Spurious ambiguity can also lead to flattening
of distributions conditioned on the left-hand side, as more right-hand sides are vying for a left-hand
side’s probability mass. The Syntax-Augmented MT system (Zollmann and Venugopal, 2006), for
example, computes P (rs, rt | ℓt) as one of its features.

At run time, spurious ambiguity forces the decoder to maintain additional chart entries for
each variant labeling of a translation fragment. Chart cells, however, are typically limited to a
maximum number of highest-scoring entries, to only those entries whose scores are within a certain
margin from the cell’s best-scoring entry, or to some combination of both thresholds. Other possible
entries whose scores fall below the cutoffs are pruned out of the search space and not stored. Thus,
filling chart cells with a large number of variant labelings for the same translation fragment may
result in other entries falling out of the search space. With large chart size limits, it will result in
much extra work in applying rules. The sample French phrase une employée spéciale, for instance,
may be translated to a special employee in English with a large variety of labels, as in Figure 2.1.
In a baseline extracted French–English SCFG using the WMT 2010 data from Section 1.3, the
translation of une to a can be done with 14 possible syntactic labels, employée to employee with
two, and spéciale to special with eight. From those building blocks, there are 48 applicable rules to
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[12 labels]
a special employee

[8 labels]
special

spéciale

[2 labels]
employee

employée

[14 labels]
a

une

une :: a
D::DT, PRO::DT, D::SYM, D::FW, D::NNP,
ADV::DT, A::DT, N::DT, PRO::SYM, D::LS,
PRO::NNP, NP::X, PRO::FW, ADV::SYM

employée :: employee
N::NN, V::NN

spéciale :: special
A::JJ, N::JJ, A::NN, AP::ADJP, AP::NP, NP::NP,
V::JJ, N::NN

une employée spéciale :: a special employee
NP::NP, AP::NP, AdP::NP, PP::NP, VPpart::NP,
VN::NP, Srel::NP, NP::X, NP::S, NP::PP, NP::NX,
NP::FRAG

Figure 2.1: The translation of French une employée spéciale into English a special employee is
derivationally very ambiguous in a baseline French–English SCFG.

produce a parse node with the desired English output — and that node itself may have 12 different
labels!

Even if pruning is completely avoided, additional labels also weaken probabilities of translation
strings under the Viterbi approximation. That is, when calculating the scores of possible outputs,
most decoders do not sum over all possible derivations producting the same output string; instead,
they merely search for the output string that has the highest scoring single derivation (cf. Li,
Eisner, and Khudanpur (2009)). Therefore, one output string that can be produced by many
possible derivations of moderate score will be ignored in favor of a string that can be produced in
exactly one way with a higher score.

2.2 Rule Sparsity

Rule sparsity is a complementary problem to spurious ambiguity: instead of the grammar containing
too many rules, it rather does not have enough. Rule sparsity occurs when a rule carrying out a
particular reordering pattern should be applied, but the right-hand-side labels for the available rules
encoding that pattern do not match the parsed fragments that have been built. This notion of not
having the right rule has been informally referred to in the literature as general “data sparsity”
(Setiawan and Resnik, 2010) or identified as fallout from an overly strong “matching constraint”
at rule substitution nodes (Chiang, 2010). Here, however, we prefer our own term “rule sparsity”
because it localizes the blame for missing information to the thing that is actually missing — a
grammar rule.

Consider the French noun phrase l’ office monétaire de Hongkong and its desired English transla-
tion the Hong Kong monetary office. In order for this translation to be produced by an SCFG-based
MT system, a large number of rules must be present and applied in the decoder. First, the individ-
ual French words must be translated to the correct English equivalents, requiring for example Rules
1 through 4 in Figure 2.2. Next, in order to carry out the correct reording for office monétaire ↔
monetary office, something like Rule 5 is needed. Obviously, Rule 5 must exist in the translation
model, and its right-hand-side nonterminals N :: NN and A :: JJ must match labels that have been
assigned to office ↔ office and monétaire ↔ monetary, respectively. A similar constraint is in effect
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(1) D :: DT → [l’] :: [the]
(2) N :: NN → [office] :: [office]
(3) A :: JJ → [monétaire] :: [monetary]
(4) NP :: NP → [Hongkong] :: [Hong Kong]
(5) NP :: NP → [N1 A2] :: [JJ2 NN1]
(6) NP :: NP → [NP1 de NP2] :: [NP2 NP1]

NP::NP
Hong Kong monetary office

NP::NP
Hong Kong

Hongkong

deNP::NP
monetary office

A::JJ
monetary

monétaire

N::NN
office

office

Figure 2.2: Necessary grammar rules and their required applications to produce the English trans-
lation the Hong Kong monetary office from the French input l’ office monétaire de Hongkong.

for making the final reordering: both office monétaire ↔ monetary office and Hongkong ↔ Hong

Kong must have been identified as NP :: NP in order to apply Rule 6.
If any of these requirements are not met, then the English translation cannot be reordered

correctly. For example, if Rule 4 were replaced with the alternative — and still reasonable — Rule
4′ below

(4′) N :: NP → [Hongkong] :: [Hong Kong]

then instead of Rule 6, we must now have an alternative rule

(6′) NP :: NP → [NP1 de N2] :: [NP2 NP1]

in order to successfully create the desired English translation. Without Rule 6′, the necessary
reordering is not carried out due to rule sparsity.

The key point with respect to SCFG labeling schemes is that the labels in use on the right-
hand sides of rules control which derivations may be built, particularly with regard to reordering
patterns. What derivations may be built, in turn, specify the space of possible output translations.

2.3 Reordering Precision

As we have seen, the criterion that labels must match in rule application can lead to rule sparsity
problems when the labeled right-hand side required to carry out a specific reordering is not found.
However, this label-matching criterion also plays an important watchdog role in making sure that
reordering rules are not over-applied in contexts where their reordering patterns are not licensed
by the original data. An SCFG labeling scheme therefore must also enforce a certain amount of
precision in the grammar in terms of which rules may apply in which situations. Our discussion of
reordering precision as a grammar property is founded on one of the basic arguments for applying
linguistic syntax to the MT task: that a set of hierarchical categories can do a better job of
explaining word reordering between two languages than properties of the word strings alone.

Consider the generic French–English reordering pattern

X :: X → [X1 de X2] :: [X2 X1] (2.1)

12



where X can stand for any nonterminal. In our baseline WMT 2010 extracted grammar, it is
instantiated by 216 unique rules, where the choice of the set of labels {X1,X2} is restricted to 162
possible pairs. The entire grammar, however, uses an inventory of 1134 total labels, meaning that
there are 1134 · 1134 = 1,285,956 possible ways to draw any pair of them. Thus, the reordering
pattern specified in Rule 2.1 is only allowed to be carried out in a very limited range of circumstances
— mainly when X1 represents a French noun translated to an English noun and when X2 represents
a French noun or noun phrase translated to an English noun, noun phrase, or adjective. This
enforced precision places a major control on the decoder’s search space.

The granularity of this control is obviously dependent on the granularity of the grammar’s
labels. Figure 2.3 compares the most frequent instantiations of the reordering pattern in Rule 2.1
with those of the similar Rule 2.2:

X :: X → [X1 de X2] :: [X1 X2] (2.2)

While both reordering patterns are frequently applied to nouns, it is the finer-grained labeling
derived from the target side that more effectively discriminates between preferring to apply Rule
2.1 when the head noun is a plural common noun (X1 = N :: NNS) and Rule 2.2 when the structure
of the target-side translation more resembles a verb phrase. The use or non-use of such finer-grained
labels represents a trade-off between increased precision in reordering rules on the one hand and
decreased problems of rule sparsity on the other.

Instantiations of Rule 2.1: Instantiations of Rule 2.2:

NP :: NP → [N1 de N2] :: [NN2 NNS1] 9304 PP :: PP → [P1 de NP2] :: [IN1 NP2] 14,263
NP :: NP → [N1 de N2] :: [JJ2 NNS1] 1833 NP :: NP → [N1 de N2] :: [NNP1 NNP2] 3809
NP :: NP → [N1 de N2] :: [NN2 NN1] 1797 NP :: VP → [N1 de NP2] :: [VBG1 NP2] 3471
NP :: NP → [N1 de NP2] :: [NP2 NNS1] 1535 NP :: VP → [N1 de NP2] :: [VB1 NP2] 2465
NP :: NP → [N1 de N2] :: [NNP2 NNP1] 1173 NP :: NP → [ADV1 de N2] :: [JJR1 NN2] 1987

Figure 2.3: The most frequent instantiations, by number of extracted instances, of two related
French–English SCFG reordering patterns.

2.4 Measuring These Properties

In our thesis statement (Section 1.2), we proposed using properties of an SCFG as a measurement
for determining improvements made to that grammar by relabeling techniques. We have so far
examined three such properties in the preceding sections; to conclude this chapter, we propose
methods by which to measure them.

Spurious ambiguity, rule sparsity, and reordering precision can all to some extent be measured
by simple counting. In the case of spurious ambiguity, we can compute the number of variant
labelings for a given right-hand side or reordering pattern, then aggregate counts for an entire
extracted grammar or for the portion of it used on a particular test set. Reordering precision can
be measured by the fraction of possible labeled instantiations present in the grammar for a given
reordering pattern: having fewer instantiations means a more precise grammar, but also one that
suffers more from rule sparsity. We can also count up the number of total rules, or reordering
rules, that are applied in the decoder when translating a given test set and compare it to the
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number of words that are still out of order when the output translations are aligned to reference
translations. This way, rule sparsity is indicated when few rules apply during decoding and the
output is produced in an incorrect order.

However, a deeper understanding of these properties’ effect on an actual MT task requires a
deeper look into the decoding process. In addition to simple counts, we propose to measure spurious
ambiguity, rule sparsity, and reordering precision within a run-time system. Practically, spurious
ambiguity is affected by the total model score of a translation fragment in addition to any pruning
heuristics applied at decoding time. We aim to take these factors into account by examining the
completed output chart or hypergraph produced by the Joshua decoder on a sentence-by-sentence
basis and counting in each cell the number of variant labelings given to identical string outputs.

Rule sparsity and reordering precision are both related to the notion of what derivations can
and cannot be built at translation time. Auli et al. (2009) used the term “induction error” to
indicate when the correct target-language output is not reachable within an MT system’s search
space. Induction error is measurable via constrained decoding: given an input sentence for which
the reference translation is known, the translation model is pruned to only those rules that are
useful in generating the reference from the source sentence. Such strict pruning in practice negates
the effect of any pruning heuristics in the decoder, so the absolute reachability of the reference
translation can be verified. We plan to use constrained decoding in Joshua to similar ends. Not
only will this allow us to use reference reachability as an explicit measure of grammar quality, but
it will also provide a platform for meaningful manual error analysis as the techniques from the next
chapter are being developed.
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Chapter 3

Grammar Extraction and Relabeling

3.1 A General-Purpose Rule Extractor

3.1.1 Motivation

Our baseline method of node alignment and SCFG grammar extraction is the method of Lavie,
Parlikar, and Ambati (2008). Given a word-aligned and parsed sentence pair, this method identifies
translational equivalents (“node alignments”) between the two parse trees according to support from
the word alignments. A node ns in one parse tree S will be aligned to a node nt in the other parse
tree T if all the words in the yield of ns are either all aligned to words within the yield of nt or have
no alignments at all. (This is analagous to the word alignment consistency constraint in phrase-
based statistical MT’s phrase extraction heuristics.) If there are multiple nodes nt satisfying this
constraint, the node in T closest to the leaves will be selected. Then SCFG rules can be extracted
from adjacent levels of aligned nodes, which specify points at which the tree pair can be decomposed
into minimal SCFG rules. In addition to producing a minimal SCFG rule, each decomposition point
also produces a phrase pair rule with the node pair’s terminal yields as the right-hand side as long
as the number of tokens in the yield is less than a maximum-length threshold.

Figure 3.1 is an illustration of the method for a French–English parallel sentence. Since the
French terminal voitures is aligned to the English terminal cars, for example, the French N node
above voitures can be aligned to the English NNS node above cars. The resulting SCFG rule is
N :: NNS → [voitures ] :: [cars ]. Further up in the tree, the French NP node produces a yield of
three words, all of which are aligned within the yield of the NP node on the English side (or not
aligned at all). Looking down from the NP nodes, we find that the next level of node alignment
occurs between N and NNS and between A and JJ. These two levels of node alignment produce the
SCFG rule NP :: NP → [les N1 A2] :: [JJ2 NN1]. Since the source-side terminal les is unaligned, it
is passed as is into the source right-hand side of the rule.

We find a number of shortcomings in this extraction technique, however. When multiple nodes
nt equally well align to ns according to the word alignments, the hard-coded choice of selecting the
“lowest” nt ignores real ambiguity in the resulting labeled rules. In Figure 3.1, the English JJ node
above blue is aligned only to the French A node above bleues, leaving the AP node unaligned and
preventing it from appearing in any extracted rule. We would prefer to preserve such ambiguity
through the rule extraction stage.1 Lavie, Parlikar, and Ambati (2008) also specify a hard constraint

1We note, however, a trade-off in this decision: preserving labeling ambiguity due to chains of unary rules decreases
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Node Alignments:

avait ↔ had
toujours ↔ always

aimé ↔ liked
voitures ↔ cars

bleues ↔ blue
. ↔ .

V ↔ VBD
ADV ↔ RB

V ↔ VBN
N ↔ NNS
A ↔ JJ

PU ↔ PU

NP ↔ NP
NP ↔ NP

SENT ↔ S

SCFG Rules:

V :: VBD → [avait] :: [had]
ADV :: RB → [toujours] :: [always]

V :: VBN → [aimé] :: [liked]
N :: NNS → [voitures] :: [cars]

A :: JJ → [bleues] :: [blue]
PU :: PU → [.] :: [.]

NP :: NP → [Ma mère] :: [Mother]
NP :: NP → [les N1 A2] :: [JJ2 NNS1]

SENT :: S → [NP1 V2 ADV3 V4 NP5 PU6] ::
[NP1 VBD2 RB3 VBN4 NP5 PU6]

Figure 3.1: Syntactic SCFG grammar extraction from a parsed and word-aligned sentence pair.

that prevents preterminal nodes (i.e. parts of speech) from aligning to multi-word nonterminal
nodes (i.e. constituents). In the figure, this forces the first node alignment above Ma mère ↔
Mother to occur between the French NP and the English NP nonterminals, even though the English
preterminal NNP also covers the same phrase. While this choice reduces the complexity of node
alignment, we feel it is poorly motivated linguistically and again removes ambiguity we may wish
to preserve.

3.1.2 Completed Work

As a replacement, we are in the process of re-implementing a general-purpose rule extractor that
will address these and other concerns. While preserving the word alignment support criterion in
the node alignment stage, our implementation allows for ambiguous node alignments in cases where
multiple nodes have the same word alignment coverage. We also include the method of introducing
virtual nodes of Ambati and Lavie (2008), extending it similarly with an allowance for ambiguous
alignments. Virtual nodes may be inserted in either parse tree in cases where they would allow
additional node alignments to be made without violating surrounding tree structure. In Figure 3.1,
for example, it is possible to create a virtual node in the French tree dominating the existing VN

the rule sparsity problem (since in this example bleues ↔ blue could fill both an A :: JJ and an AP :: JJ slot), but it
increases spurious ambiguity (since the phrase pair is potentially inserted into the decoding chart with both labels).
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and NP nodes; it will be aligned to the English side’s VP node, resulting in additional extracted
rules and shortening the length of the right-hand side of the extracted SENT :: S rule. We also
remove the prohibition on the inter-alignment of preterminal and nonterminal nodes.

The output of the node alignment stage can be fed directly to rule extraction, or it can be
written out to text for use by other applications. (See, for example, the tree relabeling scheme
of Section 3.4.) Figure 3.2 shows the text-format output after performing node alignment on the
sentence of Figure 3.1. Each line of output represents one alignment. The second and third columns
give the source- and target-side word spans of the nodes that make up the alignment. The fourth
column specifies the extraction heuristics that support the node alignment, with codes for the
source and target sides separated by the digit “2.” The notation “S” means that the alignment is
supported by only the string-based non-syntactic phrase pair extraction of statistical MT (Koehn,
Och, and Marcu, 2003), “T” indicates an exact node alignment according to the baseline method
of Section 3.1.1, and “TS” stands for an alignment using virtual nodes as described above.

1 7-7 4-4 T2T T2TS TS2T T2S S2T

1 6-7 4-5 TS2T S2T

1 5-7 4-5 T2T T2TS TS2T T2S S2T

1 4-7 3-5 S2T

1 2-7 1-5 TS2T S2T

1 0-1 0-0 T2T T2TS TS2T T2S S2T

1 8-8 6-6 T2T T2TS TS2T T2S S2T

1 2-2 1-1 T2T T2TS TS2T T2S S2T

1 5-6 5-5 TS2T S2T

1 6-6 5-5 T2T T2TS TS2T T2S S2T

1 4-4 3-3 T2T T2TS TS2T T2S S2T

1 4-5 3-3 S2T

1 3-3 2-2 T2T T2TS TS2T T2S S2T

1 2-4 1-3 T2S

1 0-8 0-6 T2T T2TS TS2T T2S S2T

Figure 3.2: Text representation for the node alignments found in the sentence of Figure 3.1 using
the general-purpose rule extractor under development.

Thus, while the baseline technique only extracts nine node alignments from the sentence in
Figure 3.1 (those marked “T2T” in Figure 3.2), the generalized node aligner finds a total of 15
aligned spans and 18 aligned nodes.

3.1.3 Proposed Work

In the rule extraction phase, we plan to broaden single-decomposition extraction to instead use
subphrase subtraction heuristics more similar to those of Hiero (Chiang, 2005). Given a node
alignment as a rule’s left-hand side, any subset of aligned nodes within its subtree may be chosen
as right-hand side nonterminals, while the remainder of the yield is left as terminal strings. Under
this extraction method, a tree pair will yield multiple valid decompositions instead of just one.
The resulting grammar is similar to that extracted by the GHKM “composed rules” of Galley et
al. (2006), but to arbitrary depth and with both source- and target-side syntax. As in Hiero and
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GHKM extraction, we expect to counteract the explosion in computational complexity and number
of rule instances with appropriate controls on maximum rule size, maximum subtree size, etc.

The more complete rule extractor described here will serve as the source of extracted grammars
for the grammar relabeling techniques described in the next sections.

3.2 Label Collapsing via Alignment Distribution

3.2.1 Motivation

We introduced spurious ambiguity and rule sparsity in Chapter 2 as two of the problems that must
be taken into account when developing an SCFG labeling scheme. At a certain level, both can
be thought of as problems of large label sets — such as those introduced in Section 3.1 where
nonterminals are composed of pairs of labels from source and target parse trees — compounded
by errors in parsing and word alignment. Rule sparsity can be made worse when exactly the right
sequence of labels must exist from among many possibilities, and spurious ambiguity is exacerbated
when ambiguous translations or patterns are instantiated by many variant labelings. Therefore,
we hypothesize that a method of automatically clustering and collapsing large label sets may prove
useful in reducing these problems’ negative effects.

Large labels sets may exist in part because different monolingual parsers may be modeling
different granularities of syntactic categories, but not all distinctions may be needed for a particular
bilingual translation scenerio. We provided earlier, at the beginning of Chapter 2, the example of
adjective tags in French and English according to treebank guidelines for those two languages. In
French, a single tag (A) is used, but English parsers typically separate basic adjectives (JJ) from
comparatives (JJR) and superlatives (JJS). A logical question for French–English translation is
whether or not the different English labels encode some sort of behavioral difference in translation as
well, or whether the three subtypes merely add spurious ambiguity among rules involving adjectives.

Our initial insight is that statistical word alignments, and the node alignments derived from
them, provide a source of information about behavioral differences of syntactic categories in trans-
lation. Much as an English–French bilingual speaker could conclude that English base adjectives
are likely to translate as French base adjectives (the large car ↔ la grande voiture), while English
comparatives and superlatives require French adjective phrases (the larger car ↔ la plus grande

voiture; the largest car ↔ la voiture la plus grande), we expect to find the same sort of information
encoded in word or node alignments. In this case, we would expect to see many instances of JJ
nodes aligned to A nodes, many instances of JJR or JJS nodes aligned to AP nodes, and few
instances of JJR or JJS nodes aligned to A nodes. We can conclude from such distributions that,
among English labels, JJR and JJS behave similarly in translation and that they behave differently
from JJ.

3.2.2 Label Collapsing Algorithm

We begin with an initial set of SCFG rules extracted from a parallel parsed corpus, where S denotes
the set of labels used on the source side and T denotes the set of labels used on the target side.
Each rule has a left-hand side of the form s :: t, where s ∈ S and t ∈ T , meaning that a parse node
labeled s was aligned to a node labeled t in a parallel sentence. From the left-hand sides of all
extracted rule instances, we compute label alignment distributions P (s | t) and P (t | s) by simple
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counting and normalizing:

P (s | t) =
#(s :: t)

#(t)
(3.1)

P (t | s) =
#(s :: t)

#(s)
(3.2)

For two source-language labels s1 and s2, we have an equally simple metric of alignment distribution
difference d: the total of the absolute differences in likelihood for each target-language label. The
distribution difference can be defined analogously for target-side labels t1 and t2.

d(s1, s2) =
∑

t∈T

|P (t | s1) − P (t | s2)| (3.3)

d(t1, t2) =
∑

s∈S

|P (s | t1) − P (s | t2)| (3.4)

If s1 and s2 are plotted as points in |T |-dimensional space such that each point’s position in
dimension t is equal to P (t | s), then this metric is equivalent to the L1 distance between s1 and s2.
An equivalent interpretation exists for t1 and t2. In either case, the resulting value between 0 and
2 provides a metric for the “closeness” of any two labels from one language based on what labels
in the other language they are paired with in rules.

Figure 3.3: Partial alignment distributions for English adjective labels JJ, JJR, and JJS in a
French–English parsed parallel corpus.

Figure 3.3 shows partial alignment distributions P (s | JJ), P (s | JJR), and P (s | JJS) for the
three English adjective labels in the WMT 2010 French–English parallel parsed corpus of Section
1.3. It is clear from the figure that all three labels are somewhat related in terms of what their
equivalents are in French, but it is also clear that JJR and JJS are much more closely related to
each other than either is to JJ. Using Equation 3.4 to calculate alignment distribution differences,
we find that d(JJR, JJS) = 0.2688, while d(JJ, JJR) = 0.9952 and d(JJ, JJS) = 0.9114. These
results all tally with the intuitive conclusions expressed at the end of Section 3.2.1.

Given the above method for computing an alignment distribution difference for any pair of
labels, we develop an iterative greedy method for label collapsing. At each step, we compute d

for all pairs of labels, then collapse the pair with the smallest d value into a single label. Then
alignment distribution differences are recomputed over the new, smaller label set, and again the
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label pair with the smallest distribution difference is collapsed. This process continues until some
stopping criterion is reached, or in the limit until all labels have been combined into one. Label
pairs being considered for collapsing may be only source-side labels, only target-side labels, or
both. In practice, we generally choose to allow label collapsing to apply on either side during each
iteration of our greedy algorithm — whichever label pair is closest according to either Equation 3.3
or Equation 3.4 at each step will be merged.

(a) French–English: (b) Chinese–English:

Figure 3.4: Distribution difference values for each merge in complete runs of our algorithm on
French–English and Chinese–English SCFGs.

We observe an interesting behavior of the algorithm when looking for a choice of stopping
criterion. Figure 3.4(a) shows a complete run of the label collapsing algorithm for the WMT 2010
French–English SCFG until all labels on each side have been collapsed to a single category. For
each of the 102 merges, the graph shows the distribution difference value of the two labels that
participated in the merge. These values are very close to monotonically increasing for the first 43
merges, but after that point the distribution difference of successive merges quickly falls into a see-
saw pattern, alternating between very high and very low values. Alternations are merely the result
of a label pair in one language suddenly scoring much lower on the distribution difference metric
than previously, thanks to some change that has occurred in the label set of the other language.
Figure 3.4(b), on the other hand, shows a complete run of the algorithm for a Chinese–English
SCFG extracted from the FBIS corpus. In this case, large drops in distribution difference values
are more prevalent throughout the entire set of merges, but another prominent feature of the graph
is a significant discontinuity in the curve after the 41st merge. This represents an even larger type
of see-saw, in which multiple label pairs suddenly appear closer together according to alignment
distribution difference.

Although such sudden drops in distribution difference value are expected, they may provide an
indication of when the label collapsing algorithm has progressed too far, since we have so reduced
the label set in one language that categories previously very different have become almost indistin-
guishable. We thus propose the beginning of unstable behavior or the first large discontinuity, as
seen in graphs like those in Figure 3.4, as a reasonable stopping point for our algorithm. At present
this represents a reasonable, though manually chosen, heuristic; our proposed work in Section 3.2.4
will explore other alternatives.
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3.2.3 Experiments

We ran initial label collapsing experiments on 8.6 million parsed sentence pairs of the French–
English WMT 2010 data introduced in Section 1.3; the baseline system was built similarly to the
baseline system described in that section and by Hanneman, Clark, and Lavie (2010). The results
show a significant increase in overall translation quality. They also lead to a grammar that suffers
less from spurious ambiguity and rule sparsity in two key areas.

French: English:

C-A A, PREF, X C-QUO “, ”
C-I ET, I C-SYM #, SYM
C-P P, PC, S C-N $, NN, NNS, NNP, NNPS
C-S SENT, Sint C-DT DT, PRP$
C-Srel Srel, Ssub C-P IN, TO
C-VP VPinf, VPpart C-JJ JJ, PDT

C-JJX JJR, JJS
C-UH LS, UH
C-V MD, VB, VBD, VBN, VBP, VBZ
C-RB RB, RBR, RBS
C-WDT WDT, WP, WP$
C-ADJP ADJP, UCP
C-S FRAG, S, SBARQ, SINV, SQ
C-INTJ INTJ, PRT
C-NP LST, NAC, NP, NX, QP, WHADVP, WHNP
C-PP PP, WHPP
C-RRC PRN, RRC, WHADJP

Figure 3.5: French and English category labels that are clustered together and collapsed according
to our algorithm. Names of collapsed labels (starting with “C-”) are manually assigned for clarity.

A grammar extracted from the original parse trees according to the baseline grammar extraction
process of Lavie, Parlikar, and Ambati (2008) uses 33 category labels on the French side and 72 on
the English side, for a total of 1134 unique joint lables of the form s :: t. Label collapsing reduces
this to 25 French, 37 English, and a new total of 502 joint labels, a reduction of 56 percent. The
new coarser labels in each language represent collapsed subtypes of the original labels, partially
collapsed subtypes, or new latent categories that were discovered automatically based on similar
alignment distributions. A full list of the collapsed labels is given in Figure 3.5. Full collapsing of
subtypes is seen in French, for example, with the combination of the VPinf and VPpart categories
for verb phrases into the single category C-VP. As hinted earlier, the English adjective labels are
partially collapsed: JJR and JJS are combined into one, but JJ is left distinct. A latent category is
also discovered that combines the English labels PRN (parenthetical expressions), RRC (reduced
relative clauses), and WHADJP (adjective phrases headed by a wh-adjective).

For spurious ambiguity, the size of the entire grammar is reduced by approximately 1 percent,
but we find a more substantial effect on fully abstract grammar rules and on very frequent terminal
phrase pairs. The 1000 most frequent phrase pairs in the grammar, for example, have 21 percent
fewer possible left-hand-side labels than before label collapsing. The number of left-hand-side labels
for the 1000 most frequent hierarchical grammar rules is decreased by 10 percent. We also find a
20 percent reduction in the number of unique fully abstract grammar rules.

21



Monotonic Patterns Reordering Patterns

[X1 X2] :: [X1 X2] 13.7 [X1 X2 X3] :: [X1 X3 X2] 6.0
[X1] :: [X1] 1.3 [X1 X2] :: [X2 X1] 2.8
[X1 X2 X3] :: [X1 X2 X3] 7.0 [X1 X2 X3 X4] :: [X1 X3 X2 X4] 15.7
[w X1] :: [w X1] 1.3 [w X1] :: [X1 w ] 1.3
[X1 X2 X3 X4] :: [X1 X2 X3 X4] 17.0 [w X1 X2] :: [X2 X1] 3.0

Figure 3.6: Label collapsing increases by 1.3 to 17 times the likelihood that a randomly drawn label
sequence will fit the most commonly extracted monotonic and reordering rule patterns.

Rule sparsity is more difficult to measure directly without gold-standard rule applications or
constrained decoding on a particular test set, but we can indirectly determine improvement by
examining reordering performance. On two test sets, the number of reordering rules applied during
decoding increases by 5.6 and 9.3 percent. Underlying this is a significant increase in the number
of label sequences that instantiate basic reordering patterns in the grammar. Figure 3.6 shows the
five most frequently extracted monotonic and reordered right-hand-side patterns in the grammar,
along with how much more likely it is that a randomly drawn label sequence for each one will
instantiate an actually extracted rule.2 For example, a random label sequence is 2.8 times as likely
to create a valid rule of the form X :: X → [X1 X2] :: [X2 X1] after label collapsing than before it.

news-test2009 news-test2010
System METEOR BLEU TER METEOR BLEU TER

Baseline 51.96 21.75 59.44 53.13 22.03 58.00
Label collapsing 53.00 22.78 59.16 54.03 23.14 57.86

Figure 3.7: French–English automatic metric results with and without a label collapsing step.

Finally, we observe significant improvements on automatic metric scores on two WMT test sets
after label collapsing. We test versions of our system with and without a label collapsing step
on the “news-test2009” and “news-test2010” sets, previously used as the official evaluation sets
of WMT 2009 and WMT 2010. Among evaluation metrics, we perform case-insensitive scoring
on BLEU (Papineni et al., 2002) as implemented by the NIST mteval-v13.pl script, METEOR
v. 1.0 (Lavie and Denkowski, 2009), and TER v. 0.7 (Snover et al., 2006). As shown in Figure
3.7, label collapsing improves scores across metrics on both test sets. The smaller change in TER
could be explained by a change in length between the baseline and collapsed system — the metric
notoriously prefers shorter translations, and the output from the label-collapsed system is slightly
longer than the baseline.

3.2.4 Proposed Work

We propose a number of natural extensions to the label collapsing setup described so far.
First of all, we plan to investigate the heuristic stopping criterion currently in use based on

see-saws or large discontinuities in distribution difference values. Though the current criterion

2X represents any nonterminal, and w represents the appearance of one or more terminal words.
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can be calculated automatically, it is unclear whether it represents the most meaningful method
of determining when label collapsing has progressed too far. At the cost of a more expensive
calculation, a more refined stopping criterion could take into account some property of the collapsed
grammar we wish to improve — the change in conditional entropy of s :: t for a given si or ti, for
example, could be used to monitor when label collapsing has flattened the alignment distribution
for individual labels. Monitoring the count of SCFG left-hand-side labels for a given right-hand side
as the algorithm progresses could lead to a stopping criterion based on improvements in spurious
ambiguity.

The Berkeley statistical parser for English, French, German, Chinese, Arabic, and Bulgarian
(Petrov and Klein, 2007) is trained to produce two different label sets for each language: the default
label set as learned directly from each language’s treebank, or a fragmented label set following the
label splitting algorithm of Petrov et al. (2006). (See Section 1.4.) The fragmented label sets
provide an intriguing alternative starting point for the label collapsing algorithm described in this
section, as the monolingual fragmented grammars typically contain hundreds instead of tens of
labels each. We propose to carry out label collapsing from such an extreme baseline in order to test
the range of our algorithm. Our hypothesis is that the ability to cluster and collapse finer-grained
subtypes will result in a significantly different and more customized label set for a given language
pair than either the default treebank labels or our initial label collapsing results.

We also propose to explore different formulations of the alignment distribution different metric
and the exact procedure for collapsing. The L1 distance metric in Equations 3.3 and 3.4 combined
with the greedy collapsing algorithm of Section 3.2.2 reflects a simple and intuitive approach, but
it may not be optimal. In particular, the choice of L1 distance can be contrasted with the use of
Euclidean (L2) distance or KL divergence (Kullback and Leibler, 1951). Greedy collapsing of both
source and target labels at once can be contrasted with a clustering algorithm such as K-means,
where either the source- or target-side labels can be fully clustered in one step.

All of the above extensions are straightforward modifications of the baseline algorithm from
Section 3.2.2. They can be carried out experimentally one at a time by swapping out the current
stopping criterion, input grammar, or clustering mechanism, and the results can be analyzed and
compared to the baseline as we did in Section 3.2.3. We will design more complicated experiments
based on the success or non-success of the experiments already proposed here. Finally, we will
consider the introduction of new features beyond alignment distribution, as warranted by analysis
of the strengths and weaknesses of the current approach. The perceptron approach of Fossum,
Knight, and Abney (2008), applied in their case to the problem of word-alignment modification,
can serve as a possible inspiration for a simple multi-feature framework.

3.3 Label Refining via Right-Hand-Side Context

3.3.1 Motivation

Label sets developed monolingually for non-MT tasks may not reflect a large amount of potentially
useful information that could be modeled in a bilingual MT framework. For instance, a monolingual
treebank for English is extremely unlikely to provide two classes of adjectives for words that do
or do not preceed their head nouns when they are translated into French. A monolingual French
treebank, perhaps considering the pre-noun vs. post-noun distinction unimportant or obvious, may
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not mark it either.3 A syntax-based MT system trained from monolingual English and French
parsers will thus end up missing information with respect to adjective positions. With the same
set of adjective tags appearing both pre- and post-noun, the grammar cannot encode the fact that
certain English adjectives are very likely to be re-ordered in French while others are not. Making
adjective positioning information explicit and including it in an MT system for English–French
translation would allow for a more precise and less ambiguous translation model. Instead of a
single adjective class whose members all “sometimes” change position in French output, words can
be explicitly assigned with individual probabilities to “in-order” and “reorder” adjective types that
encapsulate finer-grained information about the behavior of each word.

SCFG Rule: ptrans: plabel:

(1) DT :: D → [the] :: [la] 0.3309 0.9980
(2) NN :: N → [car] :: [voiture] 0.4003 0.9679
(3) JJ :: A → [large] :: [grande] 0.1165 0.9968
(4) JJ :: A → [blue] :: [bleue] 0.2716 0.8864
(5) NP :: NP → [DT1 JJ2 NN3] :: [D1 N3 A2] 0.5622 0.9974
(6) NP :: NP → [DT1 JJ2 NN3] :: [D1 A2 N3] 0.2247 0.9999

Figure 3.8: SCFG rules and simplified model scores for translating the English noun phrases the

large car and the blue car into French.

As an illustration of this, we consider the two English noun phrases the large car and the blue

car, which we would like to translate into the French NPs la grande voiture and la voiture bleue,
respectively. Note the difference in position of the adjective in French. Producing the target output
requires the SCFG rules presented in Figure 3.8, which also includes their rule scores as calculated
from a baseline grammar extraction using the WMT 2010 data of Section 1.3. For simplicity, we
reduce the translation model to two features for a generic rule of the form ℓs :: ℓt → [rs ] :: [rt ]: the
translation probability ptrans = P (rt | rs) and the label probability plabel = P (ℓs, ℓt | rs, rt). Once
the appropriate lexical rules 1–4 have been applied to the English input, the model has a choice
between Rule 5 and Rule 6 for both of our proposed noun phrases. Their label probabilities are
very similar, but the reordered translation going into French in Rule 5 is two and a half times
more likely than the in-order version of Rule 6 according to their translation probabilities. Thus,
this translation model will have a strong preference for producing both la voiture bleue, which is
correct, and la voiture grande, which is not.

Although it is quite correct that Rule 5 predominates over Rule 6 for English–French adjective
translation as a whole, the class of French adjectives can actually be decomposed into two subgroups:
a majority group of those that almost always follow their head noun, and a minority group of those
that almost always precede it. Given the lexical identity of any adjective, the correct choice between
Rule 5 and Rule 6 is more obvious.

3As we have seen, the Paris 7 Treebank in fact does not mark the distinction, using various adjective subtype tags
to indicate gender, number, etc., but not position. Further, the Berkeley and Stanford French parsers use the single
tag A for all adjectives.
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3.3.2 Proposed Work

We propose using the bilingual SCFG setting to detect hidden subtypes of syntactic categories
that are not expressed monolingually by treebanks or parsers. Our intended technique begins by
considering sets of rules with the same left-hand side and source right-hand side, but differing target
right-hand sides. Rules 5 and 6 from Figure 3.8 are such a set for English–French. Rules 3.5 and
3.6 below are examples for French–English.

NP :: NP → [N1 A2 A3] :: [JJ2 JJ3 NN1] (3.5)

NP :: NP → [N1 A2 A3] :: [JJ3 JJ2 NN1] (3.6)

From such a set, we suppose that a hidden subtype for one of the reordered categories might
explain the reordering. One source of evidence for a hidden preterminal category is an underlying
lexical difference, as we saw in the motivating example in Section 3.3.1. For a right-hand-side
nonterminal that changes position, it may be because of an underlying derivational difference one
level lower in the tree. We propose to search for both types of differences by returning to the
training corpus and tabulating, for each extracted instance of a rule in our set of interest, the
lexical identities or the derivation of each constituent plugging into it. Items much more likely to
fit one rule in the set than another form a category subtype, and their labels will be re-written
throughout the training corpus accordingly.

D1 Rule 5 Rule 6 N3 Rule 5 Rule 6 A2 Rule 5 Rule 6

un 0.3165 0.2067 rôle 0.0349 0.0023 commune 0.0338 —
une 0.2654 0.2545 position 0.0241 0.0017 important 0.0286 0.0078
la 0.1228 0.1688 question 0.0213 0.0199 politique 0.0285 —
le 0.0815 0.1054 communauté 0.0212 0.0002 internationale 0.0267 —
cette 0.0428 0.0563 solution 0.0172 0.0064 européenne 0.0218 —

fois 0.0001 0.0397 même 0.0004 0.0957
temps 0.0004 0.0355 nouvelle 0.0018 0.0837
point 0.0065 0.0258 première 0.0003 0.0676
majorité 0.0025 0.0212 bonne — 0.0593

nouveau 0.0012 0.0521

Figure 3.9: The most likely French words to plug into each right-hand-side element of Rule 5
(French side [D1 N3 A2]) and Rule 6 (French side [D1 A2 N3]) from Figure 3.8.

Let us assume, for example, that our proposed system has identified Rules 5 and 6 from Figure
3.8 as a rule set of interest. Figure 3.9 shows, from a sample of nearly 47,000 applications of those
rules, the five most likely French words to plug into each slot of each rule. (That is, 31.65 percent
of the D1 slots in instances of Rule 5 are filled by the word un, while 20.67 percent of the D1 slots
in Rule 6 are.) The top five words used as the determiner in Rule 5 are also the top five words used
as the determiner in Rule 6; the probabilities are somewhat perturbed, but the overall ranking is
almost identical. The situation at the noun (N) node is more clouded. The word question is among
the top five possibilities for both rules, but otherwise Ns that are more likely in one rule are rather
less likely in the other, both in terms of probability and overall ranking. The biggest difference
between rules, however, is shown in the adjective (A) slot. Of the five most likely adjectives to be
involved in Rule 5, only one of them (important) appears at all in Rule 6 — and then with a very
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low probability. Adjectives that are the most likely in Rule 6, in turn, appear in Rule 5 with either
very low probabilities or not at all (bonne).

We can conclude from all this that it is most likely a latent subcategory of adjectives that gives
rise to the varient target-side orderings seen in Rules 5 and 6. The words in the A3 section of Figure
3.9 now become evidence for the new syntactic category, and their labels are reassigned. In every
rule extraction instance where one of these words plugs into Rule 6, the label JJ :: A is modified
to, say, JJ-A :: A-A. This establishes in the grammar new rules

JJ-A :: A-A → [same] :: [même], etc. (3.7)

NP :: NP → [DT1 JJ-A2 NN3] :: [D1 A-A2 N3] (3.8)

with high label and translation probabilities in the case of the hierarchical rule. At the risk of
generating some additional spurious ambiguity and rule sparsity, we posit that we may gain a
larger increase in reordering precision.

Further exploratory research will be required in order to determine the scope of this technique
appropriately, such as by the inclusion of cutoffs on the number of rule sets considered, the strength
of evidence required to create a new category label, or the maximum number of new categories that
should be introduced overall. The setup of Figure 3.9 with comparison of probability values could
point towards the use of a distribution difference metric, as in Section 3.2, to judge the strength of
evidence in a rule set for a hidden category.

3.4 EM-Based Tree Relabeling

3.4.1 Motivation

Variant labelings in an SCFG rule are in part caused by labeling errors in the monolingual statistical
parsers that originally parsed each side of the parallel corpus from which rules are extracted. Each
sentence in the corpus is parsed independently, both with respect to other sentences in the same
language and with respect to the particular foreign-language sentence aligned to it. It is thus
possible that a number of local labeling errors could be corrected if global information were taken
into account.

We consider the treatment of cardinal numbers as a simple example. From the English Penn
Treebank tagging guidelines, it is clear that any terminal made up of purely digits should be labeled
a CD (Santorini and MacIntyre, 1995). This is the result for 96.4 percent of the all-digit terminals
in 8.6 million English sentences that have been parsed with the Penn Treebank-trained Berkeley
parser. However, the remaining 3.6 percent are labeled with 22 different incorrect tags, ranging
from nouns and adjectives to prepositions and verbs. While one of these other labels may lead
to a higher parse-model score in any one sentences, the evidence from the overall corpus strongly
indicates that they are erroneous.

Cases of single-tag errors can be resolved with simple preprocessing — in this case, to blindly
overwrite any tag for an all-digit terminal with CD — but a more difficult scenario awaits in French.
The Paris 7 French Treebank tagging guide specifies that numbers may be tagged as D, N, A, or
PRO depending on how they are used in the sentence (Abeillé and Clément, 2003), yet errors persist
in scattered instances. We can again use the overwhelming weight of correctly tagged instances to
fix individual errors given their contexts.
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3.4.2 Proposed Work

We propose an EM algorithm (Dempster, Laird, and Rubin, 1977) to relabel a parsed parallel
corpus after an initial process of node alignment has been run on it. Node alignment results in a
baseline grammar with rules of the form ℓ → r .

Each node-aligned tree pair is then considered separately in the E step. We remove the labels
from the aligned nodes, then apply rules from the current grammar bottom-up in order to reproduce
the most likely labeled version of the same tree. We define a recursive formula for keeping track of
the probability α(ℓi, n) of having label ℓi at aligned node n. The probability of reaching an ℓi at n

via a rule R = ℓi → r is equal to the probability of having that rule’s right-hand-side nonterminal
labels ℓ1...ℓk in existence at the appropriate subtree nodes n1...nk times the probability of applying
the rule on top of such a right-hand side:

αR(ℓi, n) = P (ℓi | r)

k∏

j=1

α(ℓj , nj) (3.9)

These probabilities are accumulated for all rules R that may apply at n to produce label ℓi, giving
the overall probability for creating ℓi at n by any combination of rule applications:

α(ℓi, n) =
∑

R

αR(ℓi, n) (3.10)

Once the maximally likely labelings of all tree pairs have been computed, new SCFG rules are
extracted from the corpus in the algorithm’s M step to form an updated grammar for the next EM
iteration. Updated rule probabilities P (ℓ | r) are computed from the extracted rule instances by
simple maximum-likelihood estimates

P (ℓ | r) =
#(ℓ → r)

#(r)
(3.11)

We illustrate one iteration of the algorithm using the tree fragment in Figure 3.10 and the
baseline extracted grammar of Section 1.3. Figure 3.10(a) shows the original tree fragment as
it appears in the corpus; however, there are only three node alignments and only three SCFG
rules extracted from it. Thus, from the point of view of reproducing the tree from rules in our
EM algorithm, the structure can be simplified to the one in Figure 3.10(b). At the algorithm’s
initialization, the rules extracted from the tree are those shown in Figure 3.10(c), where the number
110 has been incorrectly tagged in French. Node labels are removed, and we now try to reproduce
the most likely labeled version of the tree according to rules extracted from the entire grammar.

Let us begin at node n1. We find in our baseline grammar 37 possible labelings for a rule of
the form X :: X → [110] :: [110]; one of them has the left-hand-side label D :: CD. There are no
right-hand-side constituents in the rule, so in this case Equation 3.9 becomes

αD::CD→[110]::[110](D :: CD, n1) = P (D :: CD | [110] :: [110]) = 0.5081 (3.12)

with the label probability P (D :: CD | [110] :: [110]) being computed from the full extracted gram-
mar. Similar calculations are performed for other possible labelings at n1, resulting in a matrix of
label probabilities α(D :: CD, n1) = 0.5081, α(PRO :: CD, n1) = 0.2789, α(N :: CD, n1) = 0.1004,
and so on.
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(a) Original Tree (b) Reproduced Tree

(c) Original Extracted Rules

PRO :: CD → [110] :: [110]
PP :: PP → [du règlement] :: [of the Rules of Procedure]
NP :: NP → [l’ article PRO1 PP2] :: [Rule CD1 PP2]

(d) Second Iteration Rules Extracted

N :: CD → [110] :: [110]
PP :: PP → [du règlement] :: [of the Rules of Procedure]
NP :: NP → [l’ article N1 PP2] :: [Rule CD1 PP2]

Figure 3.10: A tree fragment set up for our EM-based tree relabeling algorithm. After the algo-
rithm’s first iteration, the labeling error PRO :: CD is corrected to N :: CD.

The same line of calculations is carried out at node n2, this time using rules of the form
X :: X → [du règlement] :: [of the Rules of Procedure]. There are only two of them in the grammar,
leading to a second column of the label probability matrix that contains α(PP :: PP, n2) = 0.7736
and α(NP :: PP, n2) = 0.2264.

At node n3, we are looking for rules of the form X :: X → [l’ article X1 X2] :: [Rule X1 X2], of
which there are 13 in the grammar. One of them, NP :: NP → [l’ article D1 PP2] :: [Rule CD1 PP2],
requires right-hand-side constituents labeled D :: CD and PP :: PP. Thus, for this rule, Equation
3.9 becomes

αNP::NP→[l’ article D1 PP2]::[Rule CD1 PP2](NP :: NP, n3)

= P (NP :: NP | [l’ article D1 PP2] :: [Rule CD1 PP2]) · α(D :: CD, n1) · α(PP :: PP, n2)
= 0.0080 · 0.5081 · 0.7736 = 0.0031 (3.13)

Eleven of the 13 rules that could apply at n3 have NP :: NP as their left-hand sides, so their
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probabilities calculated as above are all summed together according to Equation 3.10 to produce
the total value for α(NP :: NP, n3) in the label probability matrix. The remaining two rules are
headed by NP :: VP; they are summed together to create α(NP :: VP, n3). At the end of the
procedure, the two label probabilities for the top of the tree are α(NP :: NP, n3) = 0.0343 and
α(NP :: VP, n3) = 0.0059.

To find the Viterbi labeling of the entire tree, we now trace downward from the most likely label
at the root. As we just saw, the most likely label at n3 is NP :: NP. Within the rules for generating
an NP :: NP at that node, the most likely is NP :: NP → [l’ article N1 PP2] :: [Rule CD1 PP2].
Thus, we assign label N :: CD to n1 and label PP :: PP to n2. When SCFG rules are extracted
from this tree fragment in the EM algorithm’s M step, the rule previously extracted as PRO :: CD →
[110] :: [110] will instead become N :: CD → [110] :: [110], as in Figure 3.10(d). The local labeling
error has been fixed.

3.5 Combining Relabeling Techniques

So far we have described three individual methods for automatically relabeling parse trees or
extracted SCFG rules. However, aside from testing each method individually, our goal in Section
1.2 was to create one overall scheme to improve the label set for any language pair or choice
of automatic parsers. In this section, we specify that that will be accomplished by a pipeline
combining one or more of the techniques from the last three sections in sequence, and we propose
specific sequences that make sense under certain conditions.

Figure 3.11: A proposed default combination of relabeling techniques for large-data scenarios. Steps
representing relabeling techniques are shaded in grey.

The data resources and experimental setup we outlined in Section 1.3 are geared towards large-
scale systems. In such cases, where the extracted grammars should be large enough to permit good
statistical modeling, we propose a final sequence made up of all three relabeling techniques, shown
in Figure 3.11. After running the more generalized method of grammar extraction from Section 3.1,
we propose first using the EM-based tree relabeling technique of Section 3.4. Its goal is to remove
occasional monolingual labeling errors by making use of the entire extracted bilingual grammar,
and it is suitable to remove such easily correctable sources of spurious ambiguity right away. Once
some variant labelings have been cleared away, the label collapsing procedure of Section 3.2 is a
logical second step. Its goal is to further reduce spurious ambiguity and rule sparsity by removing
monolingual labels that are in a sense redundant because they have the same alignment behavior
as other labels. This should result in an improved, smaller set of labels, but so far little attention
has been paid to bilingual categories. Thus, we propose a final step of label refining (Section 3.3)
to re-enlarge the label set with useful categories that are motivated by the particular bilingual MT
task being modeled. The output of this third step will be the final improved grammar.
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Further experimentation will be necessary to determine whether this pipeline should be modified
in the event that the input parse trees use very fine-grained categories, such as those returned by the
refinement technique of Petrov et al. (2006). With such detailed labels, it is possible that the rule
and label probabilities in EM-based relabeling will become overly fragmented. It is also possible
that some latent bilingual categories will already be modeled in the fine-grained joint labels, since
monolingual labels will already be distinguishing between a large variety of category subtypes. In
these cases, better final results might be obtained by moving the label collapsing step forward to
the beginning of the pipeline, or by removing one of the other two relabeing steps.

Section 1.3’s prototype Arabic–English and Chinese–English systems may also require a differ-
ent combination of relabeling techniques. With a much smaller training corpus, it may be desirable
to have an overall smaller label set in order to avoid fragmenting rule scores and translation prob-
abilities across many variant labeling. There is also a benefit to fixing label errors for the same
reason. These two facts would put the emphasis on label collapsing and EM-based relabeling among
our proposed techniques, possibly at the expense of including the label refining module.
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Chapter 4

Summary and Timeline

4.1 Summary

We defined and illustrated three properties of an SCFG that are highly dependent on the grammar’s
label set:

• Spurious ambiguity. Intuitively the case of having “too many labels,” spurious ambiguity
occurs when a given right-hand side can be labeled with a large number of left-hand sides, or
when a reordering pattern can be instantiated by a large number of right-hand-side labels. It
leads to weaker model scores for outputs that can be formed in multiple ways.

• Rule sparsity. The case of having “too few rules,” rule sparsity is the inability of a grammar
rule to apply because the nonterminal labels on its right-hand side do not match the labels
of the constituents actually found at the desired application sites. It restricts the space of
possible derivations that can be created at run time, which in turn restricts the space of
possible output translations.

• Reordering precision. Reordering precision defines the spectrum between extreme rule
sparsity on one hand and an overly permissive (or overly ambiguous) grammar on the other.
It encapsulates the notion that certain reorderings are permissible only in certain situations by
forcing the constituents that plug into a rule to match the categories in the rule’s right-hand
side. The granularity of the categories controls the degree of precision.

We sketched out ways to evaluate a grammar based on these characterisitcs, which will be used
— along with additional criteria, such as automatic MT metrics and decoding run time — to judge
improvements from a series of proposed automatic SCFG relabeling techniques. These relabeling
techniques will be carried out on SCFGs extracted by a new general-purpose rule extractor that
incorporates a variety of existing grammar extraction methods.

• Label collapsing. For category labels in one language, we use their distributions over
aligned categories in the other language to cluster and collapse monolingual labels according
to similar alignment distribution. We will show that this technique reduces both spurious
ambiguity and rule sparsity by removing redundant labels and allowing important reordering
patterns to be instantiated by a larger fraction of labelings.
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• Label refining. We use sets of rules with the same left-hand side and source right-hand side,
but different orderings on the target right-hand side, as evidence for a hidden subtype in one
of the right-hand-side labels that explains the reordering. We will develop a model, based on
underlying composititional differences of the reordered constituents, for creating new subtype
labels with a view to increasing the reordering precision of the grammar.

• Tree relabeling. We propose an EM algorithm to correct local labeling errors in individual
parse trees by using the grammar extracted from the entire parallel corpus to bias towards
the correct label. The expected result is a reduction in spurious ambiguity.

4.2 Timeline

Work on this thesis project should be completed by May 2012, with individual tasks being carried
out according to the timeline below.

January to March 2011:
Implementation of general-purpose rule extractor.
Full label collapsing experiments.
Tests of extensions to label collapsing algorithm.
Checkpoint: Submission of EMNLP paper on label collapsing (March 23).

April to July 2011:
Development of constrained decoding setup.
Development of label refining techniques.
Full label refining experiments.
Checkpoint: Submission of French–English system to WMT 2011 (expected April–June).

August to October 2011:
Development of framework for EM-based relabeling.
Full EM-based relabeling experiments.
Checkpoint: Submission of Arabic or Chinese system to NIST 2011 (assumed).

November to December 2011:
Finalization of all experiments on individual techniques.
Begin job search.
Checkpoint: Submission of ACL paper on relabeling techniques (expected December).

January to March 2012:
Development of combined technique pipelines.
Finalization of systems and experimentation.

April to May 2012:
Thesis writing.
Checkpoint: Thesis defense (May).
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