Review

- Multiclass logistic regression
- Priors, conditional MAP logistic regression
- Bayesian logistic regression
 - MAP is not always typical of posterior

posterior predictive can avoid overfitting

predictive

-20

-10

10

20

Review

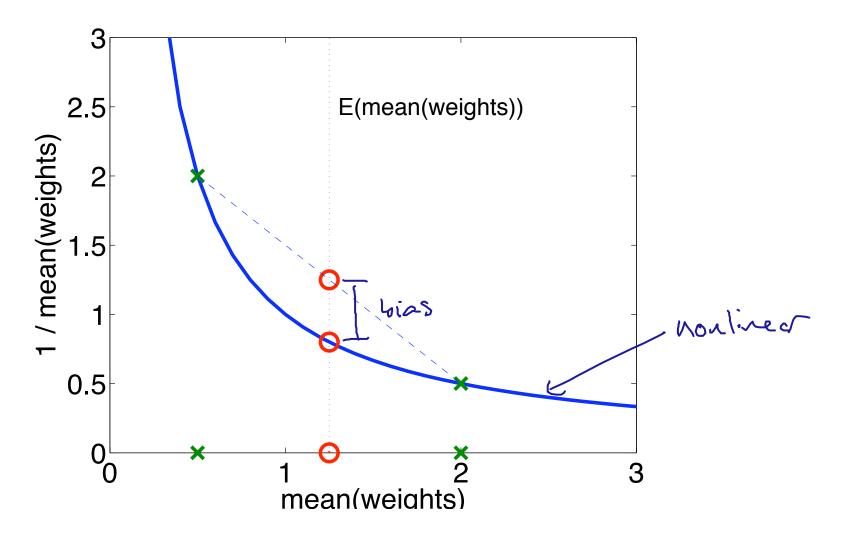
- Finding posterior predictive distribution often requires numerical integration
 - uniform sampling
 - importance sampling
 - parallel importance sampling
- These are all **Monte-Carlo algorithms**
 - another well-known MC algorithm coming up

Application: SLAM

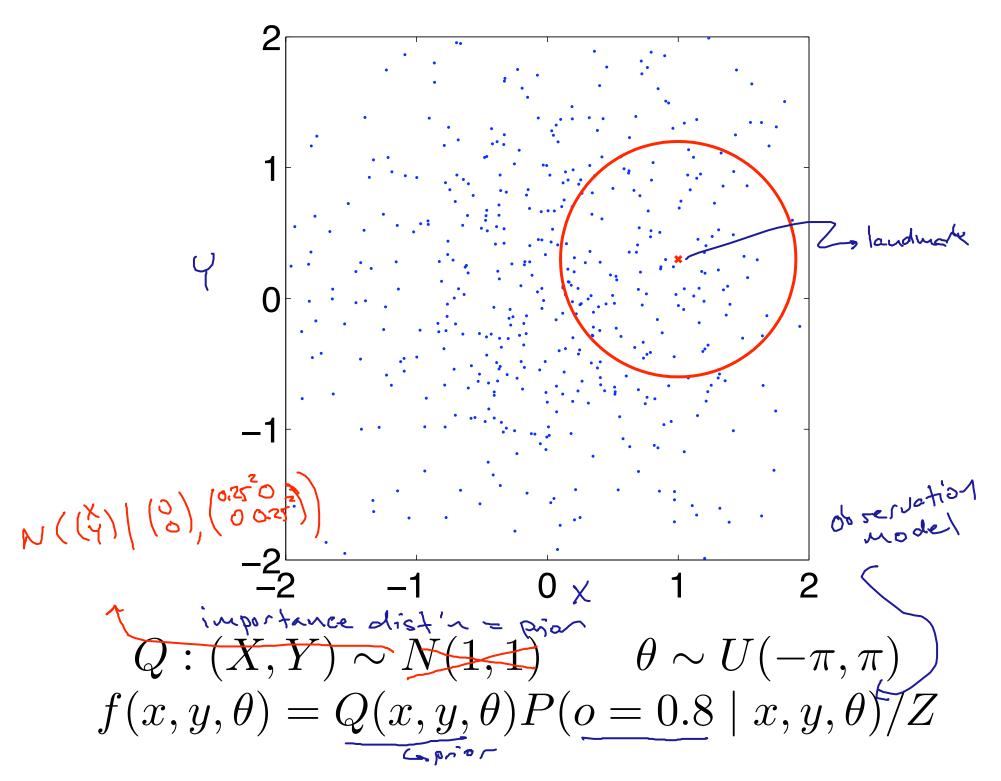
Parallel IS

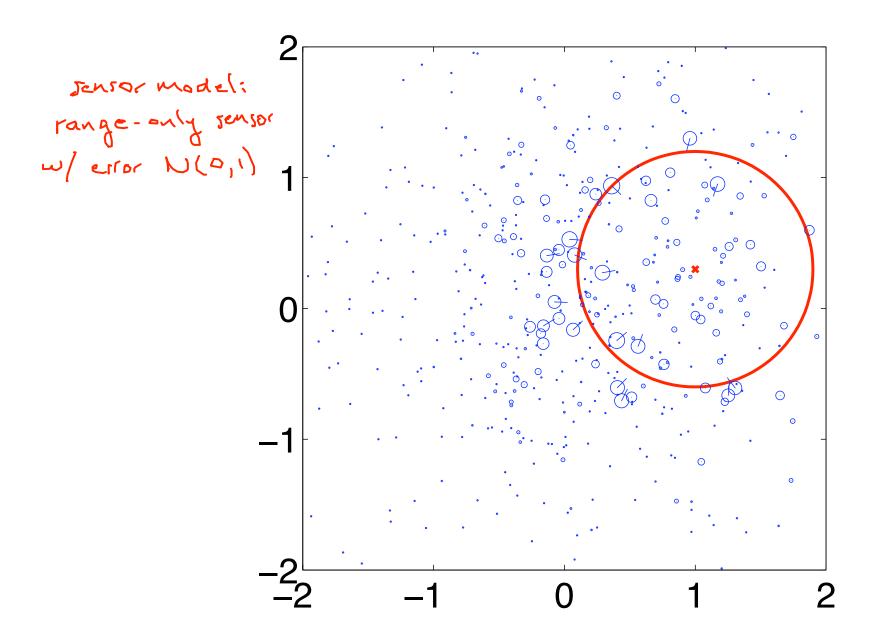
set
$$\hat{W}_{i} = \frac{2}{2}P(x_{i})|Q(x_{i})$$
 $\hat{W} = \frac{1}{2}\sum_{i=1}^{2}\hat{W}_{i}$
 $E(\hat{U}_{i}) = \int Q(x_{i})|Q(x_{i$

Parallel IS is biased



$$E(\overline{W}) = Z$$
, but $E(1/\overline{W}) \neq 1/Z$ in general



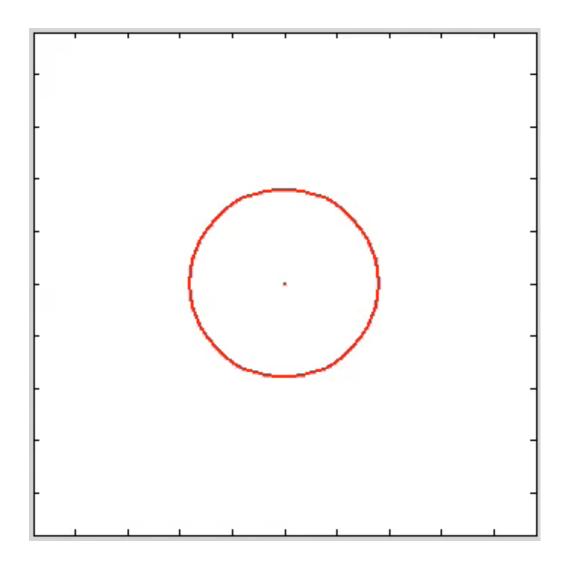


Posterior $E(X,Y,\theta) = (0.496,0.350,0.084)$

SLAM revisited

- Uses a recursive version of parallel importance sampling: particle filter
 - each sample (particle) = trajectory over time
 - sampling extends trajectory by one step
 - recursively update importance weights and renormalize
 - resampling trick to avoid keeping lots of particles with low weights

Particle filter example



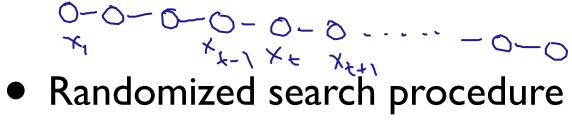
Monte-Carlo revisited

Recall: wanted

$$E_P(g(X)) = \int g(x)P(x)dx = \int f(x)dx$$

- Would like to search for areas of high P(x)
- But searching could bias our estimates

Markov-Chain Monte Carlo



- Produces sequence of RVs X₁, X₂, ...
 - Markov chain: satisfies Markov property

• If $P(X_t)$ small, $P(X_{t+1})$ tends to be larger

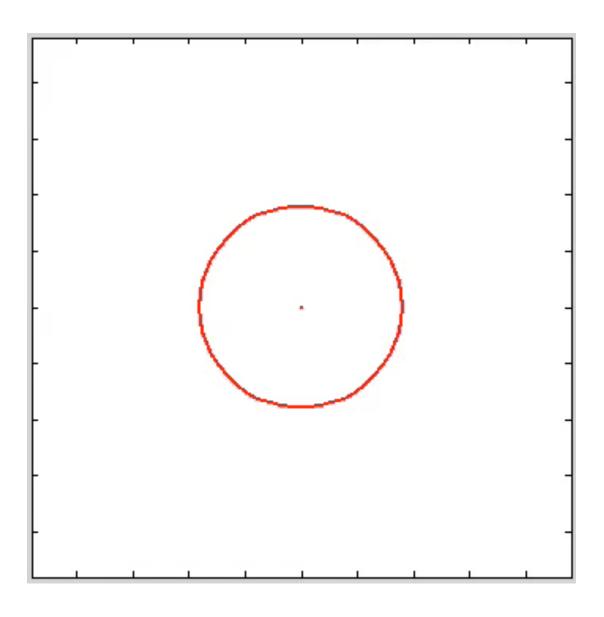
• If
$$P(X_t)$$
 small, $P(X_{t+1})$ tends to be larger

• As $t \to \infty$, $X_t \sim P(X)$ or limiting distinction is $P(X_t) \sim As \Delta \rightarrow \infty$, $X_{t+\Delta} \perp X_t$

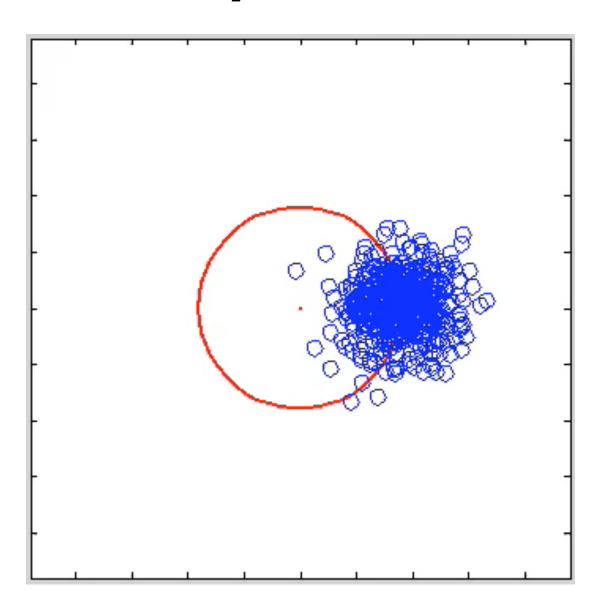
for $t \in X_t$

• As
$$\Delta \to \infty$$
, $X_{t+\Delta} \perp X_t$

Markov chain



Stationary distribution



Markov-Chain Monte Carlo

- As $t \to \infty$, $X_i \sim P(X)$; as $\Delta \to \infty$, $X_{t+\Delta} \perp X_t$ burnon time mixing time
- For big enough t and Δ , an approximately i.i.d. sample from P(X) is
 - $Y_t, X_{t+\Delta}, X_{t+2\Delta}, X_{t+3\Delta}, \dots$
- Can use i.i.d. sample to estimate $E_P(g(X))$

$$\hat{G} = \frac{1}{N} \sum_{i=1}^{N} g(X_{t-(i-i)}\Delta)$$

$$\hat{G} = \frac{1}{N} \sum_{i=1}^{N} g(X_{t-(i-i)}\Delta)$$

Actually, don't need independence:

Metropolis-Hastings

- Way to design chain w/ stationary dist'n P(X
- Basic strategy: start from arbitrary X
- Repeatedly tweak X to get X'
 - ▶ If $P(X') \ge P(X)$, move to X'
 - ▶ If $P(X') \ll P(X)$, stay at X

In intermediate cases, randomize

Stationary

Aistin

P

Proposal distribution

- Left open: what does "tweak" mean?
- Parameter of MH: Q(X' | X)

- Good proposals explore quickly, but remain in regions of high P(X)
- Optimal proposal? Q(x'|x) = P(x')

Simplest proposal

• Random walk MH:

- $Q(X' \mid X) = Q(X' \mid X) = Q(X$
- Dig σ: more quely
- > small o: remain in regions of high P
- Not usually a great proposal, but sometimes the best we have

MH algorithm

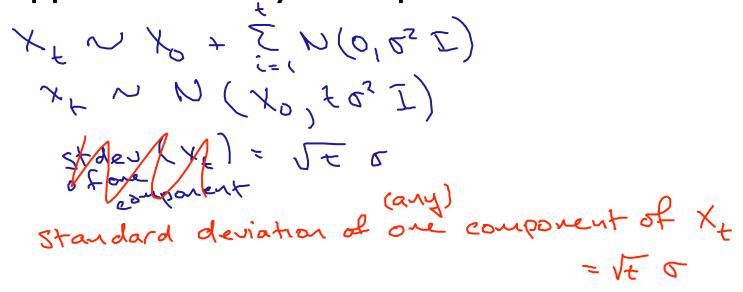
- Initialize X_I arbitrarily \nearrow $P(X_I) > 0$
- > corrent terate • For t = 1, 2, ...:
 - Sample X' $\sim Q(X' \mid X_t)$
 - ► Compute $p = \frac{P(X')}{P(X_t)} \frac{Q(X_t|X')}{Q(X'|X_t)}$ acceptance ► With probability min(I, p), set $X_{t+1} := X'$
 - - else $X_{t+1} := X_t$
- Note: sequence $X_1, X_2, ...$ will usually contain duplicates It Q(x,1xº)= b(x)

Acceptance rate

- Want acceptance rate (avg of min(I,p)) to be large, so we don't get big runs of same X
- Want Q(X' | X) to move long distances (to explore quickly)
- Tension between long moves, acceptance rate:

Random walk MH revisited

Suppose we always accepted. Then:

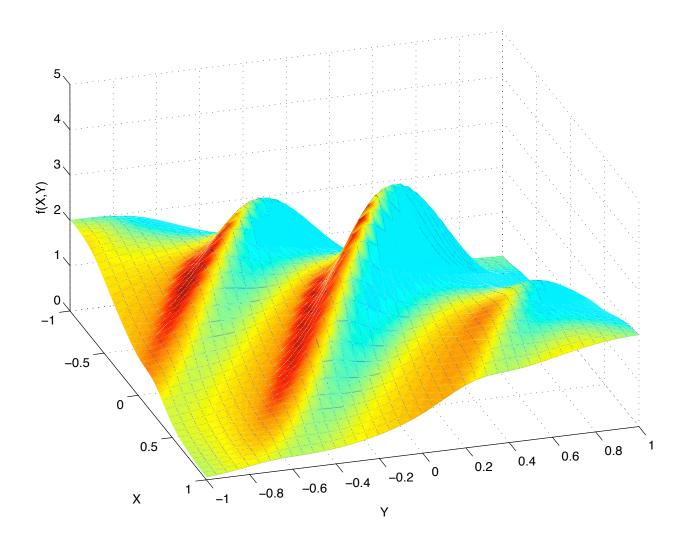


Variance can only be smaller if we reject

Mixing rate, mixing time

- If we pick a good proposal, we will move rapidly around domain of P(X)
- After a short time, won't be able to tell where we started
- This is short mixing time = # steps until we can't tell which starting point we used
- Mixing rate = I / (mixing time)

MH example



Random Walk

MH example

