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Abstract Multiple instance learning (MIL) is a binary classificatipmoblem with
loosely supervised data where a class label is assignedtorybag of instances
indicating presence/absence of positive instances. $rptfper we introduce a novel
MIL algorithm using Gaussian processes (GP). The bag ladpeliotocol of the MIL
can be effectively modeled by the sigmoid likelihood thrbtige max function over
GP latent variables. As the non-continuous max functioneaakkact GP inference
and learning infeasible, we propose two approximatioresstift-max approximation
and the introduction of witness indicator variables. Coragdo the state-of-the-art
MIL approaches, especially those based on the Support Metztohine (SVM), our
model enjoys two most crucial benefits: (i) the kernel patansecan be learned in
a principled manner, thus avoiding grid search and being ahkxploit a variety
of kernel families with complex forms, and (ii) the efficiegradient search for ker-
nel parameter learning effectively leads to feature sgledb extract most relevant
features while discarding noise. We demonstrate that opiroa@ghes attain superior
or comparable performance to existing methods on seveabinerld MIL datasets
including large-scale content-based image retrievallprob.
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1 Introduction

The paper deals with the multiple instance problem, a veoirtant topic in ma-
chine learning and data mining. We begin with its formal d&éin. In the standard
supervised classification setup, we have training {étay;)}{ ; which are labeled
at the instance level. In the binary classification setting; {+1,—1}. In multiple
instance learning (MIL) (Dietterich et al, 1997) problem, the other hand, the as-
sumption is rather loosen in the following manner: (i) ongii®@nB bags of instances
{Xb}E:1 where each bag{p = {Xp 1,...,Xpn, }, CONSists ofy, instances ¥, n, = n),
and (ii) the labels are provided only at the bag-level in a Waat for each badp,
Yvw=-1ifyy=—1foralli €Iy, andY, = +1 if y; = +1 for some i€ |, wherely,
indicates the index set for instances in lag

The MIL is considered to be more realistic than standardsifiaation setup due
to its notion of bag in conjunction with the bag labeling pratl. Two most typi-
cal applications are image retrieval (Zhang et al, 2002;|&eand Chapelle, 2007)
and text classification (Andrews et al, 2003). For instaittoe content-based image
retrieval fits well the MIL framework as an image can be seea bag comprised
of smaller regions/patches (i.e., instances). Given ayjfoera particular object, one
may be interested in deciding only whether the image costtia queried object
(Yo = +1) or not Y, = —1), instead of solving the more involved (and probably less
relevant) problem of labeling every single patch in the imdg text classification,
one is more concerned with the concept/topic (i.e., bad)abean entire paragraph
than labeling each of the sentences that comprise the pgatagrhe MIL framework
is also directly compatible with other application tasksluding the object detec-
tion (Viola et al, 2005) and the identification of proteinsilet al, 2004).

Although we only consider the original MIL problem defined asove, there
are other alternative problems and generalization. Feamt, thenultiple instance
regressiondeals with the real-valued outputs instead of binary lafietsoly et al,
2002; Ray and Page, 2001), and theltiple instance clusterintackles the multiple
instance problems in unsupervised situations (Zhang armd,Z2009; Zhang et al,
2011). The MIL problem can be extended to more generalized$oOne typical
generalization is to modify the bag positive condition tode¢ermined by someol-
lection of positive instances, instead of a single one (Scott etG32 Essentially
and more generally, one can obtain other types of geneddifte problems by spec-
ifying how the collection of underlying instance-level o@pts is combined to form
the label of the bag (Weidmann et al, 2003).

Traditionally, the MIL problem was tackled by speciallyltaied algorithms; for
example, the hypothesis class of axis-parallel rectanglibe feature space has been
introduced in (Dietterich et al, 1997), which is iteratiyedstimated to contain in-
stances from positive bags. In (Maron and Lozano-Perez8)1%9e so-called di-
verse density (DD) is defined to measure proximity betweeag@dnd a positive
intersection point. Another line of research considersMiiie problem as a standard
classification problem at a bag-level via proper develogroékernels or distance
measures on the bag space (Wang and Zucker, 2000; Gartale2802; Tao et al,
2004; Chen et al, 2006). Particularly it subsumes the setkefor SVMs (Gartner



et al, 2002; Tao et al, 2004; Chen et al, 2006) and the Hausshirélistances (Wang
and Zucker, 2000).

A different perspective that regards the MIL as a missirgelgroblem was re-
cently emerged. Unlike the negative instances which arkabd#led negatively, the
labels of instances in the positive bags are consideredexr# lzariables. The latent
labels have additional positive bag constraints, namedy &h least one of them is
positive, or equivalentlyy; V'T“ > 1 fori € Ip such thaty, = +1. In this treatment,
a fairly straightforward approach would be to formulate ansliard (instance-level)
classification problem (e.g., SVM) that can be optimizedrahe model and the
latent variables simultaneously. Tha-SVMapproach of (Andrews et al, 2003) is
derived in this manner.

More specifically, the following optimization problem isleed for both the hy-
perplane parameter vectarand the output variablels; }:
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Although the latent instance label treatments are matlieafigt appealing, a
drawback of such approaches is that they involve a (mixegar programming
which is generally difficult to solve. There have been sevieearistics or approxi-
mate solutions such as those proposed in (Andrews et al,)2R@8ently, the deter-
ministic annealing (DA) algorithm has been employed (Gehlal Chapelle, 2007),
which approximates the original problem to a continuougoigation by introducing
binary random variables in conjunction with the tempemsraled (convex) entropy
term. The DA algorithm begins with a high temperature to savrelatively easy
convex-like problem, and iteratively reduces the tempeeatvith the warm starts
(initialized at the solution obtained from the previousat#on).

Instead of dealing with all instances in a positive bag iilially, a more in-
sightful strategy is to focus on thmost positivanstance, often referred to as the
witnesswhich is responsible for determining the label of a positdag. In the SVM
formulation, theMI-SVM of (Andrews et al, 2003) directly aims at maximizing the
margin of the instance with the most positive confidence.vitre current modelv
(i.e., maxey, (W, Xp)). An alternative formulation has been introduced in KA
algorithm (Mangasarian and Wild, 2008), where they indlyeform a witness us-
ing convex combination over all instances in a positive @dge EM-DD algorithm
of (Zhang et al, 2002) extends the diverse density framewbfklaron and Lozano-
Perez, 1998) by incorporating the witnesses. In (GehleGirapelle, 2007) the DA
algorithms have also been applied to the witness-identiffdVMs, exhibiting supe-
rior prediction performance to existing approaches.

Even though some of these MIL algorithms, especially the Shéded discrim-
inative methods, are quite effective for a variety of siiras, most approaches are



non-probabilistic, thus unable to capture the underlygayative process of the MIL
data formation. In this papemwe introduce a novel MIL algorithm using the Gaus-
sian process (GP), which we c&8PMIL. Motivated from the fact that a bag label is
solely determined by the instance that has the highest @daltoward the positive
class, we design the bag class likelihood as the sigmoidiimover the maximum
GP latent variables on the instances. By marginalizing betlatent variables, we
have a nonparametric, nonlinear probabilistic mde{&,|X}) that fully respects the
bag labeling protocol of the MIL.

Dealing with a probabilistic bag class model is not compyetew. For instance,
the Noisy-OR model suggested by (Viola et al, 2005) reptssarbag label prob-
ability distribution, where the learning is formulated kit the functional gradi-
ent boosting framework (Friedman, 1999). A similar NoisR-@odeling has re-
cently been proposed with Bayesian treatment by (Raykal; 2088). In their ap-
proaches, however, the bag class model is built fromitistance-levetlassifica-
tion modelsP(yi|x;), more specificallyP(Y, = —1|Xp) = [ic, P(Yi = —1|xi) and
P(Y, = +1|Xp) = 1—P(Y, = —1|X}), which may incur several drawbacks. First of
all, it involves additional modeling effort for the instastevel classifiers, which may
be unnecessary, or only indirectly relevant to the bag aasssion. Moreover, the
Noisy-OR model combines the instance-level classifiers pnogluct form, treating
each instance independently. This ignores the impact @fpiad interaction among
the neighboring instances, which may be crucial for the atelubag class predic-
tion. On the other hand, our GPMIL represents the bag clastehdirectly with-
out employing probably unnecessary instance-level dlassi The interaction among
the instances is also incorporated through the GP prioragbstntially enforces the
smoothness regularization along the neighboring stracifithe instances.

In addition to the above-mentioned advantages, the mosiritaupt benefit of the
GPMIL, especially contrasted with the SVM-based approagdldhat the kernel hy-
perparameters can be learned in a principled manner (engirieal Bayes), thus
avoiding grid search and being able to exploit a variety ahkkfamilies with com-
plex forms. Another promising aspect is that the efficiemtdggnt search for kernel
parameter learning effectively leads to feature seledtiogxtract most relevant fea-
tures while discarding noise. One caveat of the GPMIL is thét intractable to
perform exact GP inference and learning due to the non+meotis max function.
We remedy it by proposing two approximation strategies:sibe-max approxima-
tion and the use of witness indicator variables which canusthér optimized by
the deterministic annealing schedule. Both approaches @&khibit more accurate
prediction than most recent SVM variants.

The paper is organized as follows. After briefly reviewing thaussian process
and introducing notations used throughout the paper inZecir GPMIL framework
is introduced in Sec. 3 with the soft-max approximation fiference and learning.
The witness variable based approximation for GPMIL is dbsctrin Sec. 4, while we

1 Itis an extension of our earlier work (conference paper)iphbd in (Kim and De la Torre, 2010). We
extend the previous work broadly in two aspects: i) More médl details and complete derivations are
provided for Gaussian process and our approaches basedvbith makes the manuscript comprehensive
and self-contained, and ii) The experimental evaluatiatuiles more extensive multiple instance learning
datasets including the SIVAL image retrieval database hadltug activity datasets.



also suggest the deterministic annealing optimizatioterAdiscussing relationship
with existing MIL approaches in Sec. 5, the experimentaliitesof the proposed
methods on both synthetic data and real-world MIL benchrdat&sets are provided
in Sec. 6. We conclude the paperin Sec. 7.

2 Review on Gaussian Processes

In this section we briefly review the Gaussian process mdded. Gaussian process
is a nonparametric, nonlinear Bayesian regression modelthe expositional con-
venience, we first consideriaear regression from input € RY to outputf € R:

f=w'x+e, whereweRY isthe model parameter amd~ .4 (0,n2). (2)

Givenn i.i.d. data points{(xi, fi)}';, where we often use vector notatioriss=
[f1,..., fn] T @ndX = [x1,...,Xn] ", we can express the likelihood as:

P(f|X,w) = _|2|P(fi|xi,w) =¥ (F; Xw, n?). (3)

We then turn this into a Bayesian nonparametric model byimdgprior onw and
marginalizing it out. With a Gaussian priBtw) = .47(0,1), it is easy to see that

P(f|X) = / P(X,w)P(wW)dw = A (£;0,XX T +n2) ~ 4 (£0XXT). (4)

Here, we letn — 0 to have a noise-free model. Although we restrict ourselvdise
training data, adding a new test péir,, f.) immediately leads to the following joint
Gaussian by concatenating the test point with the trainatg,chamely

f] %], £.1.707 [x/xx/XT
P([f]'[X])_W([f]'[O}’[XX* xxTD' ®)
From (5), the predictive distribution fak, is analytically available as a conditional
Gaussian:

P(fulxs, F,X) = A (£ x] XT(XX )7 xx, = x]XT(XXT)"IXx,).  (6)

A nonlinear extension of (4) is straightforward by replarihe finite dimensional
vectorw by an infinite dimensional nonlinear functidn-) 2. The Gaussian process
(GP) is a particular choice of prior distribution on funet& which is characterized
by thecovariance functiofi.e., the kernel functior}(-, -) defined on the input space.
Formally, a GP wittk(-,-) satisfies:

Cov(f(xi), f(xj)) =k(xi,x;j), foranyx; andx;. @)

2 We abuse the notatiof to indicate either a function or a response variable evadliatx (i.e., f(x)
interchangeably.



In fact, any distribution orf that satisfies (7) is a GP. Férthat follows the GP prior
with k(-,-), marginalizing outf produces a nonlinear version of (4),

P(fIX) = A#(f;0,Kp), (8)

whereK 3 is the kernel matrix on the input da¥a(i.e., [Kgli,j = kg (i, j)). Here,3 in
the subscript indicates the (hyper)parameters of the kirnetion (e.g., for the RBF
kernel, includes the length scale, the magnitude, and so on). Asdpentiency
on 3 is clear, we will sometimes drop the subscript for notati@moavenience. For a
new test inpuk., by lettingk(x.) = [K(X1,Xs), ...,K(Xn,X:)] ", we have a predictive
distribution for a test respondg, similar to (6). That s,

P(fulXs, F,X) = A (Fo k(%) TK 7, (X, o) — k(%) TK Ik (X4)). (9)

When the GP is applied for regression or classification gmis, we often treat
f aslatentrandom variables indexed by the training data samples,rgmatluce the
actual (observable) output variabes- [y, ..., yn] " which are linked td through a
likelihood modeP(y|f) = [, P(vi| fi). In the Appendix, we review in greater details
two most popular likelihood models that yield GP regressind GP classification.

3 Gaussian Process Multiple Instance Learning (GPMIL)

In this section we introduce a novel Gaussian process (GEghfior the MIL prob-
lem, which we denote b@&PMIL. Our approach builds a bag class likelihood model
from the GP latent variables, where the likelihood is themsig of themaximum
latent variables.

Note that the bagdp is comprised ofn, points Xy, = {Xp1,...,Xpn, }- Accord-
ingly, we assign the GP latent variables to the instancesdrbagb, and we denote
them byFp = {fy1,..., fon, }. One can regard; (¢ Fy,) as aconfidencescore to-
ward the (instance-level) positive class foi(e Xp). That is, the sign of; indicates
the (instance-level) class labgl and its magnitude implies how confident it is. In
the MIL, our goal is to devise a bag class likelihood model,|F) instead of the
instance-level modé®(y;| fi). Note that the latter is a special case of the former since
an instance can be seen as a singleton bag. Once we have thiassdkelihood
model, we can then marginalize out all the latent variables {F,}E_; under the
Bayesian formalism using the GP prig(F|X) given the entire inpuX = {Xp}E ;.

Now, consider the situation where the baig labeled as positiverfy = +1). The
chance is determined solely by the single point that isribst likely positivéi.e., the
largestf). The larger the confidende the higher the chance is. The other instances
do not contribute to the bag label prediction no matter whairtconfidence scores
are’. Hence, we can let:

P(Yp = +1|Fp) 0 exp(maxf;). (10)
1€lp

3 We provide a better insight about our argument here. It is that any other instances can make a
bag positive, but it is the instance with the highest confidescore (what we calledhost likely positive
instance) that solely determines the bag label. In othedsydp have an effect on the label of a bag, an
instance needs to get the largest confidence score. In fpnoladbility terms, the instandean determine
the bag label only for the events that assign the highestaemde td. It is also important to note that even
though maxg f; indicates a single instance, max function examigésstances in the bag to find it.



Similarly, the odds of the bagbeing labeled as negativé,(= —1) is affected solely
by the single point which is thHeast likely negativeAs far as that point has a negative
confidencef, the label of the bag is negative, and the larger the confelerfc the
higher the chance is. This leads to the model:

PV, =—-1|Fp) O exp(min—fi). (11)
1ely

Combining (10) and (11), we have the following bag clasdilied model:

1
P(Y|Fo) = 1+exp—Ypmaxe, fi)’ -

Note also that (12), in the limiting case where all the bagbee singletons (i.e.,
classical supervised classification), is equivalent todfaedard Gaussian process
classification model with the sigmoid lifik

When incorporating the likelihood model (12) into the GPirwork, one bot-
tleneck is that we have non-differentiable formulas duétorhax function. We ap-
proximate it by the soft-max max(z, ...,zn) ~ logy;exp(z). This leads to the ap-
proximated bag class likelihood model:

1
1+exp—Yplogyic, €f)
1

T 1t (Sier, €f)~" 13)

P(YolFo)

Q

Whereas the soft-max is often good approximation to the miaxtfon, it should
be noted that unlike the standard GP classification with ifp@aid link, the neg-
ative log-likelihood—logP(Y,|Fp) = log(1+ (i, €")¥) is not a convex func-
tion of Fy, for Y, = +1 (although it is convex fol, = —1). This corresponds to a
non-convex optimization in the approximated GP postemonputation and learning
when the Laplace or variational approximation methods dopeed. However, using
the (scaled) conjugate gradient search with differentistaiterates, one can properly
obtain a well-approximated posterior with a meaningfulfétyperparameters.

Before we proceed further to the details of inference anchiag, we briefly dis-
cuss the benefits of the GPMIL compared to the existing MILhods. As mentioned
earlier, the GPMIL directly models the bag class distribafiwithout suboptimally
introducing instance-level models such as the Noisy-ORehafdViola et al, 2005).
Also, framed in the GP framework, the posterior estimatiod the hyperparame-
ter learning can be accomplished by simple gradient seaitthsimilar complexity
as the standard GP classification, while it enables protbiinterpretation (e.g.,
uncertainty in prediction). Moreover, we have a principlealy to learn the kernel
hyperparameters under the Bayesian formalism, which iprayperly handled by
other kernel-based MIL methods.

4 So, it is also possible to have a probit version of (12), ngRéY|f,) = @(Ypmaxey, fi), whered(-)
is the cumulative normal function.

5 It is well known that the soft-max provides relatively tighbunds for the max, mik, z <
logy ", exp(z) < max", z + logm. Another nice property is that the soft-max is a convex fiamct
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Fig. 1 Graphical model for GPMIL.

3.1 Posterior, Evidence, and Prediction

From the latent-to-output likelihood model (13), our gextee GPMIL model can
be depicted in a graphical representation as Fig. 1. Fatigwhe GP framework, all
the latent variableB = {F1,...,Fg} = { fy }n; are dependent on one another as well
as on all the training input point§ = {X1,...,Xg} = {Xp; }ni, conforming to the
following distribution:

P(FIX) = A (F;0,K), (14)
Similarly, for a new test ba¥, = {X, 1,...,X.n,} together with the corresponding

latent variable&, = {f. 1,..., fn, }, we have a joint Gaussian prior on the concate-
nated latent variablegF.,F}, from which the predictive distribution oR. can be



derived as (by conditional Gaussian):
P(F.[X.,F,X) = JV(F*; K(X) TK 1, K(Xs, X) — k(x*)TKflk(x*)) , (15)

wherek (X, ) is the(n x n,) train-test kernel matrix whosg-th element ik(x;, X« j),
andk(X,, X,) is the(n, x n,) test-test kernel matrix whospth elementik(X. i, X« j).

Under the usual i.i.d. assumption, the entire likelihddf = [Y1,...,Yg]|F) is
the product of the individual bag likelihoo@Y,|Fp) in (13). That is,

1

B
~ - . 6
l!:ll 1+ (i, efi) " (16)

B
P(Y|F) = [ P(YolFb)
b=1

Equipped with (14) and (16), one can compute the posterstribitionP(F|Y, X) O
P(FIX)P(Y|F) and the evidence (or the data likelihod)Y|X) = [ P(FIX)P(Y|F),
where the GP learning maximizes the evidence w.r.t. thedk&yperparameters (also
known as the empirical Bayes). However, similar to the GBsifecation cases, the
non-Gaussian likelihood term (16) causes intractabititthe exact computation, and
we resort to some approximation. Here we focus on the Lapapeoximatiof
where its application to standard GP classification is veyutar and reviewed in
Appendix.

The Laplace approximation essentially replaces the pidd(¢|F)P(F|X) by a
Gaussian with the mean equal to the mode of the product, abtrariance equal to
the inverse Hessian of the product evaluated at the mod¢hiBguurpose, we rewrite

P(Y[F)P(FIX) = exp(~S(F)) - [K| Y- (2m) "2,

B
where S(F) = 5 |(Yo,Fy) + %FTK*F,
b=1

(Y, Fy) = —IogP(¥|F) ~ log (1+ (5 ef) ). (17)

€lp

We first find the minimum of(F), namely
F=arg n;inS(F), (18)

where the optimum is denoted t?y Solving (18) can be done by gradient search
as usual. Unlike the standard GP classification, howevéicenthatS(F) is a non-
convex function ofF since the Hessian &), H + K1, is generally not positive
definite, whereH is the block diagonal matrix whodeth block has théj-th entry

[Hplij = 023|(+B,Eb) fori,j € Ip. Although this may hinder obtaining the global mini-

mum easily,S(F) is bounded below by 0 (from (17)), and the (scaled) conjugate

6 Although it is feasible, here we do not take the variatiorgdraximation into consideration for sim-
plicity. Unlike the standard GP classification, it is difficto perform, for instance, the Expectation Prop-
agation (EP) approximation since the moment matching, ¢he step in EP that minimizes the KL diver-
gence between the marginal posteriors, requires the attegrover the likelihood function in (13), which
requires further elaboration.
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Newton-type gradient search with different initial itexatcan yield a reliable solu-
tion.

We then approximat8(F) by a quadratic function using its Hessian evaluated at
F, namelyH (F) + K ~1. Yet, in order to enforce a convex quadratic form, we need to
address the case that- K ~1 is not positive definite, which although very rare, could
happen as gradient search only discovers a point closeXaotlg the same) to local
minima. We approximate it to the closest positive definitérir@y projecting it onto
the PSD cone. More specifically, we Bt~ H + K1, with Q = 3; max(Ai, €)vivy,
whereA andv are the eigenvalues/vectorstdf- K —1, ande is a small positive con-
stant. In this wayQ is a positive definite matrix closest to the Hessian with {gien
€. Letting Q be Q evaluated aF, we approximate(F) by the following quadratic
function (i.e., using the Taylor expansion)

-1 PP ~
S(F) ~ S(F) + 5(F~F)TQ(F ~F), (19)

which leads to Gaussian approximation R{F|Y, X)
P(FIY,X) ~ 4 (FiF.Q 7). (20)

The data likelihood (i.e., evidence) immediately followsrh the similar approx-
imation, o
P(Y|X,8) ~ exp(—S(F))|Q| /2K |72, (21)

We then maximize (21) (so-calledidence maximizatiasr empirical Bayepw.r.t. the
kernel parameter8 by gradient search.

More specifically, the negative log-likelihootlLL = —logP(Y X, 8), can be
approximately written as:

B
NLL = ZI(Yb,Fb)+%FTK*1F+:—2LIog|I+KH|. (22)
b=1

The gradient of the negative log-likelihood with resped {gcalar) kernel parameter
6m (i.e., 8 = {6n}) can then be derived easily as follows:

ONLL 30K\ d Ky T o
96, 27 (aem)a+2tr((H +K) (aem))+2tr<(H+K ) (aem) :
(23)

where

a=KIF and (g—gn)i’j _tr<(%)T(l +KH)1(§_;<m)a>. (24)

Here,tr(A) is the trace of the matriA. In the implementation, one can exploit the
fact that% is highly sparse (only the corresponding block=gfcan be non-zero).

The overall learning algorithm is depicted in Algorithm 1.
Given a new test ba¥, = {X. 1,...,X«n,}, it is easy to derive the predictive
distribution for the corresponding latent variables= {f, 1,..., f.n.}. Using the
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Algorithm 1 GPMIL Learning

Input: Initial guessB, the tolerance parameter
Output: Learned hyperparametefs
(a) FindF from (18) for currentg.
(b) ComputeQ using the PSD cone projection.
(c) Maximize (21) w.r.to.
if ||6 — 6°9|| > 1 then
Go to (a).
else
Returné.
end if

Gaussian approximated posterior (20) together with thelitiomal Gaussian prior
(15), we have:

P(F.[X.,Y,X) = /P(F*|X*,F,X)P(F|Y,X)dF
~ /P(F*|X*,F,X)</V(F;ﬁ,(3*1)dF

= /V(F*; k(X)) TK I, k(Xs, X.) + k(X)) T(K20 1K 1 - K*l)k(x*)).
(25)

Finally, the predictive distribution for the test bag cléesel Y, can be obtained by
marginalizing ouf,, namely

P(Y.[X.,Y,X) = /P(F*|X*,Y,X)P(Y*|F*)dF*. (26)

The integration in (26) generally needs further approxiomatlf one is only inter-
ested in the mean prediction (i.e., the predicted clasd)labes possible to approx-
imate P(F.|X.,Y,X) by a delta function at its mean (mode),:= k(X.) K~F,
which yields the test prediction:

ClasgY.) ~ sign< (27)

1+ (Sie. 04) 1 _0'5)'

4 GPMIL using Witness Variables

Although the approach in Sec. 3 is reasonable, one drawkabki the target func-
tion we approximate (i.eS(F)) is not in general a convex function (due to the non-
convexity of —logP(Y|Fp)), where we perform the PSD projection step to find the
closest convex function in the Laplace approximation. la slection, we address this
issue in a different way by introducing the so-callgitiness latent variablewhich
indicate the most probably positive instances in the bags.

For each bag, we introduce the witness indicator random variablgs: [pp 1, . - -, pb,nb]T,
wherepy; represents the probability theg; is considered as&itnessof the bagb.
We call an instance witnessif it contributes to the likelihoodP(Y,|Fp). Note that
YiPoi =1,andpy; > 0 foralli € I, Inthe MIL, asP(Y;,|Fp) is solely dependent on
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the most likely positive instance, it is ideal to put all threlpability mass to a single
instance as:

- J1lifi=argmax fy
Poi = {O otherwise (28)

Alternatively, it is also possible to define a soft witnessigsment using a sigmoid

function:
. exp(/\ fb,i)
Yicl, XA fpj)’
whereA is the parameter that controls the smoothness of the assignm

OncePy, is given, we then define the likelihood as a sigmoid of the Wigid sum
of fi’s with weightsp;’s:

Po,i (29)

1
P(Yo|Fp, Pp) = . 30
0% ) 1+exp(—Yb i Pb;i fo,i) (30)
The aim here is to replace tineaxor thesoft-maxfunction in the original derivation
by theexpectationy; py; fyj, a linear function ofF, given the witness assignment
Py. Notice that giverPy, the negative log-likelihood of (30) is a convex function of
Fp.
In the full Bayesian treatment, one marginalizes®Bytnamely

P(Yo|Fp) = / P(Yo|Fb, Pb)P(Po|Fp)dPy, (31)

whereP(Py|Fp) is a Dirac’s delta function with the point support given a8)(ar
(29). However, this simply leads to the very non-convexdised by the original
version of our GPMIL. Rather we pursue the coordinate-wis@vex optimization
by separating the process of approximati®(@y|Fp) into two individual steps: (i)
find the witness indicataPy, from F, using (28) or (29), and (ii) (while fixingPy)
represent the likelihood as the sigmoid of the weighted s80), @nd perform poste-
rior approximation. We alternate these two steps until eogence. Note that in this
setting the Laplace approximation becomes quite similahab of the standard GP
classification, having the additional alternating optiatian as an inner loop.

4.1 (Optional) Deterministic Annealing

When we adopt the soft witness assignment in the above fationl it is easy to see
that (29) is very similar to the probability assignment ie tieterministic annealing
(i.e., Eq. (11) of (Gehler and Chapelle, 2007)) while the athoness parameter
now acts as the inverse temperature in the annealing sehédativated by this, we
can have a annealed version of posterior approximationeldpecifically, it initially
begins with a small (large temperature) corresponding to a uniform-kBgg and
repeats the followings: perform a posterior approximasi@mting from the optimum
Fp in the previous stage to get a n&y, then increasa to reduce the entropy ¢,.

7 This has a close relation to (Gehler and Chapelle, 2007)&rahinistic annealing approach to SVM.
Similar to (Gehler and Chapelle, 2007), one can also consideheduled annealing, where the inverse of
the smoothness paramefein (29) serves as the annealing temperature. See Sec. 4uttfeer details.
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5 Related Work

This section briefly reviews/summarizes some typical apghes to MIL problems
that are related to our models.

The pioneering work by (Dietterich et al, 1997) introdudess multiple instance
problem, where they suggest a specific type of hypothesss ¢hat can be learned
iteratively to meet the positive bag/instance constra@iisce this work, there have
been considerable research results on MIL problems. Mdbkeaéxisting approaches
can roughly belong to one of two different techniques: 1gcliy learning a dis-
tance/similarity metric between bags, and 2) learning dipter model while prop-
erly dealing with missing labels.

The former category includes: the diverse density (DD) o&(dh and Lozano-
Perez, 1998) that aims to estimate proximity between a bag aositive intersection
point, the EM-DD of (Zhang et al, 2002) that extends the DD ttyaducing wit-
ness variables, and several kernel/distance measuressgapy (Wang and Zucker,
2000; Gartner et al, 2002; Tao et al, 2004; Chen et al, 200@)e other category, the
most popular and sophisticated SVM framework has been ggglto find reason-
able predictors. Thei-SVM(Andrews et al, 2003) is derived by formulating SVM-
like optimization with the MIL's bag constraints. The diffilt integer programming
has been mitigated by the technique of deterministic ammgp@bGehler and Chapelle,
2007).

Apart from instance-level predictors, the idea of focusimgthemost positive
instance or thavitness has been studied considerably. In the SVM framewbtk,
SVMof (Andrews et al, 2003) directly maximizes the margin ofittitance with the
most positive confidence. Alternatively, tNeCA algorithm (Mangasarian and Wild,
2008) parameterized witnesses as linear weighted sumsatvestances in positive
bags. Our GPMIL model can also be seen as a withess-baseobappas the bag
class likelihood is dominated by the maximally confidentanse either via sigmoid
soft-max modeling or via introducing witness random vagab

Some of the recent multiple instance algorithms have cletgionships with
the witness technique similar to ours. We briefly discussitweresting approaches.
In (Li et al, 2009), the CBIR problem is particularly considé where the regions
of interest can be seen as witnesses or key instances iivpdsgs. They formed a
convex optimization problem iteratively by finding violdtkey instances and com-
bining them via multiple kernel learning. The optimizatiomolves a series of stan-
dard SVM subproblems, and can be solved efficiently by arapiane algorithm.
In (Liu et al, 2012), the key instance detection problem ékled/formulated within
a graph-based voting framework, which is formed either byaredom walk or an
iterative rejection algorithm.

We finally list some of more recent MIL algorithms. In (Ana&d Ommer, 2012),
a MIL problem is tackled by two alternating tasks of learniegular classifiers and
imputing missing labels. They introduced the so-cafiagerbagsa random ensem-
ble of sets of bags, aimed for decoupling two tasks to avoatfiting and improve
robustness. Instead of building bag-level distance meas{ang et al, 2011) pro-
poses a new approach of forminglass-to-baglistance metric. The goal is to reflect
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the semantic similarities between class labels and bagsnigximum margin opti-
mization is formulated and solved by parameterizing thtadise metrics.

Apart from typical treatments that consider bags having gefinumber of in-
stances, the approach in (Babenko et al, 2011) regards bdms dimensional man-
ifolds embedded in high dimensional feature space. The gaammanifold struc-
ture of the manifold bags is then learned from data. This aardsentially seen
as employing a particular bag kernel that preserves the geantonstraints that
reside in data. In (Fu et al, 2011), they focus on the problémfficient instance
selection under large instance spaces. An adaptive irestiection algorithm is in-
troduced, which alternates between instance selectiorckasdifier learning in an
iterative manner. In particular, the instance selectioseisded by a simple kernel
density estimator on negative instances.

There are several unique benefits of having the GP framewdwdL problems.
First, by using GP, choosing parameters of the kernel/meatebe done in a princi-
pled manner (e.g., empirical Bayes of maximizing data ilila@d) unlike some ad-
hoc methods by SVM. Also, the parameters in GP models areramdriables, and
hence can be marginalized out within the Bayesian prolsaibiframework to yield
more flexible models. Furthermore, apart from other noraspestric kernel machines,
one can interpret the underlying kernels more directly asctvariance functions
for which certain domain knowledge can be effectively eitphb. In our MIL for-
mulation, the bag label scoring model process is specijitadhted as a covariance
function over the input instance space. More importantlyhave observed empiri-
cally that the proposed GPMIL approaches achieve oftenstimiech more accurate
prediction than existing methods including recent SVMeubBIIL algorithms.

6 Experiments

In this section we conduct experimental evaluation for laotlficially generated data
and several real-world benchmark datasets. The latterdeslthe MUSK datasets (Di-
etterich et al, 1997), image annotation, and text classificalatasets traditionally
well-framed in multiple instance learning setup. Furthere; we test the proposed
algorithms on the large-scale content-based image ratrtagk using the SIVAL
dataset (Rahmani and Goldman, 2006).

We run two different approximation schemes for our GPMIL jethare denoted
by: (a) GP-SMX = the soft-max approximation with the PSD projection dessxliin
Sec. 3, and (bEP-WDA = the approximation using the witness indicator variables
with the deterministic annealing optimization discusse8éc. 4. In th&P-SMX, the
GP inference/learning optimization is done by the (scatedjugate gradient search
with different starting iterates. In the®-wDA, we start from a large temperature (e.g.,
A =1le—1),and decrease itin log-scale (e A+ 10- A) until there is no significant
change in the quantities to be estimated. For both methoelfirst estimate kernel
hyperparameters by empirical Bayes (i.e., maximizing théence likelihood), then
use the learned hyperparameters to the test predictionGRMIL is implemented
in Matlab based on the publicly available GP codes from (Ress®n and Williams,
2006).
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Fig. 2 Visualization of the synthetic 1D dataset. It depicts thetance-level input and output samples,
where the bag formation is done by randomly grouping theximss. See text for details.

In the following section, we first demonstrate the perforoeaaf the proposed
algorithms on artificially generated data.

6.1 Synthetic Data

In this synthetic setup, we test the capability of the GPMiLestimating the kernel
hyperparameters accurately from data. We construct thitheiyo 1D dataset gener-
ated by a GP prior with random formation of the bags. The fiegh $s to sample
the input data pointg uniformly from the real line]—30,30]. For the 1000 sam-
ples generated, the latent variabfeare randomly generated from the GP prior dis-
tribution with the covariance matrix set equal to tf#00x 1000 kernel matrix
from the input samples. The kernel has a particular forngifipally the RBF kernel
k(x,x) = exp(—||x — X||>/20?), where the hyperparameter is setac= 3.0. The
RBF kernel form is assumed known to the algorithms, and tla igdo estimater
as accurately as possible. Given the samglethe actual instance-level class out-
puty is then determined by = sign(f). Fig. 2 depicts the instance-level input and
output samples (i.ef, (andy) vs.x).

To form the bags, we perform the following procedure. Fothdaagb, we ran-
domly assign the bag lab®} uniformly from {41, —1}. The number of instances
is also chosen uniformly at random froft, ..., 10}. WhenY, = —1, we randomly
selectn, instances from the negative instances of the 1000-sample®n the other
hand, wheny, = +1, we flip the 10-side fair coin to decide the positive ins&nc
portion pp € {0.1,0.2,...,1.0}, with which the bag is constructed frofpp x ny|
instances selected randomly from the positive instancegstenrest (also randomly)
from the negative instance pool. We generate 100 bags. Véatépe above proce-
dure randomly 20 times.

We then perform the GPMIL hyperparameter learning startiogn the initial
guesso = 1.0. We compute the average estimated for 20 trials. The results are:
3.2038+0.2700for the GP-SMX approach, an.0513+ 0.2149for the GP-WDA,
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which are very close to the true valae= 3.0. This experimental result highlights
unique benefit of our GPMIL algorithms, namely that we caimestie the kernel pa-
rameters precisely in a principled manner, which is diftitolbe achieved by other
existing MIL approaches that rely on heuristic grid searohtlee hyperparameter
space.

6.2 Competing Approaches

In this section we perform extensive comparison study of GBMIL approaches
against the state-of-the-art MIL algorithms. The compeaitgorithms are summa-
rized below. The datasets, evaluation setups, and predicgisults are provided in
the following sections.

— GP-SMX: The proposed GPMIL algorithm that implements the soft-iauaprox-
imation with the PSD projection.

— GP-WDA: The proposed GPMIL algorithm that incorporates the wisriadica-
tor random variables optimized by deterministic annealing

— mi-SVM: The instance-level SVM formulation by treating the lab#instances
in positive bags as missing variables to be optimized (Andret al, 2003).

— MI-SVM : The bag-level SVM formulation that aims to maximize the giauof
the most positive instance (i.e., witness) with respechédurrent model (An-
drews et al, 2003).

— AL-SVM: The deterministic annealing extension of the instangetimi-SVM
by introducing binary random variables that indicate thsifpaty/negativity of
the instances (Gehler and Chapelle, 2007).

— ALP-SVM: Further extension oAL-SVM by incorporating extra constraints on
the expected number of positive instances per bag (Gehte€hapelle, 2007).

— AW-SVM: The deterministic annealing extension of the withesetdbd-SVM
approach (Gehler and Chapelle, 2007).

— EMDD: Probabilistic approach to find witnesses of the positivgsita estimate
diverse densities (Zhang et al, 2002). We use Jun Yang'simghtation, referred
to asMultiple Instance Learning Library8.

— MICA: SVM formulation that indirectly represents the witnesasig convex
combination over instances in positive bags (Mangasanan/ild, 2008). The
linear program formulation for the MICA has been implemeriteMATLAB.

Unless stated otherwise, all the kernel machines includim@sPMIL algorithms
employ the RBF kernel. For the SVM-based methods, the seateneter of the RBF
kernel is chosen as the median of the pairwise pattern distaifhe hyperparameters
are optimized using cross validation. Other parameterselezted randomly.

8 Available at http://www.cs.cmu.edujuny/MILL.



17

6.3 Standard Benchmark Datasets
6.3.1 The MUSK Datasets

The MUSK datasets (Dietterich et al, 1997) have served widslthe benchmark
dataset for demonstrating performance of MIL algorithmise Tatasets consist of
the description of molecules using multiple low-energyfoomations. The feature
vectorx is of 166-dimensional. There are two different types of bagnfation de-
noted by MUSK1 and MUSK2, where the MUSK1 has approximantgly- 6 con-
formations (instances) per bag, while the MUSK2 takgs- 60 instances per bag on
average.

For comparison with the existing MIL algorithms, we follolet experimental
setting similar to that of (Andrews et al, 2003; Gehler an&@#le, 2007), where
we conduct 10-fold cross validation. This is further repdah times with different
(random) partitions, and the average accuracies are eghdrhe test accuracies are
shown in Table 1.

Our GPMIL algorithms, for both approximation strategi#st and SOFT-MAX,
exhibit superior classification performance to the exgt@pproaches for the two
MUSK datasets. One exception is the MICA where their repbeteor is the smallest
on the MUSK?2 dataset. This can be mainly due to the use of blitagizer in the
MICA that yields a sparse solution suitable for the largalsdMUSK2 dataset. As is
also alluded in (Gehler and Chapelle, 2007), it may not bectly comparable with
the other methods.

6.3.2 Image Annotation

We test the algorithms on the image annotation datasetseatbéby (Andrews et al,
2003) from the COREL image database. Each image is treatacdag comprised
of the segments (instances) that are represented as featiogs of color, text, and
shape descriptors. Three datasets are formed for the a@ajegjories, tiger, elephant,
and fox, regarding images containing the object as postind the rest as negative.
We follow the same setting as the original paper: There ad¢100 positive/negative
bags, each of which contains~2 13 instances. Similar to (Andrews et al, 2003;
Gehler and Chapelle, 2007), we conduct 10-fold cross vadidaThis is further re-
peated 5 times with different (random) partitions. Tabléndves the test accuracies.
The proposed GPMIL algorithms achieve significantly highezuracy than the best
competing approaches most of the time. Comparing two ajpedion methods for
GPMIL, GP-WDA often outperform&P-SMX, implying that the approximation based
on witness variables followed by a proper deterministiceaing schedule can be
more effective than the soft-max approximation with thecsgz convexification.

6.3.3 Text Classification

We next demonstrate the effectiveness of the GPMIL algerith the text categoriza-
tion task. We use the MIL datasets provided by (Andrews e2@)3) obtained from
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Table 1 Test accuracies (%) on MUSK and Image Annotation Datase¢stépbrt the accuracies of the
proposed GPMIL algorithmsP-SMX (soft-max approximation) aneP-WDA (witness variables with de-
terministic annealing). In AW-SVM and AL-SVM, for the two aealing schedules suggested by (Gehler
and Chapelle, 2007), we only show the ones with smaller €ri®oldfaced numbers indicate the best

results.

Dataset GP-SMX | GP-WDA mi-SVM MI-SVM AL-SVM ALP-SVM | AW-SVM EMDD MICA
MUSK1 885+ 35| 89.5+34 | 87.6+35| 79.3+3.7 | 857+ 3.0 | 86.5+3.4 | 85.7+3.1 | 84.6+4.2 | 84.0+44
MUSK2 87.9+3.8 | 87.2+3.7 | 83.8+£4.8 | 842+ 45 | 86.3£4.0 | 86.1+4.7 | 83.4+4.2 | 84.7£3.2 | 90.3+5.8
TIGER 87.1+3.6 | 87.4+£3.6 | 78.7£5.0 | 83.3£3.3 | 785+4.8 | 85.2+3.2 | 82.7+3.5 | 721+£4.0 | 81.3+3.1
ELEPHANT || 82.9+4.0 | 83.8£3.8 | 827+ 3.6 | 81.5£3.5 | 79.7£2.1 | 828+3.0 | 819+ 34 | 77.5+£3.4 | 81.7+4.7
FOX 63.2+4.1 | 65.7£4.9 | 58.7£5.7 | 57.9+£55 | 63.7£54 | 65.7+4.3 | 63.3+4.2 | 52.2+5.9 | 58.3+6.2

Table 2 Test accuracies (%) on text classification. Boldfaced numinglicate the best results.

Dataset|| GP-WDA | mi-SVM | MI-SVM | EMDD
TST1 94.4 93.6 93.9 85.8
TST2 85.3 78.2 84.5 84.0
TST3 86.1 87.0 82.2 69.0
TST4 85.3 82.8 82.4 80.5
TST7 80.3 81.3 78.0 75.4
TSTO 70.8 67.5 60.2 65.5
TST10 80.4 79.6 79.5 78.5

the well-known TREC9 database. The original data are coegpo$ 54000 MED-
LINE documents annotated with 4903 subject terms, eachidgfambinary concept.
Each document (bag) is decomposed into passages (instarficaserlapping win-
dows of 50 or less words. Similar to the settings in (Andretel £2003), a smaller
subset is used, where the data are publicly avai¥aflee dataset is comprised of 7
concepts (binary classification problems), each of whichrbaghly the same num-
ber (about 1600) of positive/negative instances from 200f®Hsitive/negative bags.
In Table 2 we report the average test accuracies of the GPNtH.tlve WDA ap-

proach, together with those of competing models from (Andret al, 2003). For
MI-SVM and mi-SVM, only the linear SVM results are shown srthe linear ker-
nel outperforms polynomial/RBF kernels most of the timetHa GPMIL we also
employ the linear kernel. We see that for a large portion efghoblem sets, our
GPMIL exhibits significant improvement over the methodsvited in the original
paper (EM-DD, mi-SVM, and MI-SVM).

6.4 Localized Content-Based Image Retrieval

The task of content-based image retrieval (CBIR) is pelsfdittto the MIL formu-
lation. A typical setup of the CBIR problem is as follows: dsagiven a collection
of training images where each image is labeled-49—1) indicating existence (ab-
sence) of a particular concept or object in the image. Tngadh entire image as a

9 http://mww.cs.columbia.edu/andrews/mil/datasets.html.
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bag, and the regions/patches in the image as instancesgcifyereduces to the MIL
problem: we only have bag-level labels where at least onigiymezgion implies that
the image is positive.

For this task, we use the SIVAL (Spatially Independent, &ble Area, and Light-
ing) dataset (Rahmani and Goldman, 2006). The SIVAL datasetmposed of 1500
images of 25 different object categories (60 images pergoay®. The images of
single objects are photographed with highly diverse bamkgds, while the spatial
locations of the objects within images are arbitrary. Thiage acquisition setup can
be more realistic and challenging than the popular CORElgardatabase in which
objects are mostly centered in the images occupying migef images.

The instance/bag formation is as follows: Each image issfamed into the
YCDbCr color space followed by pre-processing using a waveldure filter. This
gives rise to six features (three colors and three textwtifes) per pixel. Then the
image is segmented by the IHS segmentation algorithm (ZlaawlgFritts, 2005).
Each segment (instance) of the image is represented by tda8feature vector by
taking averages of color/texture features over pixels exsgbgment itself as well as
those from its four neighbor segments (N, E, S, W). It ends ip 34 or 32 instances
per bag.

We then form binary MIL problems via one-vs-all strategg (iconsidering each
of 25 categories as the positive class and the other caésgasinegative): For each
categoryc, we take 20 random (positive) images framand randomly select one
image from each of the classes other tiegthat is, collecting 24 negative images).
These 44 images serve as the training set, and all the res¢ ahages are used for
testing. This procedure is repeated randomly for 5 timed,vea report the average
performance (with standard errors) in Table 3.

Since the label distributions of the test data are highlyalsiced (for each cat-
egory, the negative examples take about 97% of the test,bags)sed the AUROC
(Area-Under ROC) measure instead of the standard erras. lat¢his result, we ex-
cluded MICA not only because its performance is worse that performing ones
for most categories, but also it often takes a large amoutitnaf to converge to op-
timal solutions. As shown in the results, the proposed GPMtdels perform best
most of the problem sets, exhibiting superb or comparabifepeance to the existing
methods. The Gaussian process priors used in our modelseffages of smoothing
by interpolating the latent score variables across unsestrpbints, which is shown
to be highly useful for improving generalization perforran



Table 3 Test accuracies (AUROC scores) on the SIVAL CBIR datasedfBoed numbers indicate the best results within the marfygignificance.

| Category [ GP-SMX [ GPWDA | mi-SVM [ MISVM | AL-SVWM | ALP-SVM [ AW-SVM | EMDD
AjaxOrange 90.05+ 8.61 | 94.20+848 | 75474520 | 63.57+-7.60 | 87.68+3.53 | 83.72+5.97 | 86.28+ 12.66 | 56.83+ 11.22
Apple 61.69+2.69 | 67.43+3.11 | 54704424 | 47.20+£3.99 | 50.77+4.93 | 52.45+2.24 | 61.26+6.54 | 54.63+2.79
Banana 67.69+7.05 | 68.92+4.51 | 61794572 | 55.82+3.45 | 60.52+4.62 | 62.05+4.63 | 63.89+4.87 | 59.86+5.18
BlueScrunge 72.04+6.46 | 68.13+1.21 | 65.04+7.66 | 67.17+£9.40 | 71944520 | 67.65+501 | 71.82+7.60 | 66.04+3.03
CandleWithHolder | 89.49+3.35 | 86.58+7.54 | 80.85+2.12 | 76.73+4.47 | 76.814557 | 77.67+534 | 84.70+2.15 | 69.36+5.86
CardboardBox || 76.35+15.89 | 73.53+:3.81 | 65.03:4.03 | 64.93+£5.32 | 68.86:4.26 | 67.31+4.72 | 68.04+£3.33 | 5842+ 1.12
CheckeredScarf || 94.851:5.36 | 92.29+852 | 81.44+£1.28 | 80.01+2.27 | 88.04£2.06 | 90.93:2.93 | 88.63+1.31 | 89.90+2.37
CokeCan 96.55+3.14 | 95.14+-3.30 | 93.61:0.86 | 79.07+6.74 | 92.49+2.94 | 88.39£4.32 | 92.45-1.16 | 72.59+5.20
DataMiningBook || 77.07+:11.68 | 72.82+5.40 | 69.82+9.63 | 58.13+2.84 | 75.25:6.02 | 72.951:6.19 | 78.86:6.35 | 71.75+7.26
DirtyRunningShoe || 79.164:3.18 | 82.39+4.88 | 74.90£4.83 | 67.73:2.66 | 77.71£1.93 | 81004334 | 82.17+4.01 | 80.14+3.89
DirtyWorkGloves || 61.32+4.91 | 80.96+3.65 | 73.86+3.80 | 63.07+-4.67 | 76.774:4.84 | 66.59+3.14 | 76.96+6.08 | 66.11+3.12
FabricSoftnerBox || 96.13+6.50 | 94.94+329 | 95534072 | 83174623 | 96.17+£2.04 | 93.20+3.84 | 97524201 | 75.65+12.77
FeltFlowerRug || 92.98+8.71 | 87.80+7.47 | 85.91+2.12 | 84.52+ 140 | 89.40+1.89 | 89.39+3.78 | 90.75+3.31 | 76.42+7.66
GlazedWoodPot || 63.66+8.42 | 67.40+268 | 50.93+4.34 | 47.73+6.49 | 5575+4.40 | 57.41+3.58 | 58474569 | 73.45+6.68
GoldMedal 82.82+4.20 | 71.59+5.19 | 83.40+ 11.63 | 52.07+8.25 | 86.89+2.79 | 86.18+4.75 | 87.68+-4.06 | 74.38+6.90
GreenTeaBox || 93731279 | 93.56+5.00 | 88.50+6.93 | 86.64+7.17 | 95.47+2.75 | 92.67+1.00 | 93.48+1.55 | 79.92+7.70
JuliesPot 87.23+9.08 | 91.78+11.23 | 8212+ 17.26 | 51.87+3.29 | 84.37+ 10.52 | 80.86+10.58 | 88.88+6.76 | 83.06 8.39
LargeSpoon 60.01+4.74 | 63.30£3.46 | 54161373 | 57.02+£3.18 | 54.38:153 | 55.08+1.81 | 54.13+£0.76 | 59.01 1.49
RapBook 67.43+3.33 | 67.73+£6.60 | 60.33:3.14 | 57.18+£2.93 | 60.80+4.60 | 60.59+1.82 | 59.31+3.78 | 55.78+3.25
SmileyFaceDoll || 80.65+2.28 | 75.3245.76 | 7552+ 1.73 | 74.46+-598 | 81.05+4.54 | 68.55:4.72 | 81.47+9.52 | 65.47+6.77
SpriteCan 80.31+£9.91 | 79.84+£7.29 | 72.75:321 | 75.38£7.28 | 74.07:591 | 75.99+7.66 | 78.57+7.47 | 64.36+5.03
StripedNotebook || 89.29+3.40 | 90.45+540 | 70.64+7.34 | 63.26+-3.31 | 88.10+2.86 | 81.08+£4.33 | 88.90+-2.66 | 61.47+4.25
TranslucentBowl || 79.71+£5.79 | 72624375 | 79.33+8.82 | 62481302 | 78.96+532 | 74.72+4.48 | 77124658 | 75.08+6.90
WD40Can 90.41+578 | 79.82+4.42 | 88.99+330 | 83.02+2.66 | 92.02+1.83 | 88.34+3.05 | 94.10+1.17 | 70.57+6.23
WoodRollingPin || 71.17+£6.73 | 75.26+4.47 | 54.7241.62 | 61.72+4.06 | 57.09+228 | 59.09+3.80 | 64.57+2.91 | 58.90+3.81

(174
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6.5 Drug Activity Prediction

Next we consider the drug activity prediction task with thublicly available artificial
molecule datasét. In the dataset, the artificial molecules were generated that
each feature value represents the distance from the matesuitface when aligned
with the binding sites of the artificial receptor. A molecbigg is then comprised of
all likely low-energy configurations or shapes for the malec More details on the
data synthesis can be found in (Dooly et al, 2002).

The data generation process is quite similar to the MUSKsgdsawhile a notable
aspectis that the real-valued labels are introduced. et flar a molecule is the ratio
of the binding energy to the maximum possible binding engjiggn the artificial
receptor, hence representing binding strength, whichalsva@ued between 0 and 1.
We transform it to a binary classification setup by thresimgdhe label by 0.5.

We select two different types of datasets: one has 166-camufes and the other
283-dim. The former dataset is similar to the MUSK data witile latter aims to
mimic the proprietary Affinity dataset from CombiChem (Dgetl al, 2002). In each
of the two datasets, there are different setups by havirfigrdiit numbers of relevant
features. For the 166-dim dataset, we have two setups-df60 andr = 80 wherer
indicates the number of relevant features (the rest featar be regarded as noise).
For the 283-dim dataset, we consider four setups-6f160, 120 80, 40.

As the features are blend of relevant and noise ones, oneezmith feature
selection. In our GP-based models, the feature selectiohegracefully achieved by
the hyperparameter learning with the so-called ARD kerndku the GP framework.
The ARD kernel is defined as follows, and allows individuallsgarameter for each
feature dimension.

K(x,X) = exp( - %(x X TP L(x— x’)) , whereP = diag(p%,...,p2). (32)

Here,d is the feature dimension, amtdag(-) makes a diagonal matrix with its argu-
ments. Learning the hyperparameters of the ARD kernel itg®MIL models can be
done by efficient gradient search under empirical Bayes(likdlihood maximiza-
tion). For the other approaches, however, it should be rtbsdt is computationally
infeasible to perform grid search or cross validation ligimization to select rele-
vant features from the large feature dimensions.

For each data setup, we split the data into 180 training bads28 test bags,
where each bag consists 0f~35 instances. The procedure is repeated randomly
for 5 times, and we report in Table 4 the means and standaiidties of the test
accuracies. For our GPMIL models, the performance of the"@ models are
shown (as GP-SMX performs comparably), where we contrasfAfRD kernel with
the standard isotropic RBF kernel (denoted by 1SO). To ifletite dataset, we use
the notation #relevant-features/#-features, for instance, the dataset AZB3
indicates that only 40 out of 283 features are relevant, Aedrést are noise. For
all datasets, each feature vector consists of the releeanirfes taking the first part,
followed by the noise features.

10 http://www.cs.wustl.edutsg/multi-inst-data/.
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Table 4 Test accuracies (%) on the drug activity prediction dataset

GP-WDA GP-WDA 4
Dataset (ARD) (150) mi-SVM MI-SVM AL-SVM ALP-SVM AW-SVM EMDD
160/166 || 100.00+ 0.00 | 97.78+4.97 | 100.00+ 0.00 | 97.78+£4.97 | 97.78+4.97 | 100.00+0.00 | 100.00+ 0.00 | 82.22+ 9.94
80/166 || 97.78+4.97 | 95.56+6.09 | 77.78+7.86 | 93.33:6.09 | 86.67=9.30 | 93.33+6.09 | 95.56+6.09 | 7556+ 9.30
160/283 || 100.00+ 0.00 | 100.00+0.00 | 96.00+4.18 | 100.00+ 0.00 | 100.00+ 0.00 | 100.00+ 0.00 | 100.00+0.00 | 96.00+ 8.94
120/283 || 100.00+ 0.00 | 99.00+ 2.24 | 88.00+ 4.47 | 100.00+ 0.00 | 100.00+ 0.00 | 100.00+ 0.00 | 100.00+ 0.00 | 86.00+ 5.48
80/283 || 100.00+0.00 | 98.00+2.74 | 87.00+6.71 | 97.00+2.74 | 100.00+0.00 | 97.00+ 2.74 | 100.00+ 0.00 | 82.00+ 8.37
40/283 || 99.00+2.24 | 94.00+548 | 91.00+£548 | 92.00+9.08 | 94.00+4.18 | 93.00+2.74 | 92.00+2.74 | 80.00+ 7.07
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Fig. 3 Learned ARD kernel hyperparameters, (Ip@, k=1,...,283, for the 40/283 dataset. From the
definition of ARD kernel (32), a lower value @k indicates that the corresponding feature dimenki@an
more informative.

As demonstrated in the results, most approaches perforallgguell when the
number of relevant features is large. On the other handgagsdttion of the relevant
features decreases, the test performance degrades, dedtilme selection becomes
more crucial to the classification accuracy. Promisingly@2MIL model equipped
with the ARD kernel feature selection capability performgstandingly, especially
for the 40/283 dataset. For the GP-WDA (ARD), we also depi¢tig. 3 the learned
ARD kernel hyperparameters in log-scale, that is(hﬁg fork=1,...,283 for the
40/283 dataset. From the ARD kernel definition (32), a lonaue& of py indicates
that the corresponding feature dimension is more inforaafis shown in the figure,
the first 40 relevant features are correctly recovered fpwalues) by the GPMIL
learning algorithm.

7 Conclusion

We have proposed novel MIL algorithms by incorporating blagslikelihood mod-
els in the GP framework, yielding nonparametric Bayesiababilistic models that
can capture the underlying generative process of the Mla ftatnation. Under the
GP framework, the kernel parameters can be learned in aipliédcmanner using




23

efficient gradient search, thus avoiding grid search anagoghle to exploit a variety
of kernel families with complex forms. This capability hasem further utilized for
feature selection, which is shown to yield improved testqrenance. Moreover, our
models provide probabilistic interpretation, informatifor better understanding of
the MIL prediction problem. To address the intractabilitythe exact GP inference
and learning, we have suggested several approximatiomsshicluding the soft-
max with the PSD projection and the introduction of the wéhkatent variables that
can be optimized by the deterministic annealing. For séveed-world benchmark
MIL datasets, we have demonstrated that the proposed netiandyield superior or
comparable prediction performance to the existing st&te-art approaches.

Unfortunately, the proposed GPMIL algorithms were usualbwer in running
time than SVM-based methods, mainly due to the overhead @fixriaversion in
Gaussian process inference. This is a well-known issusftiek of most GP-based
methods nearly all the time, and we do not rigorously dedi tie computational ef-
ficiency of the proposed methods here. However, there amraaecent approaches
to reduce computational complexity of GP inference (eayse GP or pseudo in-
put methods (Snelson and Ghahramani, 2006; Lazaro-Gredikl, 2010)). Their
application to our GPMIL framework is left as our future work

Appendix: Gaussian Process Models and Approximate Inferece
We review the Gaussian process regression and classificaibalels as well as the Laplace method for

approximate inference.

A.1 Gaussian Process Regression

When the output variablgis a real-valued scalar, one natural likelihood model froto y is theadditive
Gaussian noisenodel, namely
_ )2
exp(—(y ") > (33)

202

POYIf) = A (y:f,02) = &%

wherea?, the output noise variance, is another set of hyperparasgtegether with the kernel parameters
B). Given the training datd(x;,yi)}{' ; and with (33), we can compute the posterior distributiontfer
training latent variable§ analytically, namely

P(fly,X) O P(y|f)P(f|X) = A (F;K (K +021) "Ly, (I =K (K 4+ a?1)"H)K). (34)

When the posterior dfis obtained, we can readily compute the predictive distidioufor a test output
Y. onx,. We first derive the posterior fdr,, the latent variable for the test point, by marginalizind oas
follows:

PUEIx..y.X) = [ P(F e, FX)P(Fly, X)df
= N (fik(%) (K +02) 7Yy k(% %) — k(%) T (K 4+ 021) 71k (x.)). (35)
Then it is not difficult to see that the posterior farcan be obtained by marginalizing ofy, namely

PU-x..y:X) = [ POl E)P(E 1.y, X)d .
= (Ve k(%) T (K 4021 7Ly K%, X ) — k(%) T (K + 021) "2k (%) + 02). (36)
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So far, we have assumed that the hyperparameters (denot@d=by3,0?}) of the GP model are
known. However, it is a very important issue to estim@titom the data, the task often known as tBe
learning Following the fully Bayesian treatment, it would be idealplace a prior or6 and compute a
posterior distribution fo® as well, however, due to the difficulty of the integrationisiusually handled
by theevidence maximizatiomlso referred to as trempirical BayesThe evidence in this case is the data
likelihood,

PyIX.6) = [ PyIf.o?)P(1IX.B)df = 4 (y:0.Kg + 0%1). 37
We then maximize (37), which is equivalent to solving thédiwing optimization problem:

6" = argmaxlogP(y|X, 6) = argmin K s + aAll+y" (Kg+02) . (38)

(38) is non-convex in general, and one can find a local minimaimg the quasi-Newton or the conjugate
gradient search.

A.2 Gaussian Process Classification

In the classification setting where the output variapkakes a binar}* value from{+1,—1}, we have
several choices for the likelihood mode{y|f). Two most popular ways to link the real-valued variable
to the binaryy are the sigmoid and the probit.

— L1 __ (sigmoid)
)= 1+exp(—yf) 39
POIT) {d:(yf) (probit) (39)

where®(-) is the cumulative normal function. We Igly, f;y) = —logP(y|f,y), wherey denotes the (hy-
per)parameters of the likelihood mo#elLikewise, we often drop the dependencyjofor the notational
simplicity.

Unlike the regression case, it is unfortunate that the pastdistribution P(f|y,X) has no analytic
form as it is a product of the non-Gaussi(fy|f) and the GaussiaR(f|X). One can consider three stan-
dard approximation schemes within the Bayesian framew@rk:aplace approximation, (ii) variational
methods, and (iii) sampling-based approaches (e.g., MCM®)often the cases that the third method is
avoided due to the computational overhead (as we sampiadimensional vectors, whereis the number
of training samples). In the below, we briefly review the lzag@d approximation.

A.3 Laplace Approximation

The Laplace approximation essentially replaces the pto(df)P(f|X) by a Gaussian with the mean
equal to the mode of the product, and the covariance equiaétmterse Hessian of the product evaluated
at the mode. More specifically, we let

S(f) = ~log (P(YIfP(X)) = il(yh fi)+ 51 K M+ SloglK| + 2log2n (40)

Note that (40) is a convex function bkince the Hessian &(f), A + K1, is positive definite wherd is

the diagonal matrix with entrigg\ Ji = %. The minimum ofS(f) can be attained by a gradient search.
i

We denote the optimum B'AP = argmax S(f). Letting AMAP be A evaluated afMAP, we approximate

S(f) by the following quadratic function (i.e., using the Taytopansion)

S(f) ~ S(fMAP) + %(f _ fMAP)T(/\ MAP + K*l)(f _ fMAF’)7 (41)

11 We only consider binary classification where the extensiomulticlass cases is straightforward.
12 Although the models in (39) have no parameters involved,ameatways consider more general cases.
For instance, oyne may play with a generalized logistic gjom (Zhang and Oles, 200®)(y|f,y) O
1

( I+exp(y(1-yf))
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which essentially leads to a Gaussian approximatiorP{ély, X ), namely
P(fly,X) = A (f;fMAP (AMAP L K ~1)=1y, (42)
The data likelihood (i.e., evidence) immediately followsrh the similar approximation,
P(y[X,8) ~ exp(—S(IAP)) (2m)" 2 AMAP L K g1 1/2, (43)

which can be maximized by gradient search with respect thyperparameter = {8, y}.
Using the Gaussian approximated posterior, it is easy twal#re predictive distribution fof.:

P(filxe,y,X) = A (Fi k(%) TKTHYAR K(x, ) — k(%) T(AYAP) 14 KT THk(x). (44)

Finally, the predictive distribution foy, can be obtained by marginalizing ofyt which has a closed form
solution for the probit likelihood model as follodss

P(Y, = +1/%.,Y,X) = ‘D(yf—az)’ (45)

wherep anda? are the mean and the varianceRgff, |x.,y, X), respectively.
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