Review

- Parallel importance sampling
 - bias due to I/normalizer
 - particle filter = recursive parallel IS

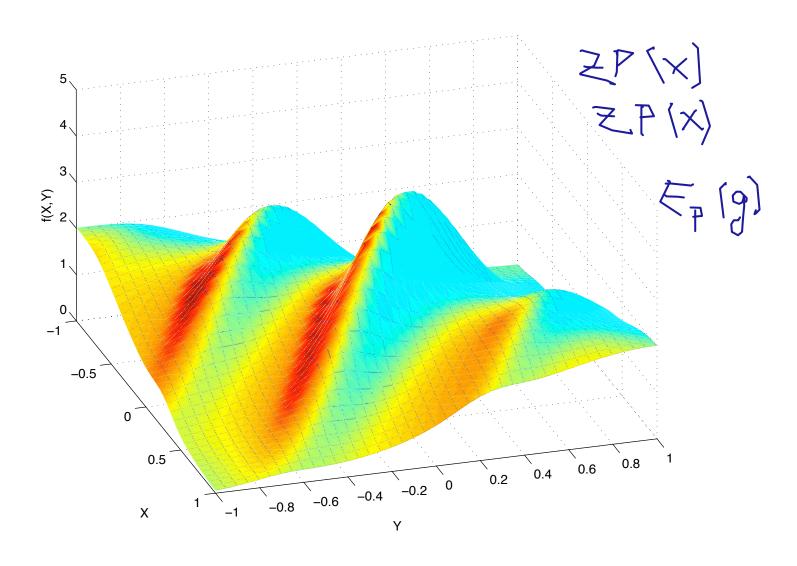
MCMC

- randomized search for high P(x)
- burn-in, mixing
- approx. iid: $\{X_t, X_{t+\Delta}, X_{t+2\Delta}, X_{t+3\Delta}, \dots\}$
- use to construct estimator of $E_P(g(X))$

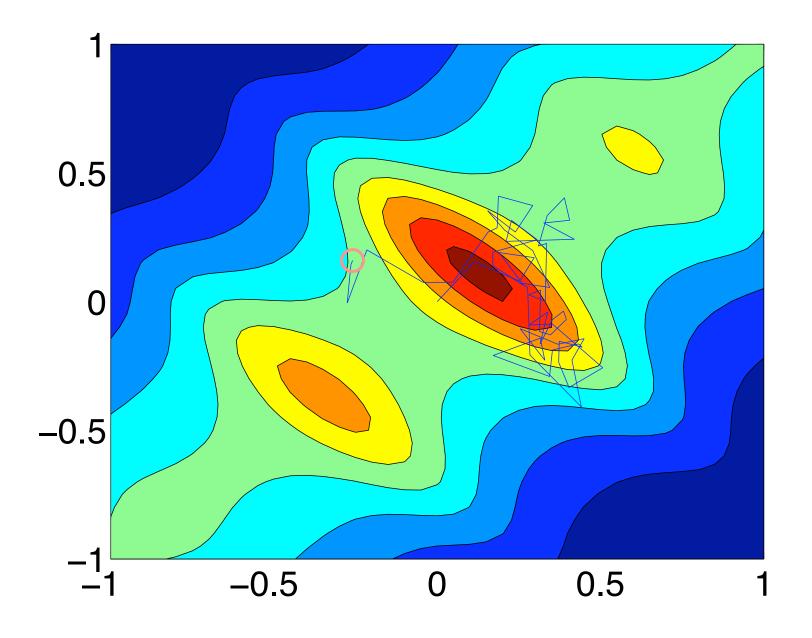
Review

- Metropolis-Hastings
 - way to design chain w/ stationary dist'n P(X)
 - proposal distribution Q(X' | X)
 - e.g., random walk $N(X' \mid X, \sigma^2 I)$
 - ▶ accept w.p. min(I, $\frac{P(x')}{P(x)} \stackrel{Q(x_k|x')}{\underbrace{Q(x'|x_k)}}$)
 - tension btwn long moves, high accept rate

MH example



MH example



In example

- \bullet g(x) = x^2
- True E(g(X)) = 0.28...
- Proposal: $Q(x' \mid x) = N(x' \mid x, 0.25^2 I)$
- Acceptance rate 55–60%
- After 1000 samples, minus burn-in of 100:

```
final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716
```

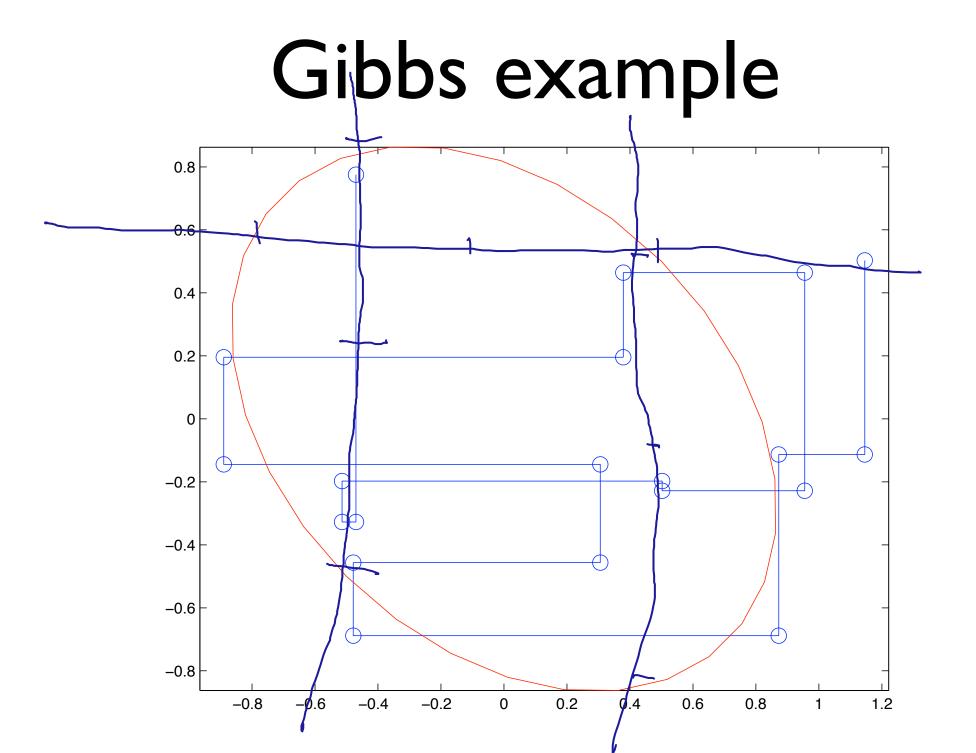
Gibbs sampler

- Special case of MH
- Divide X into blocks of r.v.s B(1), B(2), ...
- Proposal Q:

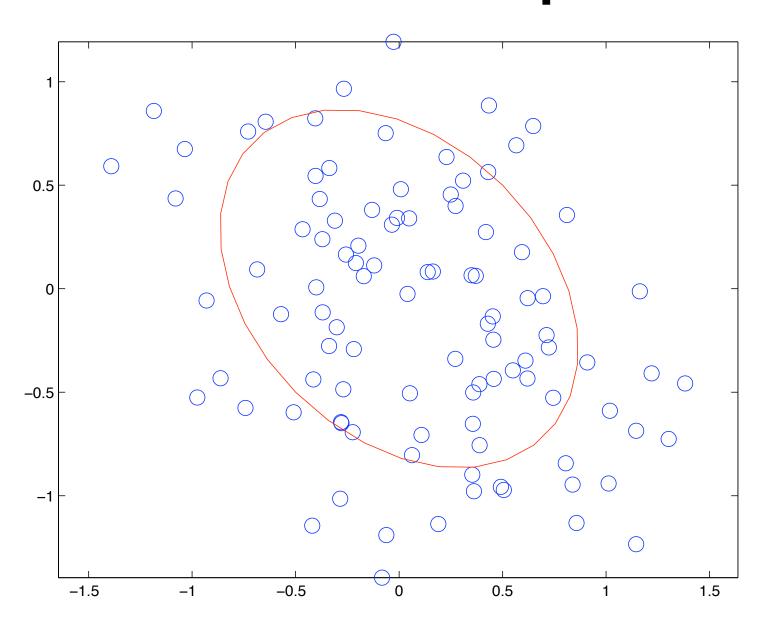
9(x'1x)=P(x'(x)

pick a block i uniformly

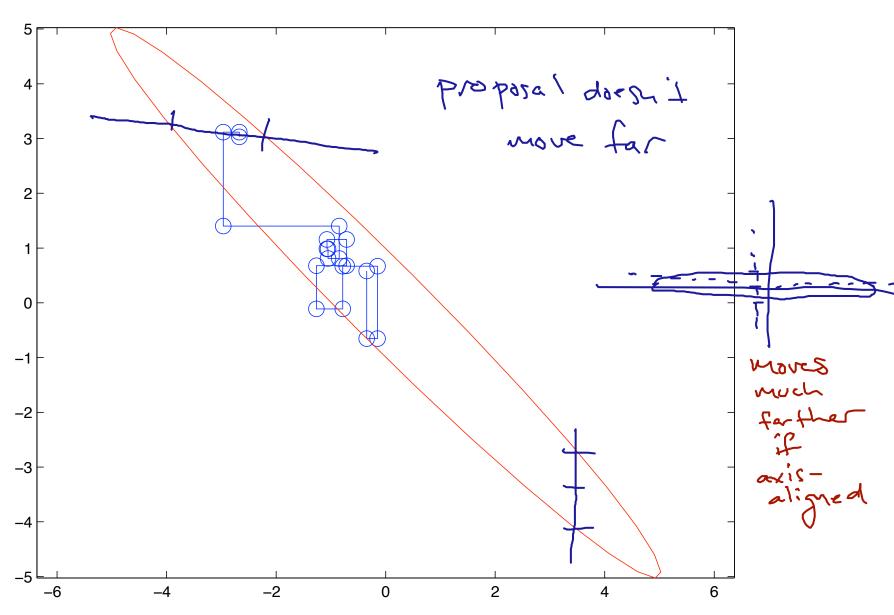
• Sample $X_{B(i)} \sim P(X_{B(i)} | X_{\neg B(i)})$ • Useful property: acceptance rate p = 1



Gibbs example



Gibbs failure example



Relational learning

- Linear regression, logistic regression: attribute-value learning
 - set of i.i.d. samples from P(X,Y)
- Not all data is like this
 - an attribute is a property of a single entity
 - what about properties of sets of entities?

Application: document clustering contains (doc; , word)

10-601 Machine Learning Fall 2009

Geoff Gordon and Miroslav Dudik School of Computer Science, Carnegie Mellon University

About | People | Lectures | Recitations | Homework | Exams | Projects

Mailing lists Textbooks Grading Auditing

Homework policy

Collaboration policy

Late policy

Regrade policy

Final project

Class lectures: Mondays and Wednesdays 10:30-11:50 in Newell Simon Hall 1305

Recitations: Wednesday, 6:00-8:00 pm GHC 8102

HW3 is out! It's due on Wednesday Oct 7, 10:30 am

Machine Learning is concerned with computer programs that learn to make better predictions or take better actions given increasing numbers of observations (e.g., programs that learn to spot high-risk medical patients, recognize human faces, recommend music and movies, or drive autonomous robots). This course covers theory and practical algorithms for machine learning from a variety of perspectives. We cover topics such as Bayesian networks, boosting, support-vector machines, dimensionality reduction, and reinforcement learning. The course also covers theoretical concepts such as bias-variance trade-off, PAC learning, margin-based generalization bounds, and Occam's Razor. Short programming assignments include hands-on experiments with various learning algorithms. Typical assignments include learning to automatically classify email by topic, and learning to automatically classify the mental state of a person from brain image data. The course will include a term project where the students will have opportunity to explore some of the class topics on a real-world data set in more detail.

Students entering the class with a pre-existing working knowledge of probability, statistics and algorithms will be at an advantage, but the class has been designed so that anyone with a strong numerate background can catch up and fully participate. This class is intended for Masters students and advanced undergraduates.

Announcement Emails

court (d; , wj)

In Header

In Body

Application: Rents (M. M.) recommendations

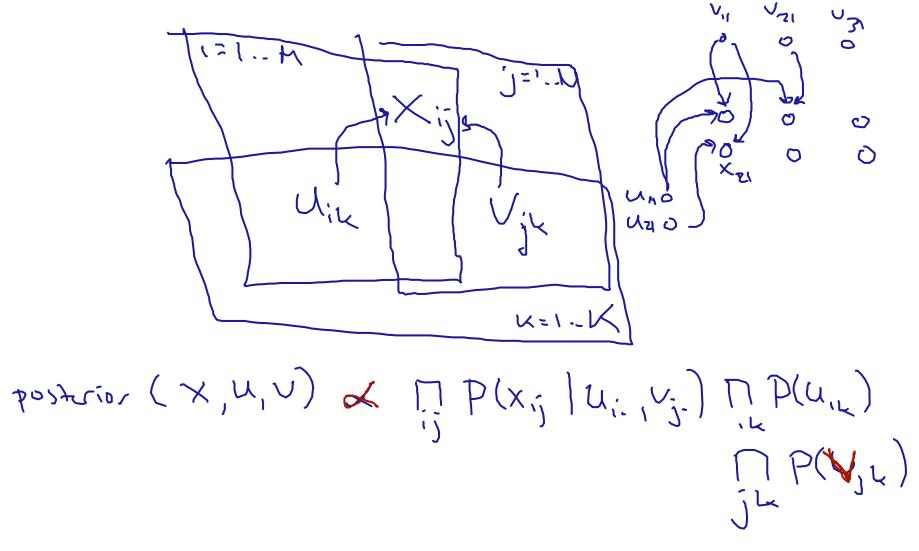
A

B

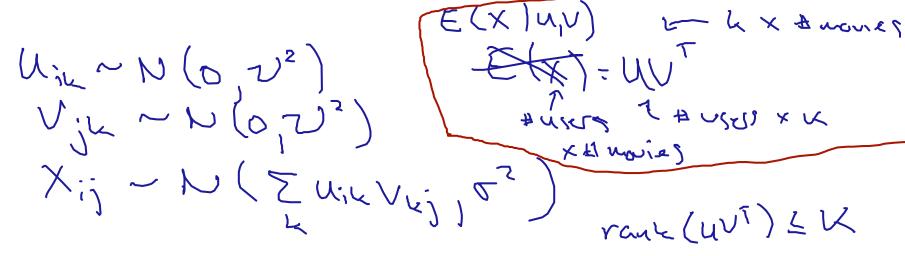
Harry Botter Mogennisqueton ...

B

Latent-variable models

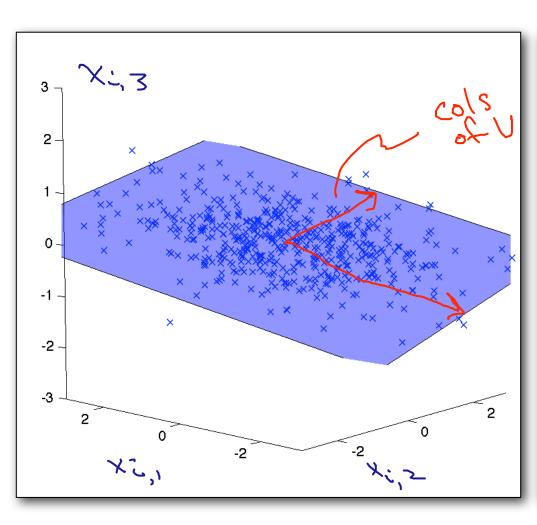


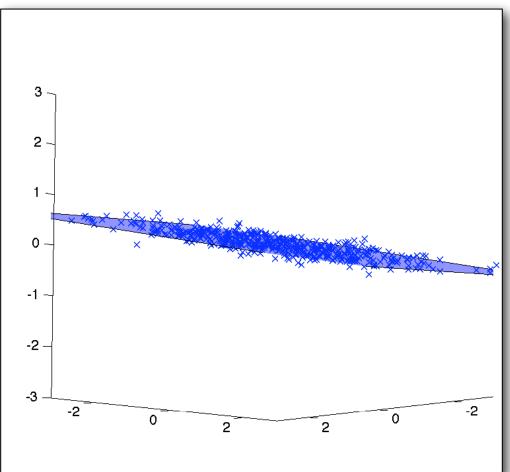
Best-known LVM: F



- Suppose X_{ij}, U_{ik}, V_{jk} all ~ Gaussian
- - or Bayesian PCA

YERMX3 NERMX2 NERMX2 VERMX2 VERMX2 VERMX2 VERMX2



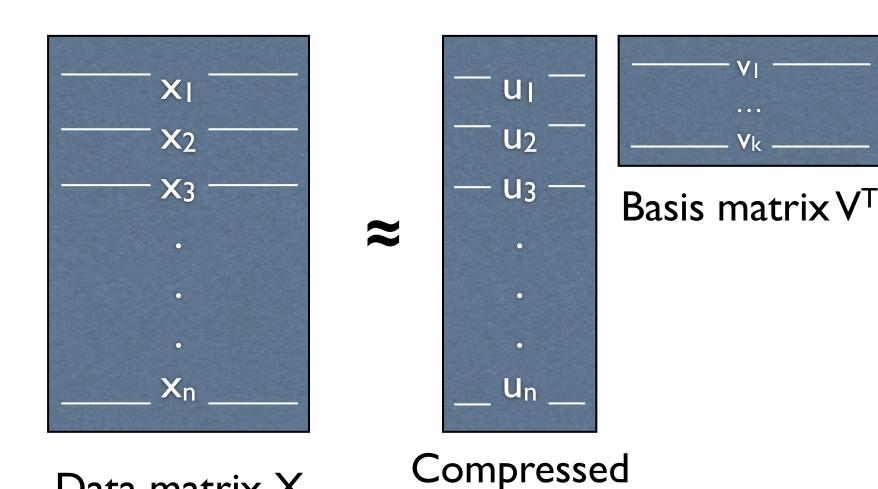


PCA: cartoon example

Movie

User

PCA: cartoon example

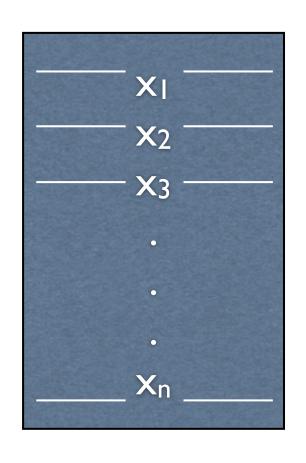


matrix U

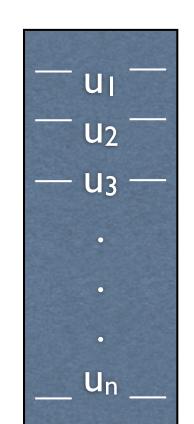
Data matrix X

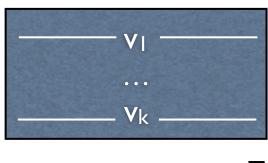
17

PCA: cartoon example



Data matrix X





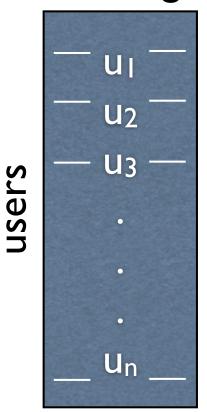
Basis matrix V^T

rows of V^T span the low-rank space

Compressed matrix U

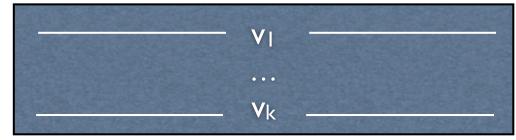
Interpreting PCA

basis weights



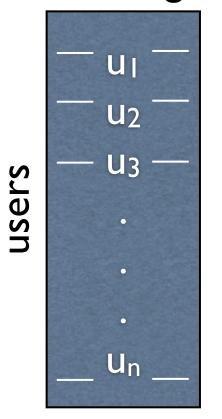
basis vectors

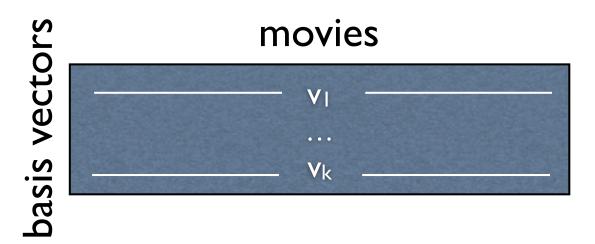
movies



Interpreting PCA

basis weights





Basis vectors represent movies that **vary together**Weights say how much each user cares about each type of movie

Mean subtraction

```
► U_{ik} \sim N(0, V^2)
                                M, Min, Min ~ N (0, 22)
     \rightarrow V_{ik} \sim N(0, V^2)
      X_{ij} \sim N(U_i \cdot V_j, \sigma^2) \longrightarrow X_{i,} \sim N(M \leftarrow M_i^{rol} + M_i^{ol}) 
                                               + (1: 1: 02)
                                    Code for MLE of
>> mu = mean(X(:));
                                          means
>> colmu = mean(X - mu);
>> rowmu = mean(X' - mu)';
>> X = X - mu - repmat(colmu, size(X,1), 1) -
        repmat(rowmu, 1, size(X,2));
```

Data weights

• Let
$$W_{ij} = \begin{cases} 1 & \text{if } \chi_{ij} \text{ observed} \\ 0 & \text{o}/\omega \end{cases}$$
 observed

• Likelihood · prior =
$$\begin{cases} P(\chi_{ij} | u_{ij}, v_{ij}) \\ P(u_{ik}) \\ P(v_{ik}) \end{cases}$$

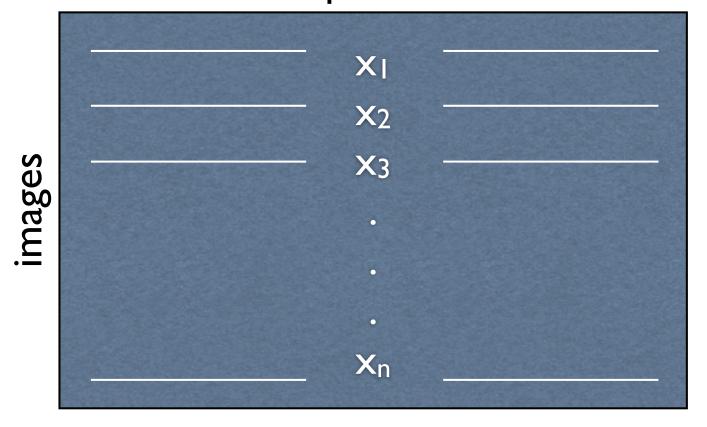
• More generally, $W_{ij} \ge 0$

Another use of PCA

face images from Groundhog Day, extracted by Cambridge face DB project

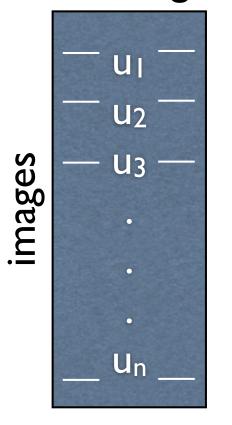
Image matrix

pixels



Result of factoring

basis weights



basis vectors

- vk

- vk

- vk

- vk

Basis vectors are often called "eigenfaces"

Eigenfaces

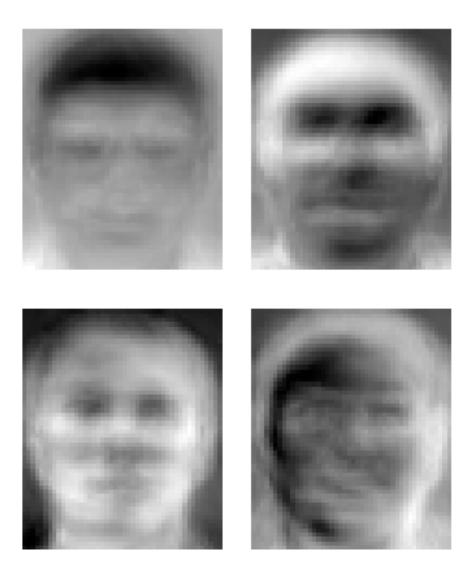


image credit: AT&T Labs Cambridge

PCA: finding the MLE

- PCA:
 - ▶ $U_{ik} \sim N(0, V^2)$
 - $V_{jk} \sim N(0, V^2)$
 - $Y_{ij} \sim N(U_i \cdot V_j, \sigma^2)$
 - \rightarrow $\sigma/v \rightarrow 0$

$$= ||x - \hat{x}||^2$$

$$= ||x - \hat{x}||^2$$

Summary: to do PCA, Cind SUD

PCA & SVD

The **singular value decomposition** is

7 RMXN RMXN

$$X = R \Sigma S^T$$

- ▶ R, S orthonormal; $\Sigma \ge 0$ diagonal
- All matrices can be expressed this way
- See syd, svds in Matlab

x = 8. 5.

ح در-بع، ٢- لع)

Then, to get UVT instead of REST, -1/2 So, PCA is U = R Z

apparent wife square root