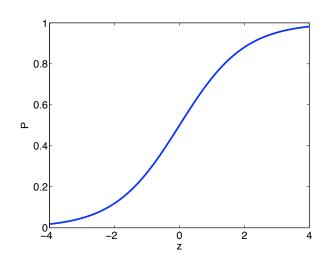
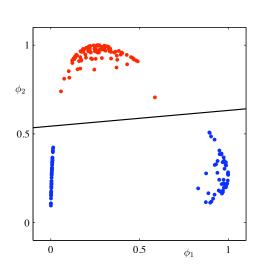
figure from book

Review

- Linear separability (and use of features)
- Class probabilities for linear discriminants
 - sigmoid (logistic) function
- Applications: USPS, fMRI





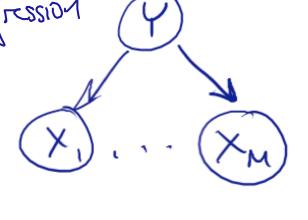
NB P(X,Y)

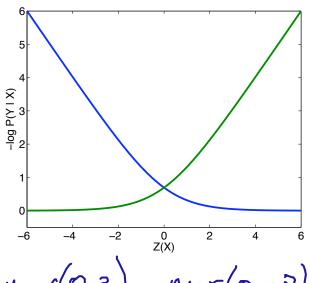
Review

• Generative vs. discriminative $\frac{P(Y|X)}{P(Y|X)}$

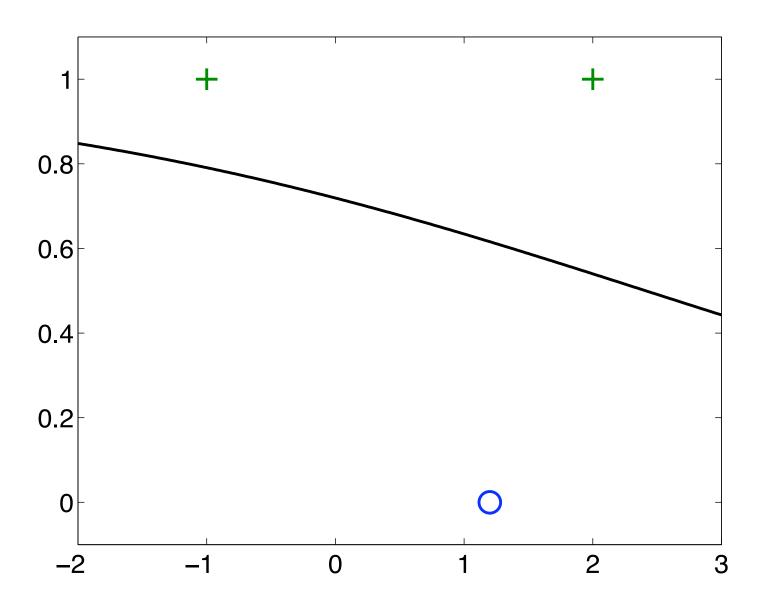
maximum conditional likelihood

- Logistic regression
- Weight space
 - each example adds a penalty to all weight vectors that misclassify it
 - penalty is approximately piecewise linear

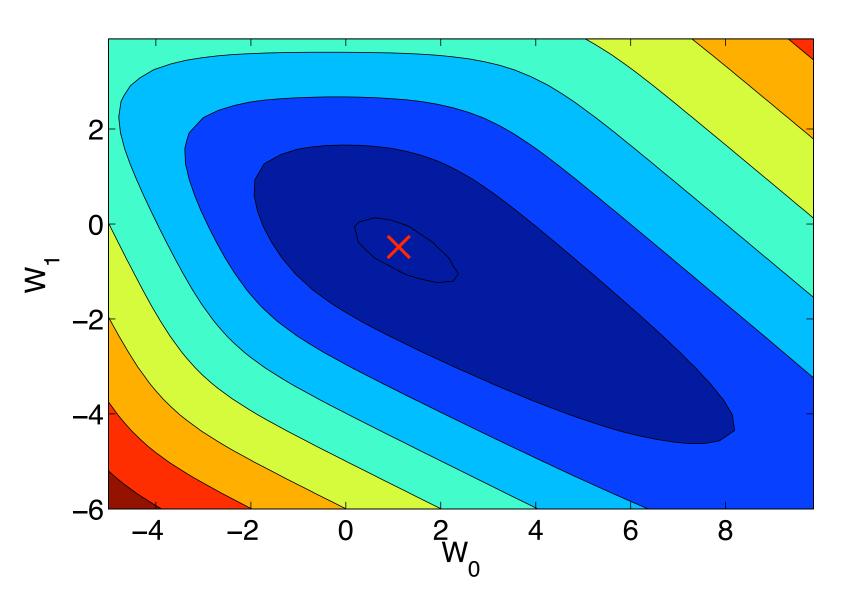




Example



-log(P(Y) X X, W))



Generalization: multiple

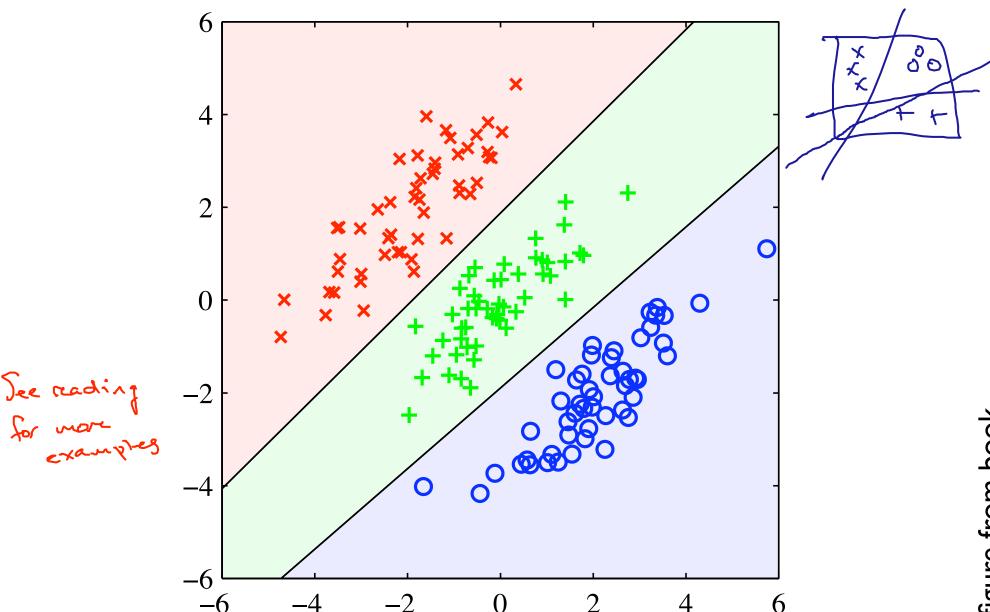
classes

w...we PR

- One weight vector per class: Y ∈ {1,2,...,C}
 - $P(Y=k) = \exp(z_k)/\sum_{k=1}^{C} \exp(z_{k'})$ $Z_k = w_0^k + \sum_{j=1}^{M} w_j^j X_j^j \qquad (\hat{y} \in a_1, y_0)$
- In 2-class case:

$$= \frac{1}{1 + \exp(\frac{2}{2} - \frac{2}{6})}$$

Multiclass example



Priors and conditional MAP

- P(Y | X,W) = ▽(Y₹)
 - ► Z = Wo + Jwjxj
- As in linear regression, can put prior on W
 - common priors: L₂ (ridge), L₁ (sparsity)

-togper twitz I -togperdatult,

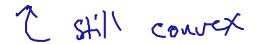
• $\max_{w} P(W=w \mid X,Y) = \max_{w} P(Y \mid X, W=\omega) P(W=\omega)$

or - log P(w) = k, + k2/w/1/2

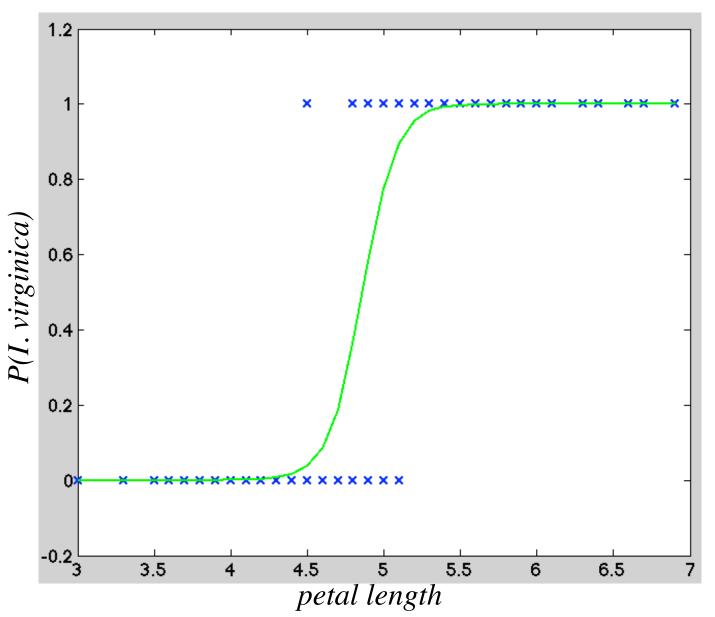
(linear r.t. affine function)

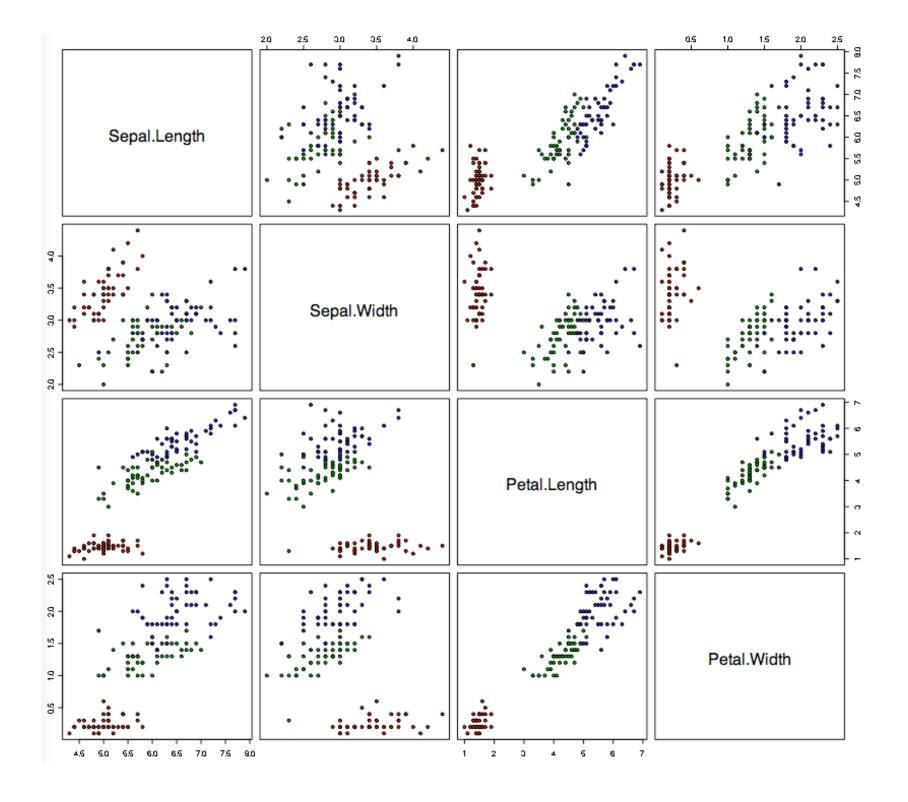
Software

- Logistic regression software is easily available: most stats packages provide it
 - e.g., glm function in R
 - or, http://www.cs.cmu.edu/~ggordon/IRLS-example/
- Most common algorithm: Newton's method on log-likelihood (or L₂-penalized version)
 - called "iteratively reweighted least squares"
 - for L_I, slightly harder (less software available)



Historical application: Fisher iris data

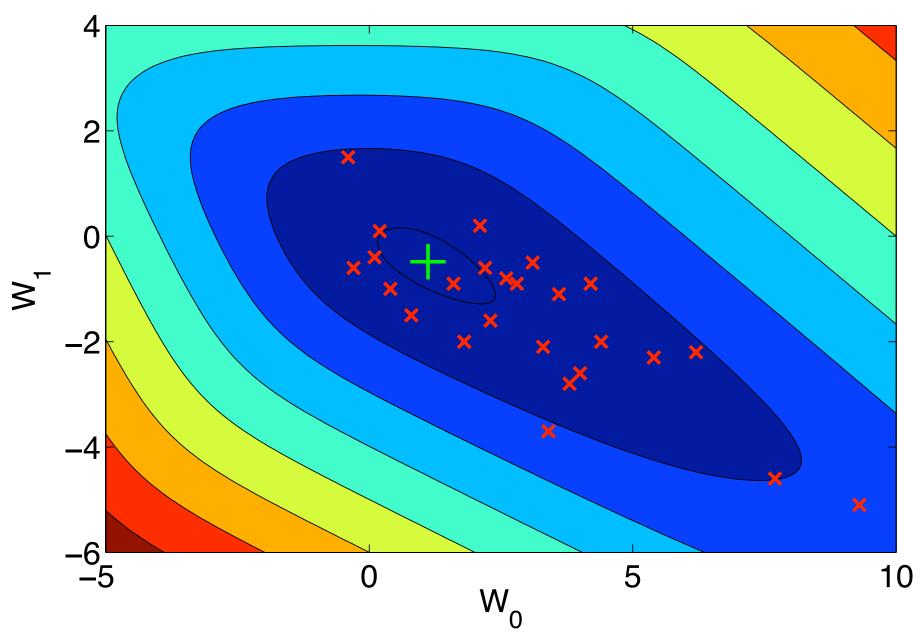




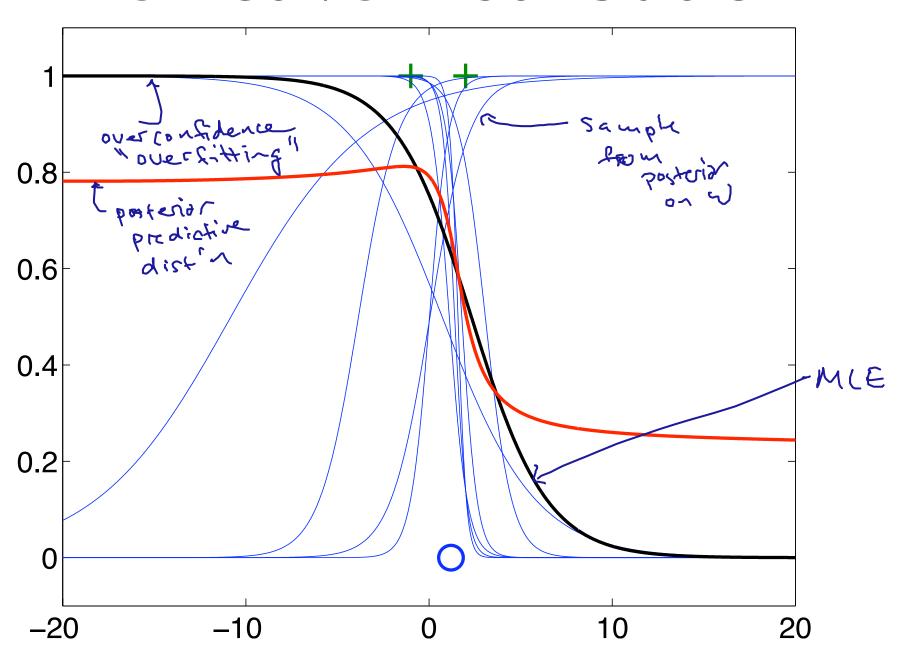
Bayesian regression

- In linear and logistic regression, we've looked at
 - conditional MLE: max_w P(Y | X, w)
 - conditional MAP: max_w P(W=w | X,Y)
- But of course, a true Bayesian would turn up nose at both
 - why?

Sample from posterior



Predictive distribution



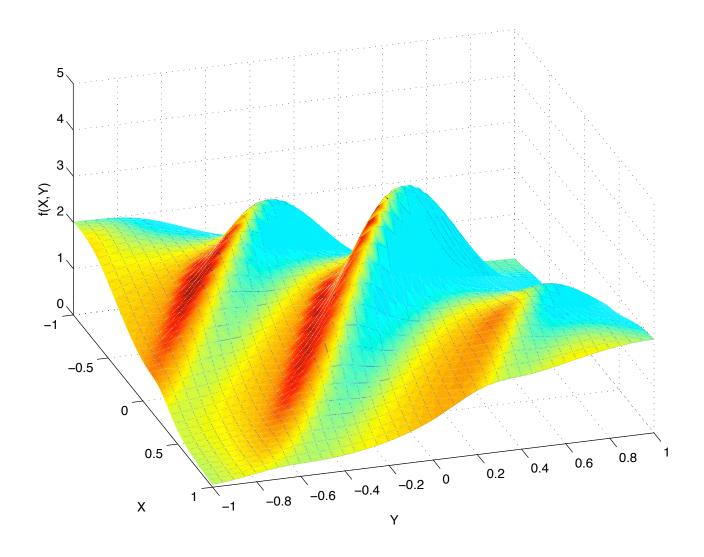
Overfitting

- Overfit: training likelihood » test likelihood
 - often a result of overconfidence
- Overfitting is an indicator that the MLE or MAP approximation is a bad one
- Bayesian inference rarely overfits
 - may still lead to bad results for other reasons!
 - e.g., not enough data, bad model class, ...

So, we want the predictive distribution

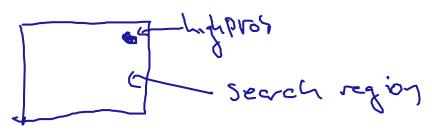
- Most of the time...
 - Graphical model is big and highly connected
 - Variables are high-arity or continuous
- Can't afford exact inference
 - Inference reduces to numerical integration (and/ or summation)
 - We'll look at randomized algorithms

Numerical integration

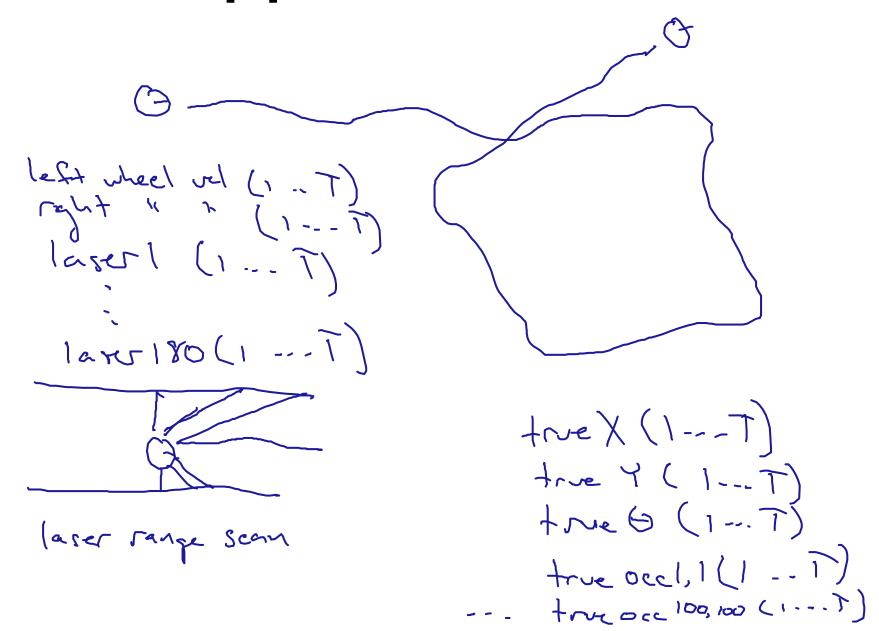


2D is 2 easy!

- We care about high-D problems
- Often, much of the mass is hidden in a tiny fraction of the volume
 - simultaneously try to discover it and estimate amount

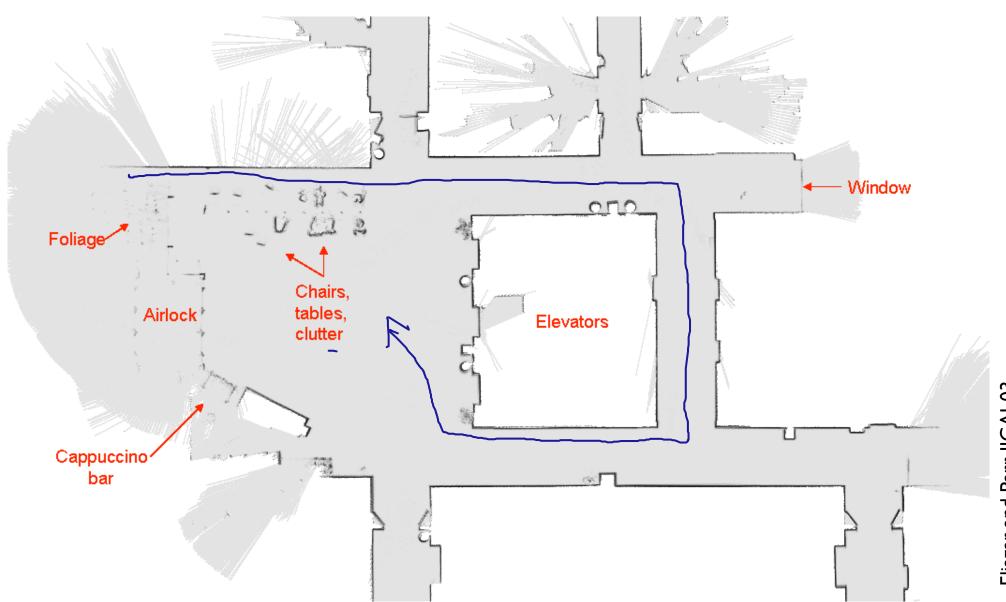


Application: SLAM

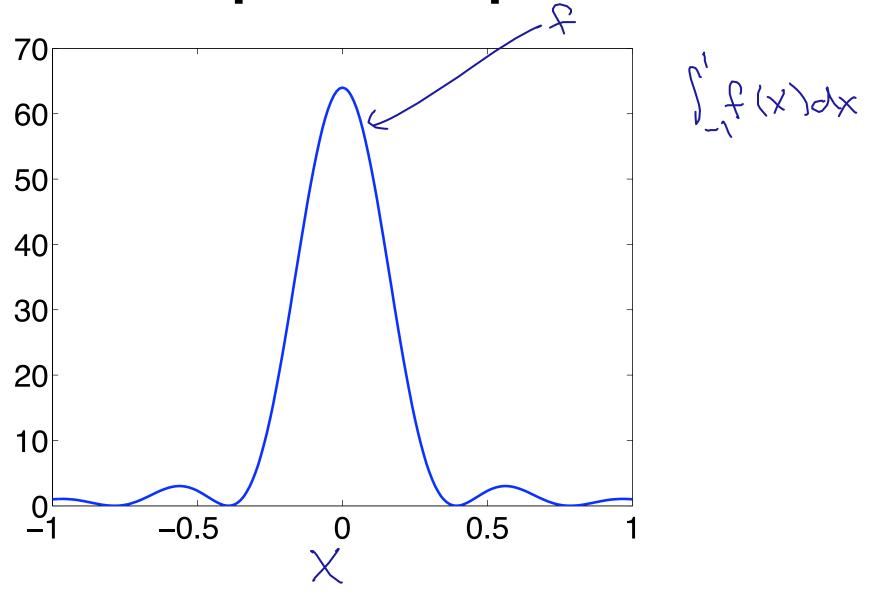


Eliazar and Parr, IJCAI-03

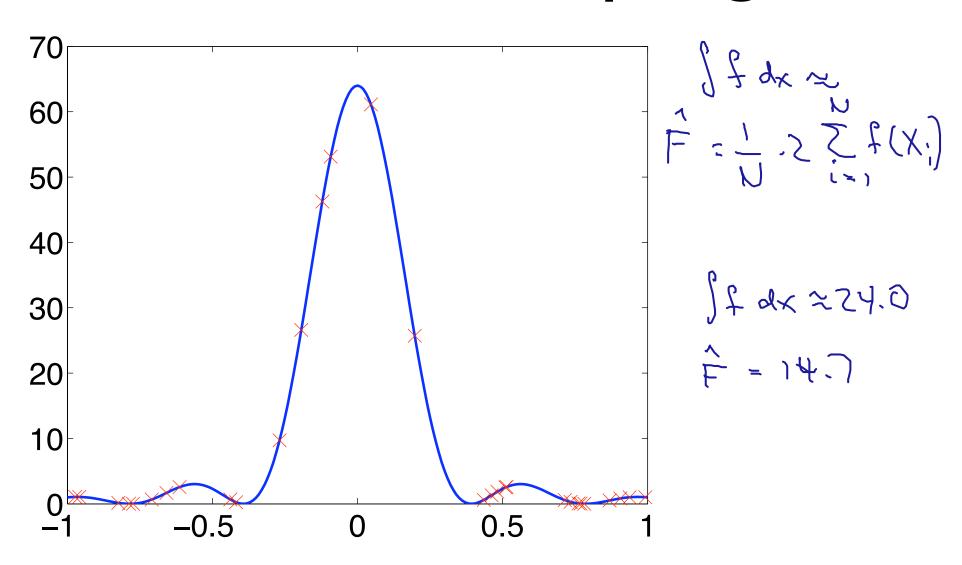
Integrals in multi-million-D



Simple ID problem



Uniform sampling



Uniform sampling
$$E(f(X)) = \int_{-1}^{1} P(X) f(X) dX = \int_{-1}^{1} |f(X)| dX$$

1, = dx = 1

- So, 2 E(f(x)) is desired integral (or, UE(f(x)))
- But standard deviation can be big
- Can reduce it by averaging many samples
- But only at rate I/\sqrt{N}

- Instead of X ~ uniform, use $X \sim Q(x)$
- Q = importance dist'n
- Should have Q(x) large where f(x) is large
- Problem: Naive estimate $\frac{1}{N} \gtrsim f(x_i)$ wrong! $E(f(x_i)) = \int Q(x) f(x) dx \neq any simple for$ of I folx

- Instead of X ~ uniform, use $X \sim Q(x)$
- Q =
- Should have Q(x) large where f(x) is large
- Problem:

$$E_Q(f(X)) = \int Q(x)f(x)dx$$

$$h(x) \equiv f(x)/Q(x)$$

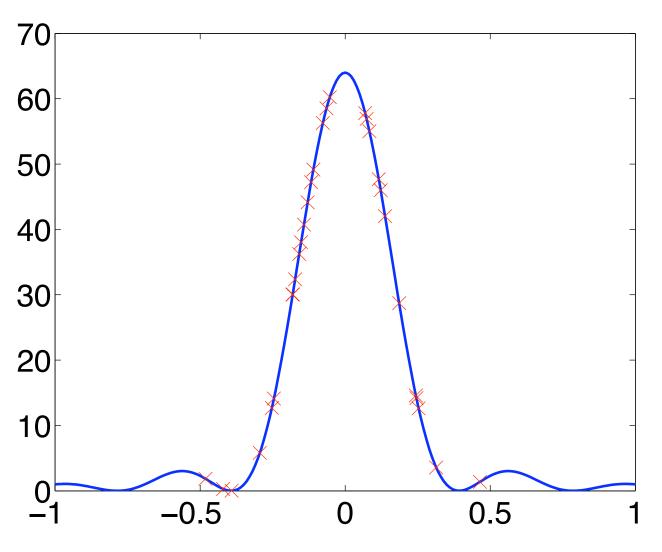
$$= \langle h(x) \rangle - \langle g(x) h(x) dx \rangle$$

$$= \langle g(x) f(x) \rangle dx$$

$$= \langle g(x) dx \rangle$$

$$\hat{F} = \sum_{i=1}^{N} \mathcal{N}(X_i) = \sum_{i=1}^{N} \frac{1}{\mathcal{Q}(X_i)} f(X_i)$$

- So, take samples of h(X) instead of f(X)
- W_i = I/Q(X_i) is importance weight
- Q = I/V yields uniform sampling



Variance

- How does this help us control variance?
- Suppose:
 - f big ⇒ □ \(\(\frac{1}{2} \)
 - ▶ Q small ⇒ f small
- Then h = f/Q: moderate values
- Variance of each weighted sample is moderate
- Optimal Q?

 F(x)/3 & dx

 F(x)/3 & dx

Importance sampling, part II

Suppose we want

$$\int \underbrace{f(x)dx} = \int \underbrace{P(x)g(x)dx} = E_P(g(X))$$

- Pick N samples X_i from proposal Q(X)
- ullet Average W_i g(X_i), where importance weight is

$$W_i = P(X_i)/Q(X_i)$$

Importance sampling, part II

Suppose we want

$$\int f(x)dx = \int P(x)g(x)dx = E_P(g(X))$$

- Pick N samples X_i from proposal Q(X)
- ullet Average W_i g(X_i), where importance weight is
 - \rightarrow W_i =

$$E_Q(Wg(X)) = \int Q(x)[P(x)/Q(x)]g(x)dx = \int P(x)g(x)dx$$

Two variants of IS

- Same algorithm, different terminology
 - want $\int f(x) dx$ vs. $E_P(f(X))$
 - \rightarrow W = I/Q vs.W = P/Q

Parallel importance sampling

Suppose we want

$$\int f(x)dx = \int P(x)g(x)dx = E_P(g(X))$$

 But P(x) is unnormalized (e.g., represented by a factor graph)—know only Z P(x)

Parallel IS

- Pick N samples X_i from proposal Q(X)
- If we knew $W_i = P(X_i)/Q(X_i)$, could do IS
- Instead, set $\hat{W}_i = \frac{2}{2} P(x_i) | Q(x_i)$ • and, $\overline{W} = \frac{1}{2} \hat{Z}_i \hat{W}_i$
- Then: $E(\hat{Q}_{i}) = \int Q(x) = P(x)/Q(x) dx$ $= 2\int P(x) dx = 2$ $E(\hat{Q}) = 2 \quad (lower variance)$

Parallel IS

• Final estimate: