Boosting

Machine Learning - 10601

Geoff Gordon, MiroslavDudík

[partly based on slides of Rob Schapire and Carlos Guestrin]

http://www.cs.cmu.edu/~ggordon/10601/

November 9, 2009

Ensembles of trees

BAGGING and RANDOM FORESTS

- learn many big trees
- each tree aims to fit the same target concept
 - random training sets
 - randomized tree growth
- voting ≈ averaging:
 DECREASE in VARIANCE

Ensembles of trees

BAGGING and RANDOM FORESTS

- learn many big trees
- each tree aims to fit the same target concept
 - random training sets
 - randomized tree growth
- voting ≈ averaging:
 DECREASE in VARIANCE

BOOSTING

- learn many small trees (weak classifiers)
- each tree 'specializes' to a different part of target concept
 - reweight training examples
 - higher weights where still errors
- voting increases expressivity:
 DECREASE in BIAS

Boosting

 boosting = general method of converting rough rules of thumb (e.g., decision stumps) into highly accurate prediction rule

Boosting

- boosting = general method of converting rough rules of thumb (e.g., decision stumps) into highly accurate prediction rule
- · technically:
 - assume given "weak" learning algorithm that can consistently find classifiers ("rules of thumb") at least slightly better than random, say, accuracy ≥ 55% (in two-class setting)
 - given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%

A Formal Description of Boosting

- given training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$

A Formal Description of Boosting

- given training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$

A Formal Description of Boosting

- given training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1,\ldots,m\}$
 - find weak classifier ("rule of thumb")

$$h_t:X\to\{-1,+1\}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i]$$

WEIGHTED ERROR

A Formal Description of Boosting

- given training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak classifier ("rule of thumb")

$$h_t: X \to \{-1, +1\}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$$

• output final classifier H_{final}

AdaBoost

[Freund-Schapire 1995]

- constructing D_t :
 - $D_1(i) = 1/m$

AdaBoost

[Freund-Schapire 1995]

- constructing D_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \left\{ \begin{array}{l} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ \alpha_t & \text{if } y_i \neq h_t(x_i) \end{array} \right\}$$

AdaBoost

[Freund-Schapire 1995]

- constructing D_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) : \text{ where } x_i = 1 \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) : \text{ where } x_i = 1 \end{cases}$$

$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t(y_i)h_t(x_i))$$

$$\in \{-1,+1\}$$

AdaBoost

[Freund-Schapire 1995]

- constructing D_t :
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t=$ normalization constant $\alpha_t=\frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)>0$ here we we know we know that we know that $\alpha_t=\frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)>0$

according to D_t

ERLOR

WEIGHT WRONG

AdaBoost

[Freund-Schapire 1995]

- constructing D_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t = \text{normalization constant}$

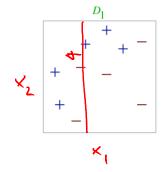
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

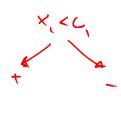
• final classifier:

•
$$H_{\text{final}}(x) = \text{sign}\left(\sum_{t} \alpha h_{t}(x)\right)$$

IF ht more RIGHT

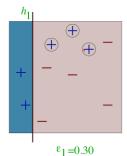
Toy example



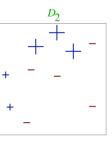


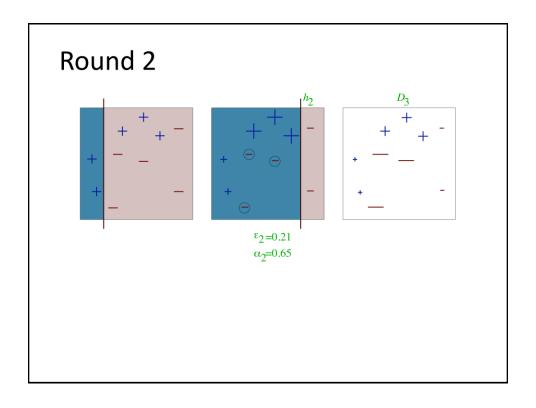
weak classifiers = decision stumps
(vertical or horizontal half-planes)

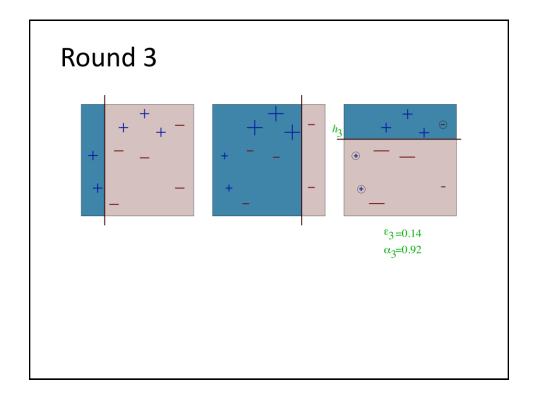
Round 1

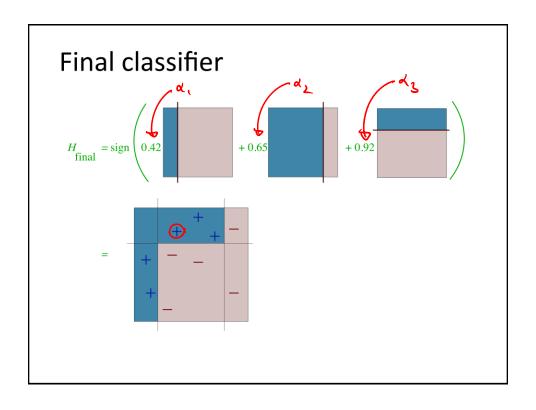


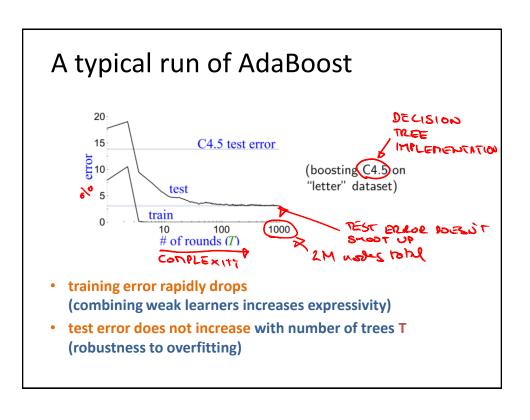
 $\alpha_1 = 0.42$









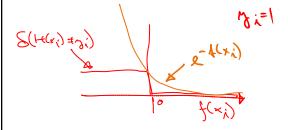


Bounding *training* error

Training error of final classifier is bounded by:

$$\operatorname{err}_{\mathsf{train}}(H) = \frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i))$$

where
$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$
; $H(x) = \operatorname{sign}(f(x))$.



Bounding *training* error

Training error of final classifier is bounded by:

$$\operatorname{err}_{\mathsf{train}}(H) = \frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \le \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t=1}^{T} Z_t$$

where
$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$
; $H(x) = \operatorname{sign}(f(x))$.

Bounding *training* error

Training error of final classifier is bounded by:

$$\operatorname{err}_{\mathsf{train}}(H) = \frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \le \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t=1}^{T} Z_t$$

where
$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$
; $H(x) = \operatorname{sign}(f(x))$.

Last step can be proved by unraveling the definition of $D_t(i)$:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-y_i\alpha_t h_t(x_i))}{Z_t}$$

$$D_{T+1}(i) = \frac{1}{m} \frac{\exp(-y_i f(x_i))}{\prod_{t=1}^T Z_t}$$

Optimizing α_t

By minimizing $\prod_t Z_t$, we minimize the training error.

Optimizing α_t

By minimizing $\prod_t Z_t$, we minimize the training error.

We can tighten this bound greedily, by choosing α_t on each round to minimize Z_t :

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-y_i \alpha_t h_t(x_i))$$

DLD

DIST.

Optimizing α_t

By minimizing $\prod_t Z_t$, we minimize the training error.

We can tighten this bound greedily, by choosing α_t on each round to minimize Z_t :

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\underline{y_i}\alpha_t \underline{h_t(x_i)})$$

Since $h_t(x_i) \in \{-1, 1\}$, we can find this explicitly:

Optimizing at

By minimizing $\prod_t Z_t$, we minimize the training error.

We can tighten this bound greedily, by choosing α_t on each round to minimize Z_t :

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-y_i \alpha_t h_t(x_i))$$

Since $h_t(x_i) \in \{-1, 1\}$, we can find this explicitly:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Optimizing a

By minimizing $\prod_t Z_t$, we minimize the training error.

We can tighten this bound greedily, by choosing α_t on each round to minimize Z_t :

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-y_i \alpha_t h_t(x_i))$$

Since $h_t(x_i) \in \{-1, 1\}$, we can find this explicitly:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Intuition: In each round, we adjust example weights, so that the accuracy of the last rule of thumb h_t drops to 50%.

Weak learners to **Strong** learners

Plugging the optimal α_t in the error bound:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{T} Z_t$$

Weak learners to **Strong** learners

Plugging the optimal α_t in the error bound:

Plugging the optimal
$$\alpha_t$$
 in the error bound:
$$\frac{1}{m}\sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^T Z_t \leq \exp\left(-2\sum_{t=1}^T (0.5 - \epsilon_t)^2\right)$$

Weak learners to **Strong** learners

Plugging the optimal α_t in the error bound:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{T} Z_t \leq \exp\left(-2 \sum_{t=1}^{T} (0.5 - \epsilon_t)^2\right)$$

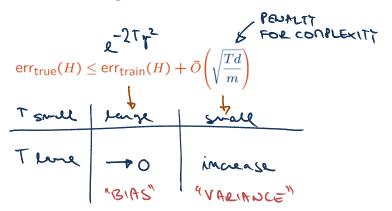
Now, if each rule of thumb (at least slightly) better than random:

$$\epsilon_t \leq 0.5 - \gamma$$
 for $\gamma > 0$

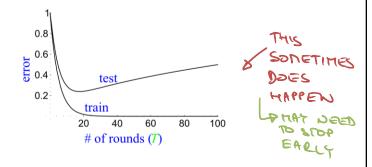
then training error drops exponentially fast:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{T} Z_t \leq \exp\left(-2 \sum_{t=1}^{T} (0.5 - \epsilon_t)^2\right) \leq e^{-2T\gamma^2}$$

Bounding *true* error [Freund-Schapire 1997]



- T = number of rounds
- **d** = VC dimension of weak learner
- m = number of training examples

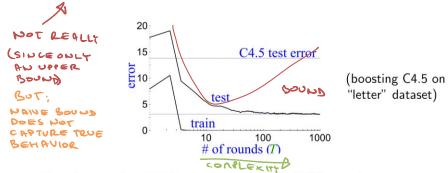


expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes "too complex"

A typical run

"contradicts" a naïve bound



- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

Finer analysis: margins

[Schapire et al. 1998]

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications

Finer analysis: margins

[Schapire et al. 1998]

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers

Finer analysis: margins

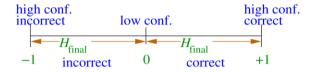
[Schapire et al. 1998]

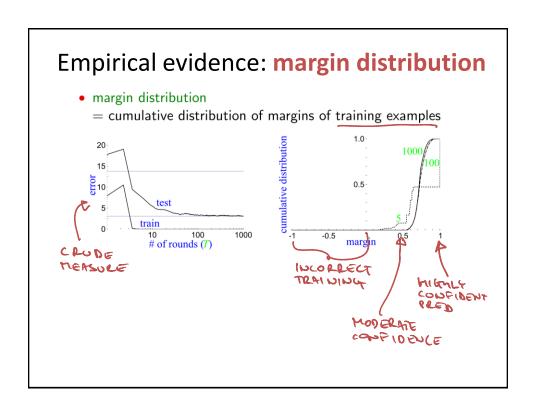
- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
 - = (fraction voting correctly) (fraction voting incorrectly)

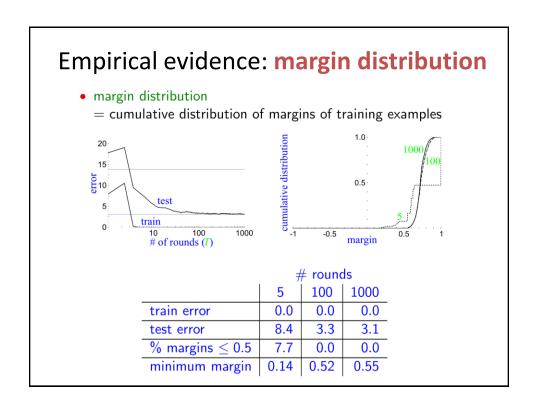
Finer analysis: margins

[Schapire et al. 1998]

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
 - = (fraction voting correctly) (fraction voting incorrectly)







Theoretical evidence:

large margins ⇒ simple classifiers

 Theorem: large margins ⇒ better bound on generalization error (independent of number of rounds)

Theoretical evidence:

large margins ⇒ simple classifiers

- Theorem: large margins ⇒ better bound on generalization error (independent of number of rounds)
 - proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)

Theoretical evidence:

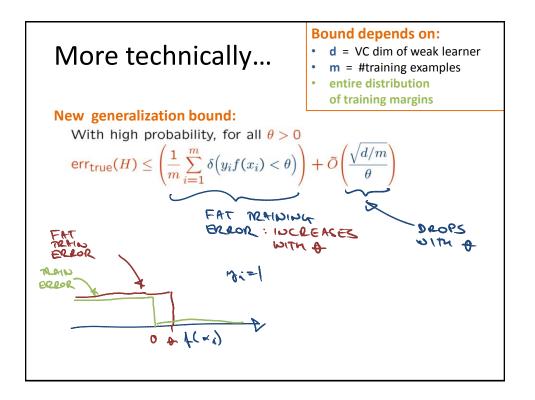
large margins ⇒ simple classifiers

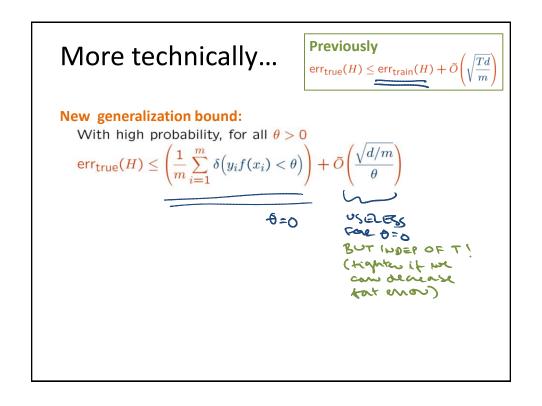
- Theorem: large margins ⇒ better bound on generalization error (independent of number of rounds)
 - proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)

Theoretical evidence:

large margins ⇒ simple classifiers

- Theorem: large margins ⇒ better bound on generalization error (independent of number of rounds)
 - proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)
- so: although final classifier is getting larger, margins are likely to be increasing, so final classifier actually getting close to a simpler classifier, driving down the test error





Practical advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - → shift in mind set goal now is merely to find classifiers barely better than random guessing

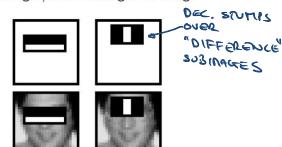
LEGINES

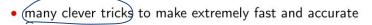
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Application: detecting faces

[Viola-Jones 2001]

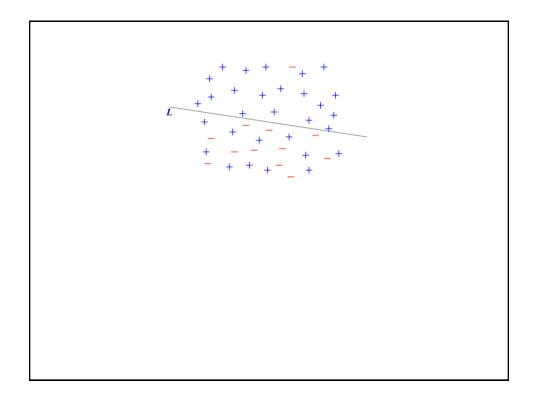
- problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image

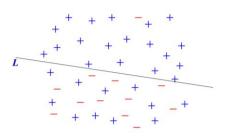




Caveats

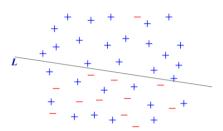
- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - → overfitting
 - weak classifiers too weak ($\gamma_t \to 0$ too quickly)
 - → underfitting
 - → low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise





• ideally, want weak classifier that says:

$$h(x) = \begin{cases} +1 & \text{if } x \text{ above } L \\ \text{"don't know"} & \text{else} \end{cases}$$



• ideally, want weak classifier that says:

$$h(x) = \begin{cases} +1 & \text{if } x \text{ above } L \\ \text{"don't know"} & \text{else} \end{cases}$$

- problem: cannot express using "hard" predictions
- if must predict ± 1 below \emph{L} , will introduce many "bad" predictions
 - need to "clean up" on later rounds
- dramatically increases time to convergence

• ideally, want weak classifier that says:

$$h(x) = \begin{cases} +1 & \text{if } x \text{ above } L \\ \text{"don't know"} & \text{else} \end{cases}$$

- problem: cannot express using "hard" predictions
- if must predict ±1 below L, will introduce many "bad" predictions
 - need to "clean up" on later rounds
- dramatically increases time to convergence

Confidence-rated Predictions

[Schapire-Singer 1999]

- useful to allow weak classifiers to assign confidences to predictions
- formally, allow $h_t: X \to \mathbb{R}$

$$sign(h_t(x)) = prediction$$

 $|h_t(x)| = "confidence"$

Confidence-rated Predictions

[Schapire-Singer 1999]

- useful to allow weak classifiers to assign confidences to predictions
- formally, allow $h_t: X \to \mathbb{R}$

$$sign(h_t(x)) = prediction$$

 $|h_t(x)| = "confidence"$

use identical update:

update:
$$b \in \text{Foll}^{T}.$$

and identical rule for combining weak classifiers

Confidence-rated Predictions

[Schapire-Singer 1999]

- useful to allow weak classifiers to assign confidences to predictions
- formally, allow $h_t: X \to \mathbb{R}$

$$sign(h_t(x)) = prediction$$

 $|h_t(x)| = "confidence"$

use identical update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

and identical rule for combining weak classifiers

• question: how to choose α_t and h_t on each round

Confidence-rated Predictions

• saw earlier:

training error
$$(H_{\text{final}}) \leq \prod_{t} Z_{t} = \frac{1}{m} \sum_{i} \exp \left(-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})\right)$$

Confidence-rated Predictions

• saw earlier:

training error
$$(H_{\text{final}}) \leq \prod_{t} Z_{t} = \frac{1}{m} \sum_{i} \exp \left(-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})\right)$$

• therefore, on each round t, should choose $\alpha_t h_t$ to minimize:

$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Confidence-rated Predictions

[SCHAPIRE-SINGER

saw earlier:

$$\text{training error}(H_{\text{final}}) \leq \prod_t Z_t = \frac{1}{m} \sum_i \exp\left(-y_i \sum_t \alpha_t h_t(x_i)\right)$$

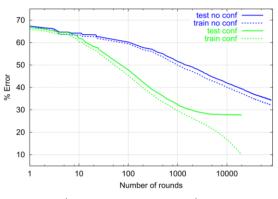
• therefore, on each round t, should choose $\alpha_t h_t$ to minimize:

$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

• in many cases (e.g., decision stumps), best confidence-rated weak classifier has simple form that can be found efficiently

Confidence-rated predictions help a lot!

CONVERGE



	round first reached		
% error	conf.	no conf.	speedup
40	268	16,938	63.2
35	598	65,292	109.2
30	1,888	>80,000	_

Loss in logistic regression

Logistic regression assumes:

Loss in logistic regression

Logistic regression assumes:

$$P(Y = 1|X = x) = \frac{1}{1 + \exp(-f(x))}$$

And tries to maximize conditional likelihood:

$$P(y_1,...,y_m | x_1,...,x_m, H) = \prod_{i=1}^m \frac{1}{1 + \exp(-y_i f(x_i))}$$

Loss in logistic regression

Logistic regression assumes:

$$P(Y = 1|X = x) = \frac{1}{1 + \exp(-f(x))}$$

And tries to maximize conditional likelihood:

$$P(y_1, ..., y_m | x_1, ..., x_m, H) = \prod_{i=1}^m \frac{1}{1 + \exp(-y_i f(x_i))}$$

Equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln \left(1 + \exp(-y_i f(x_i)) \right)$$

Loss in AdaBoost

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln \left(1 + \exp(-y_i f(x_i)) \right)$$

Loss in AdaBoost

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln \left(1 + \exp(-y_i f(x_i)) \right)$$

Boosting minimizes similar loss function!

$$\frac{1}{m}\sum_{i=1}^{m}\exp(-y_{i}f(x_{i}))=\prod_{t}Z_{t}$$

$$\text{Locs}$$

$$\text{Exp. Locs} > \text{Locs} > \text{His class}$$

$$\text{Exp. Locs} > \text{Locs} > \text{His class}$$

$$\text{Exp. Locs} > \text{Locs} > \text{Locs} > \text{Locs}$$

Logistic regression vs AdaBoost

Logistic regression:

• Minimize
$$\log \log x$$
• Minimize $\exp x$
• Minimize $\exp x$
• Minimize $\exp x$
• $\lim_{i=1}^{m} \ln \left(1 + \exp(-y_i f(x_i))\right)$
• $\lim_{i=1}^{m} \exp(-y_i f(x_i))$

AdaBoost:

• Minimize exponential loss

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Logistic regression vs AdaBoost

Logistic regression:

Minimize log loss

$$\sum_{i=1}^{m} \ln\left(1 + \exp(-y_i f(x_i))\right) \qquad \sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_{j} w_{j} x_{j}$$
 where x_{j} 's predefined

AdaBoost:

• Minimize exponential loss

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where h_t 's defined dynamically to fit the data

Logistic regression vs AdaBoost

Logistic regression:

AdaBoost:

LUCK PORT

Minimize
$$\log \log s$$

Minimize $\exp n = t$

$$\sum_{i=1}^{m} \ln \left(1 + \exp(-y_i f(x_i))\right)$$

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_j w_j x_j$$
 where x_j 's predefined

• w_j 's optimized jointly

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where h_t 's defined dynamically to fit the data

 α_t 's optimized one at a time COORD DESCENT

Benefits of model-fitting view

- immediate generalization to other loss functions
 - · e.g. squared error for regression
 - e.g. logistic regression (by only changing one line of AdaBoost)

Benefits of model-fitting view

- · immediate generalization to other loss functions
 - e.g. squared error for regression
 - e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates

Benefits of model-fitting view

- immediate generalization to other loss functions
 - e.g. squared error for regression
 - e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates
- caveat: wrong to view AdaBoost as just an algorithm for minimizing exponential loss
 - other algorithms for minimizing same loss will (provably) give very poor performance
 - thus, this loss function cannot explain why AdaBoost "works"

What you should know about boosting

- weak classifiers ⇒ strong classifiers
 - weak: slightly better than random on training data
 - strong: eventually zero error on training data
- · AdaBoost prevents overfitting by increasing margins
- · regimes when AdaBoost overfits
 - weak learner too strong: use smaller trees or stop early
 - data noisy: stop early or regularize α_t
- AdaBoost vs Logistic Regression
 - exponential loss vs log loss
 - single-coordinate updates vs full optimization