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Abstract

Data often comes in the form of a graph. When it does not, it often makes sense

to represent it as a graph for learning tasks that rely on the similarities or relationships

between data points. As data size grows, traditional methods for learning on graphs

often become computationally intractable in terms of time and space requirements.

We describe new methods for graph-based clustering and semi-supervised classifica-

tion with a focus on scalability. We show how these methods can be efficiently extended

to work on non-graph data, and we demonstrate their application and effectiveness on

a wide variety of datasets that includes social and citation networks, political blogs,

document collections, noun phrase-context co-occurrences, and geolocations.
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Chapter 1

Introduction

1.1 Motivation

Graph data is ubiquitous. Many types of data come in the form of a graph or a network,

with nodes representing data points and edges between nodes representing relationships

between data points. Examples include social networks, relational databases, router

networks, and the World Wide Web—a network of interconnected web pages.

Some types of data do not come naturally in the form of a graph. Yet as the size of

these types of data increases, it makes sense to represent them as graphs for the purposes of

automated learning and discovery. This is true for at least two general tasks: clustering

and semi-supervised learning.

First, for discovering hidden structure in data, we want to group similar data points

together, but we do not know what the groups are. This is called clustering, a type of

unsupervised learning. Graphs are natural data representations for this task because

grouping is based on similarity, and it is natural to represent similarities between data

points as weighted edges between nodes.

In the second case, we know what the groups are but we only know the group labels

of a few of the data points. To infer the group labels for the rest of the data points,
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we can leverage the similarity between data points and propagate labels from labeled to

unlabeled data points. This is a type of semi-supervised learning. For label propagation,

graphs are again natural representations of the similarities between data points.

As the amount of data increases, it becomes crucial that automated methods for

clustering and semi-supervised learning be scalable—that is, they should be efficient

space-wise and time-wise with respect to the number of data points, and the result they

provide should be of the same quality regardless of data size. Additionally, the methods

should be easily implemented in a computing framework which supports large-scale

data, such as the MapReduce programming model of the Apache Hadoop project.

1.2 Thesis Goal

The goal of this thesis work is to make contributions toward fast, space-efficient, effective,

and simple graph-based learning methods that scale up to large datasets. Specifically, we

propose general unsupervised and semi-supervised methods that work on both natural

network data and network data derived from pair-wise similarity between data points.

We also propose to show these methods can be extended to efficiently solve a variety of

interesting and difficult problems found in different types of datasets.

1.3 Contributions

The contributions of this thesis are made along two related lines of work—one for unsu-

pervised learning and one for semi-supervised learning. Each line begins with a general

method as its basic component, laying a groundwork for further modifications and ex-

tensions.

For unsupervised learning, we proposed power iteration clustering (PIC) as a general

graph clustering method and a scalable alternative to spectral clustering (Chapter 2 and

2



3). For semi-supervised learning, we proposed MultiRankWalk (MRW) as a general graph

learning method for when there are only a few training instances (Chapter 4 and 5).

To extend these graph-based methods to work on general feature vector data, we

proposed the idea of implicit manifolds (IM). IM is a tool for transforming an O(n2)

algorithm on an O(n2) data manifold into an O(n) algorithm that outputs the exactly

same solution. IM is also a framework that specifies the class of similarity functions and

algorithms under which this can be done, which includes PIC and MRW (Chapter 6).

IM also paves the way for further extensions to PIC and MRW. We extended PIC to

provide efficient mixed membership clustering via edge clustering (Chapter 7), and we

extended random walk learning methods (e.g., MRW) to data in non-linear continuous

manifolds such as the Gaussian kernel Hilbert space (Chapter 8).

We performed experiments on various types of real datasets for all of the proposed

methods to test their effectiveness and scalability on real-world problems.

1.4 Notation

Unless otherwise specified, the general use of symbols will follow Table 1.1:

Example Explanation
A An uppercase letter denotes a matrix
A(i, j) The element at i-th row and j-th column of A
A(i, :) The i-th row of A
A(:, j) The j-th column of A
a A boldface lowercase letter denotes a vector
a(i) The i-th element of a
A A script uppercase letter denotes a set

Table 1.1: General symbol explanations.

We also define some specific symbols that we will use frequently throughout this

work. Given a dataset X = {x1, x2, ..., xn} where xi is the feature vector of the i-th instance,

a similarity function s(xi, xj) is a function where s(xi, xj) = s(xj, xi) and s ≥ 0 if i 6= j.
3



Following previous work [91], it is mathematically convenient to define s = 0 if i = j. An

affinity matrix or a similarity matrix A ∈ Rn×n is defined by A(i, j) = s(xi, xj). The degree

matrix D associated with A is a diagonal matrix with D(i, i) =
∑
jA(i, j). We will view A

interchangeably as a matrix, and an undirected graph with nodes X and the edge from

xi to xj weighted by s(xi, xj).

A row-normalized affinity matrix W is defined as D−1A; such a matrix is also referred

to as a right-stochastic or row-stochastic matrix. Respectively, a column-normalized affinity

matrix P is defined as AD−1, and is also referred to as a left-stochastic or column-stochastic

matrix. Note that P =WT and W = PT .

We also view W or P as a probability transition matrix for Markov random walks on

the graph A. If a vector vt of size n defines a probability distribution over the nodes in

A at time t, then vt+1 = Pvt is the probability distribution after taking one step forward

in the Markov chain; conversely, vt+1 = Wvt is the probability distribution after taking

one step in reverse [73].

The above definitions are summarized in Table 1.2.

Symbol Definition
X The dataset
X The feature matrix of X; rows are instances and columns are features
xi The i-th instance of X, also the i-th row of X
A The affinity matrix of X
D The degree matrix (diagonal)
I The identity matrix (diagonal)
W The row-normalized affinity matrix: W = D−1A

P The column-normalized affinity matrix: P = AD−1

Table 1.2: Specific symbol definitions.
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Chapter 2

Power Iteration Clustering

2.1 Introduction

We proposed a simple and scalable graph-based clustering method called power iteration

clustering (PIC) in [64]. In essence, PIC finds a very low-dimensional data embedding

using truncated power iteration on a normalized pair-wise similarity matrix of the data

points, and this embedding turns out to be an effective cluster indicator. Here we give a

brief explanation of the method and experimental results.

PIC is related to a family of clustering methods called spectral clustering. PIC and

spectral clustering are similar in that both embed data points in a low-dimensional sub-

space derived from the affinity matrix, and this embedding provides clustering results

directly or through a k-means algorithm. They are different in what this embedding

is and how it is derived. In spectral clustering the embedding is formed by the bot-

tom eigenvectors of the Laplacian of an affinity matrix. In PIC the embedding is an

approximation to a eigenvalue-weighted linear combination of all the eigenvectors of the

row-normalized affinity matrix. This embedding turns out to be very effective for clus-

tering, and in comparison to spectral clustering, the cost (in space and time) of explicitly

5



calculating eigenvectors is replaced by that of a small number of matrix-vector multipli-

cations.

We tested PIC on a number of different types of datasets and obtain comparable or

better clusters than existing spectral methods. However, the greatest advantage of PIC

is its simplicity and scalability — we demonstrate that a basic implementation of this

method is able to partition a network dataset of 100 million edges within a few seconds

on a single machine, without sampling, grouping, or other preprocessing of the data.

2.2 Spectral Clustering

The row-normalized matrix W of the affinity matrix A derived from the data is closely

related to the normalized random-walk Laplacian matrix L of Meilă and Shi [73], defined as

L = I−D−1A. The second-smallest eigenvector of L (the eigenvector with the second-

smallest eigenvalue) defines a partition of the graph W that approximately maximizes

the Normalized Cut criteria. More generally, the k smallest eigenvectors define a subspace

where the clusters are often well-separated. Thus the second-smallest, third-smallest,

. . . , kth smallest eigenvectors of L are often well-suited for clustering the graph W into

k components [73], as in Algorithm 1. Most of spectral clustering algorithms have a

similar structure, and mainly differ in Step 2 and Step 4.

Algorithm 1 k-way Normalized Cuts [73]

1: procedure NCut(A,k)
2: W ← I−D−1A

3: Find eigenvalues λ1 . . . λn of W and corresponding eigenvectors e1 . . .en where
λi is the i-th smallest eigenvalue of W

4: Let columns of E be e2 . . .ek
5: Use k-means on rows of E to get cluster assignments C1,C2, ...,Ck.
6: return C1,C2, ...,Ck
7: end procedure

6



(a) Clustering result (b) t = 0, ε = 0.015 (c) t = 2, ε = 0.009 (d) t = 10, ε = 0.004

(e) t = 100, ε = 0.003 (f) t = 200, ε = 0.002 (g) t = 500, ε = 0.002 (h) t = 1000, ε = 0.001

Figure 2.1: Clustering result and the embedding provided by vt for the 3Circles dataset.
In (b) through (h), the value of each component of vt is plotted against its index, and
the colors indicate cluster membership. Plots (b) through (h) are re-scaled so the largest
value is always at the very top and the minimum value at the very bottom, and ε is the
scale — maximum value minus the minimum value.

2.3 Power Iteration

The k smallest eigenvectors of L are also the k largest eigenvectors of W. One simple

method for computing the largest eigenvector of a matrix is power iteration (PI), also

called the power method. PI is an iterative method, which starts with an arbitrary vector

v0 6= 0 and repeatedly performs the update

vt+1 = cWvt

where c is a normalizing constant to keep vt from getting too large (here c = 1/
∥∥Wvt∥∥

1
).

While running PI to convergence on W does not lead to an interesting result, the interme-

diate vectors obtained by PI during the convergence process are extremely interesting.

This is best illustrated by example. Figure 2.1a shows a simple dataset—i.e., each xi is a

7



point in R2 space, with s(xi, xj) defined as exp
(

−‖xi−xj‖2
2σ2

)
. Figures 2.1b to 2.1h shows

vt at various values of t, each illustrated by plotting vt(i) for each xi. For purposes of

visualization, the instances x in the “bulls-eye” (blue) are ordered first, followed by in-

stances in the central ring (green), then by those in the outer ring (red). As we can see the

differences between the distinct values of the vt’s become smaller as t increases. Quali-

tatively, PI first converges locally within a cluster: by t = 400 the points from each cluster

have approximately the same value in vt, leading to three disjoint line segments in the

visualization. Then, after local convergence, the line segments draw closer together more

slowly.

2.4 PI Convergence Analysis

Let us assume that W has eigenvectors e1, . . . ,en with eigenvalues λ1, . . . , λn, where

λ1 = 1 and e1 is constant. Given W, we define the spectral representation of a value

a ∈ {1, . . . ,n} to be the vector sa = 〈e1(a), . . . ,ek(a)〉, and define the spectral distance

between a and b as

spec(a,b) ≡ ‖sa − sb‖2 =

√√√√ k∑
i=2

(ei(a) − ei(b))2

Usually in spectral clustering it is assumed that the eigenvalues λ2, . . . , λk are larger than

the remaining ones. We define W to have an (α,β)-eigengap between the k-th and (k+ 1)-

th eigenvector if λk/λ2 ≥ α and λk+1/λ2 ≤ β. We will also say that W is γe-bounded if

∀i,a,b ∈ {1, . . . ,n}, |ei(a) − ei(b)| ≤ γe; note that every W is γe-bounded for some γe.

Letting vt be the result of the t-th iteration of PI, we define the (t, v0)-distance between a

and b as

pict(v0;a,b) ≡ |vt(a) − vt(b)|

8



For brevity, we will usually drop v0 from our notation (e.g., writing pict(a,b)). Our goal

is to relate pict(a,b) and spec(a,b). Let us first define

signalt(a,b) ≡
k∑
i=2

[ei(a) − ei(b)]ciλ
t
i

noiset(a,b) ≡
n∑

j=k+1

[ej(a) − ej(b)]cjλ
t
j

Proposition 1. For any W with e1 a constant vector,

pict(a,b) = |signalt(a,b) +noiset(a,b)|

Proof. To verify the proposition, note that (ignoring renormalization)

vt =Wvt−1 =W2vt−2 = ... =Wtv0

= c1W
te1 + c2W

te2 + ... + cnWten

= c1λ
t
1e1 + c2λ

t
2e2 + ... + cnλtnen

Rearranging terms,

pict(a,b) =
∣∣∣∣[e1(a) − e1(b)]c1λt1

+

k∑
i=2

[ei(a) − ei(b)]ciλ
t
i +

n∑
j=k+1

[ej(a) − ej(b)]cjλ
t
j

∣∣∣∣
where the second and third terms correspond to signalt and noiset respectively, and

the first term is zero because e1 is a constant vector.
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The implications of the proposition are somewhat clearer if we define a “radius”

Rt ≡ 1
λt2

and consider the product of Rt and the quantities above:

Rtsignalt(a,b) =
k∑
i=2

[ei(a) − ei(b)]ci

(
λi
λ2

)t
(2.1)

Rtnoiset(a,b) ≤
n∑

j=k+1

γecjβ
t (2.2)

After rescaling points by Rt, we see that noiset will shrink quickly, if the β parameter of

the eigengap is small. We also see that signalt is an approximate version of spec: the

differences are that signalt:

1. is compressed to the small radius Rt,

2. has components distorted by ci and (λi/λ2)t, and

3. has terms that are additively combined (rather than combined with Euclidean dis-

tance).

Note that the size of the radius is of no importance in clustering, since most cluster-

ing methods (e.g., k-means) are based on the relative distance between points, not the

absolute distance. Furthermore, if the ci’s are not too large or too small, the distorting

factors are dominated by the factors of (λi/λ2)t, which implies that the importance of

the dimension associated with the i-th eigenvector is down-weighted by (a power of) its

eigenvalue; in Section 2.6 we will show that experimentally, this weighting scheme often

improves performance for spectral methods.

We are then left with the difference 3 that the terms in the sum defining signalt are

additively combined. How does this effect the utility of signalt as a cluster indicator?

In prior work by Meilă and Shi [73], it is noted that for many natural problems, W

is approximately block-stochastic, and hence the first k eigenvectors are approximately

piecewise constant over the k clusters. This means that if a and b are in the same
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cluster, spec(a,b) would be nearly 0, and conversely if a and b are in different clusters,

spec(a,b) would be large.

It is easy to see that when spec(a,b) is small, signalt must also be small. How-

ever, when a and b are in different clusters, since the terms are signed and additively

combined, it is possible that they may “cancel each other out” and make a and b seem

to be of the same cluster. Fortunately, this seems to be uncommon in practice when the

number of clusters k is not too large. Hence, for large enough α, small enough t, signalt

is very likely a good cluster indicator.

2.5 PI Truncated

These observations suggest that an effective clustering algorithm might run PI for some

small number of iterations t, stopping after it has converged within clusters but before

final convergence, leading to an approximately piecewise constant vector, where the

elements that are in the same cluster have similar values. Specifically, define the velocity

at t to be the vector δt = vt − vt−1 and define the acceleration at t to be the vector

εt = δt − δt−1. We pick a small threshold ε̂ and stop PI when
∥∥εt∥∥∞ ≤ ε̂.

Our stopping heuristic is based on the assumption and observation that while the

clusters are “locally converging”, the rate of convergence changes rapidly; whereas dur-

ing the final global convergence, the convergence rate appears more stable. This as-

sumption turns out to be well-justified. Recall that vt = c1λ
t
1e1 + c2λ

t
2e2 + ... + cnλtnen.

Then

vt

c1λ
t
1

= e1 +
c2
c1

(
λ2
λ1

)t
e2 + ... +

cn

c1

(
λn

λ1

)t
en

It can be seen that the convergence rate of PI toward the dominant eigenvector e1 de-

pends on (λi/λ1)t for the significant terms i = 2, ...,k, since their eigenvalues are close

to 1 if the clusters are well-separated [73], making (λi/λ1)t ' 1. This implies that in the
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beginning of PI, it is converging to a linear combination of the top k eigenvectors, with

terms k+ 1, . . . ,n diminishing at a rate of ≥ (λk+1/1)t. After the noise terms k+ 1, . . . ,n

go away, the convergence rate toward e1 becomes nearly constant. We call the complete

method power iteration clustering (PIC), described in Algorithm 2. In all experiments in

this chapter, we let ε̂ = 1×10−5
n where n is the number of data instances.

Algorithm 2 The PIC algorithm

1: procedure PIC(W,k)
2: Initialize v0

3: repeat
4: vt+1 ← Wvt

‖Wvt‖1
5: δt+1 ← |vt+1 − vt|
6: t← t+ 1
7: until |δt − δt−1| ' 0
8: Use k-means on elements of vt to get cluster assignments C1,C2, ...,Ck.
9: return C1,C2, ...,Ck

10: end procedure

2.6 Experiments

2.6.1 Datasets

We demonstrate the effectiveness of PIC on a variety of real datasets; they have known

labels and have been used for both classification and clustering tasks:

• Iris contains flower petal and sepal measurements from three species of irises, two

of which are non-linearly separable [37].

• PenDigits01 and PenDigits17 are hand-written digit datasets [7] with digits “0”,

“1” and “1”, “7”, respectively. Each dataset contains 200 instances, 100 per digit.

PenDigits01 represents an “easy” dataset and PenDigits17 a “difficult” dataset.

• PolBooks is co-purchase network of political books [79]. Each book is labeled “lib-

eral”, “conservative”, or “neutral”, with most belonging to the first two category.
12



• UBMCBlog is a connected network dataset of liberal and conservative political

blogs mined from blog posts [51].

• AGBlog is a connected network dataset of liberal and conservative political blogs

mined from blog homepages [5].

• 20ng* datasets are subsets of the 20 newsgroups text dataset [75]. 20ngA contains

100 documents from 2 newsgroups: misc.forsale and soc.religion.christian. 20ngB

adds 100 documents to each group of 20ngA. 20ngC adds 200 from talk.politics.guns

to 20ngB. 20ngD adds 200 from rec.sport.baseball to 20ngC.

For the network datasets (Polbooks, UBMGBlog, AGBlog), the affinity matrix is simply

Aij = 1 if blog i has a link to j or vice versa, otherwise Aij = 0. For all other datasets,

the affinity matrix is simply the cosine similarity between feature vectors: xi·xj
‖xi‖2‖xj‖2

.

Cosine similarity is used instead of the distance function used in Figure 2.1 to avoid

having to tune σ2. For the text datasets, word counts are used as feature vectors with

only stop words and singleton words removed. Table 2.1 contains a summary of dataset

size information.

Dataset Nodes Edges k
Iris 150 * 3

PenDigits01 200 * 2
PenDigits17 200 * 2

PolBooks 105 441 3
UBMCBlog 404 2382 2

AGBlog 1222 16714 2
20ngA 200 * 2
20ngB 400 * 2
20ngC 600 * 3
20ngD 800 * 4

Table 2.1: Sizes of datasets for clustering. Nodes are the number of nodes in the graph-
view of the dataset, which corresponds to the number of instances in the dataset. Edges
are the number of edges, an * indicates it is the number of nodes squared (a complete
graph).
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NCut NJW PIC
Dataset k Purity NMI RI Purity NMI RI Purity NMI RI

Iris 3 0.67 0.72 0.78 0.77 0.61 0.80 0.98 0.93 0.97
PenDigits01 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PenDigits17 2 0.76 0.21 0.63 0.76 0.20 0.63 0.76 0.21 0.63

PolBooks 3 0.85 0.57 0.84 0.83 0.54 0.83 0.87 0.62 0.86
UBMCBlog 2 0.95 0.75 0.91 0.95 0.74 0.91 0.95 0.72 0.90

AGBlog 2 0.52 0.01 0.50 0.52 0.00 0.50 0.96 0.75 0.92
20ngA 2 0.96 0.76 0.92 0.96 0.76 0.92 0.96 0.76 0.92
20ngB 2 0.51 0.01 0.50 0.55 0.08 0.51 0.87 0.52 0.77
20ngC 3 0.62 0.33 0.67 0.63 0.35 0.69 0.69 0.44 0.74
20ngD 4 0.48 0.24 0.63 0.52 0.30 0.68 0.58 0.31 0.71

Average 0.73 0.46 0.74 0.75 0.46 0.75 0.86 0.63 0.84

Table 2.2: Clustering performance of PIC and spectral clustering algorithms on several
real datasets. For all measures a higher number means better clustering. Bold numbers
are the highest in its row.

2.6.2 Accuracy Results

We evaluate the clustering results against the labels using three measures: cluster purity

(Purity), normalized mutual information (NMI), and Rand index (RI). Three measures are

used to ensure a thorough evaluation of clustering results; for example, NMI takes into

account the difference between the number of clusters returned by the method and the

number of classes according to the ground truth labels, which is ignored by Purity. See

Appendix A.2 for formal definitions of these measures.

We also compare the results of PIC against those of spectral clustering methods Nor-

malized Cuts (NCut) [73, 91] and the Ng-Jordan-Weiss algorithm (NJW) [80]. The NJW

algorithm is very similar to that of NCut as in Algorithm 1, with two differences be-

ing the Laplacian matrix is defined as W = I−D1/2AD1/2 in Step 2 and eigenvectors

e1 . . .ek are all used in Step 4. The clustering results comparing PIC against these meth-

ods are shown in Table 2.2.

On most datasets PIC does equally well or does better than the other methods for

most evaluation measures. In the cases where NCut or NJW fails badly (AGBlog, 20ngB),
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the most likely cause is that the top k eigenvectors of the graph Laplacian fail to provide

a good low-dimensional embedding for k-means. This problem may be alleviated by

use of additional heuristics to choose the “good” eigenvectors and discard the “bad”

eigenvectors [63, 105, 109]. PIC, on the other hand, does not pick eigenvectors — the

embedding uses a weighted linear combinations of all the eigenvectors.

2.6.3 Eigenvalue Weighting

As seen in Section 2.4, in distance metric used by PIC, the i-th eigenvector is weighted

by ciλti , with λt dominating the weight term as the number of iteration t grows. In

other words, the eigenvectors are weighted according to their corresponding eigenval-

ues raised to the power t. Based on analyses in [73, 103], weighting the eigenvectors

according to eigenvalues seems reasonable, since eigenvalues of a row-normalized affin-

ity matrix range from 0 to 1 and good cluster indicators should have eigenvalues close

to 1 and “spurious” eigenvalues close to 0 (the opposite is true in the case of normalized

Laplacian matrices). To test this on real data, we run the NCut algorithm with the fol-

lowing modification: instead of using the first k eigenvectors, we use the first 10 vectors

and weight them in different ways. First, we use them directly without any additional

weighting. Second, we scale them by their corresponding eigenvalues. Lastly, we scale

them by their corresponding eigenvalue raised to a power t. The result is shown in Table

2.3.

In Table 2.3, we see that using the eigenvectors with uniform weights produces poor

clustering on most datasets, even on PenDigits01, which is a relatively easy dataset.

However, note that it does rather well on the blog datasets, and it even outperforms the

original NCut algorithm on AGBlog, showing that original NCut is missing an important

cluster indicator by choosing only the first k eigenvectors. In this light, we can also view

PIC as an approximation to the eigenvalue-weighted modification of NCut.

15



uniform weights ei weighted by λi ei weighted by λ15i
Dataset k Purity NMI RI Purity NMI RI Purity NMI RI

Iris 3 0.67 0.65 0.73 0.98 0.93 0.97 0.98 0.93 0.97
PenDigits01 2 0.70 0.28 0.58 1.00 1.00 1.00 1.00 1.00 1.00
PenDigits17 2 0.70 0.18 0.58 0.76 0.21 0.63 0.76 0.21 0.63

PolBooks 3 0.49 0.10 0.44 0.85 0.59 0.85 0.84 0.59 0.85
UBMCBlog 2 0.95 0.74 0.91 0.95 0.74 0.91 0.95 0.75 0.91

AGBlog 2 0.95 0.71 0.90 0.95 0.72 0.91 0.95 0.72 0.91
20ngA 2 0.56 0.07 0.51 0.96 0.76 0.92 0.95 0.70 0.90
20ngB 2 0.71 0.27 0.59 0.95 0.70 0.90 0.51 0.01 0.50
20ngC 3 0.69 0.39 0.66 0.66 0.38 0.70 0.64 0.47 0.68
20ngD 4 0.48 0.24 0.64 0.49 0.26 0.64 0.53 0.29 0.71

Average 0.69 0.36 0.65 0.85 0.63 0.84 0.81 0.57 0.81

Table 2.3: Clustering performance of eigenvalue-weighted NCut on several real datasets.
For all measures a higher number means better clustering. Boldface numbers are the
highest in its row.

2.6.4 Scalability Results

Perhaps one of the greatest advantages of PIC lies in its scalability. Space-wise it needs

only a single vector of size n for vt and two more of the same dimension to keep track

of convergence. Speed-wise, power iteration is known to be fast on sparse matrices

and converges fast on many real-world datasets; yet PIC converges even more quickly

than power iteration, since it naturally stops when vt is no longer accelerating towards

convergence. Table 2.4 shows the runtime of PIC and the spectral clustering algorithms

on datasets described in the previous section, and Table 2.5 shows the runtime on large,

synthetic datasets.

For testing the runtime of the spectral clustering algorithms, we tried two different

ways of finding eigenvectors. NCutEVD uses the slower, classic eigenvalue decomposition

method to find all the eigenvectors. NCutIRAM uses the fast Implicitly Restarted Arnoldi

Method (IRAM) [60], a memory-efficient version of the fast Lanczos algorithm for non-

symmetric matrices. With IRAM we can ask only for the top k eigenvectors, resulting in

less computation time.
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We also tested PIC on synthetic datasets generated with a modified version of the

Erdős-Rényi random network model, which generates a connected block-stochastic

graph with two components. The n nodes are in two equal-sized blocks, and the

number of edges is 0.01n2. We define an additional parameter e = 0.2, and when

generating a edge between two nodes, with probability 1− e the edge is placed between

two random nodes of the same cluster and otherwise between two nodes of different

clusters. Such models for generating synthetic networks are also called planted partition

models [24]. Results are averaged over five random network datasets and three trials for

each dataset, and all accuracies are above 0.99. As expected from the analysis in Section

2.5, the number of iterations PIC requires does not increase with dataset size; real

datasets average 13 iterations and the largest synthetic dataset converges in 3 iterations.

NCutEVD and NCutIRAM were not run on the largest synthetic datasets because they

required more memory than was available. 1

Dataset Nodes NCutEVD NCutIRAM PIC
Iris 150 17 61 1

PenDigits01 200 28 23 1
PenDigits17 200 30 36 1

PolBooks 102 7 22 1
UBMCBlog 404 104 32 1

AGBlog 1,222 1095 70 3
20ngA 200 32 37 1
20ngB 400 124 56 3
20ngC 600 348 213 5
20ngD 800 584 385 10

Table 2.4: Runtime comparison (in milliseconds) of PIC and spectral clustering algo-
rithms on several real datasets.

1Implemented in MATLAB and run on a Linux machine with two quad-core 2.26Ghz CPUs and 24GB
RAM.
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Nodes Edges NCutEVD NCutIRAM PIC
1k 10k 1,885 177 1
5k 250k 154,797 6,939 7

10k 1,000k 1,111,441 42,045 34
50k 25,000k - - 849

100k 100,000k - - 2,960

Table 2.5: Runtime comparison (in milliseconds) of PIC and spectral clustering algo-
rithms on synthetic datasets.

2.7 Multi-dimensional PIC Embedding

The basic PIC algorithm in Section 2 projects the data points onto a one-dimensional

embedding. It is conceivable that when the number of clusters k increases, so does the

likelihood of collision of two clusters “colliding” on a single dimension. A collision

can happen because the underlying PIC embedding value of a cluster is determined

by the initial vector v0, which is chosen arbitrarily. If k is sufficiently large, then it

becomes likely that the embedding values of two clusters are assigned to be “close”

to each other, and due to the presence of noise in data, the two clusters may become

difficult to distinguish in the resulting embedding vt.

This is illustrated in Figure 2.2, where two synthetic datasets, “Smiley” (Figure

2.2a) and “NIPS 2009” (Figure 2.2c), are clustered using PIC, with their respective

one-dimensional PIC embedding plots (Figure 2.2b and 2.2d). Although PIC is able to

cluster these correctly, embedding for some of the clusters in Figure 2.2d are very close

and can potentially be determined to be of the same cluster by k-means.

One way to avoid such "collisions" is to set the initial vector such that nodes in differ-

ent clusters are likely to have different initial values; for instance, letting the initial vector

map to a function of its corresponding node’s degree. Another way to avoid collisions

is to run power iteration with early stopping d times (d � k) and embed the nodes in

the d-dimensional space spanned by these vectors. To evaluate their effectiveness we

choose three variations of PIC for comparison: PICR (one random initial vector), PICD
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(a) “Smiley” (b) vt for “Smiley” (c) “NIPS 2009” (d) vt for “NIPS 2009”

Figure 2.2: Toy datasets and the corresponding PIC embedding provided by vt. The
embedding is plotted in the same way as in Figure 2.1.

(one initial vector set according to the diagonal of D), and PICR4 (four random initial

vectors) [12]. These variations are compared against NCutEVD and NJWEVD (full eigen-

decomposition implementations of these spectral clustering methods) on a number of

synthetic and real network datasets [12]. The nodes in the graphs in all the datasets

studied have labels, which are used only to evaluate the accuracy of clustering and not

given as input to any of the clustering methods.

The first type of datasets consists of social networks, citation networks, and similar

networks that have been studied in the sociology literature. The nodes in the PolBook

dataset [57] are political books, and edges represent co-purchasing behavior. Books are

labeled “liberal”, “conservative”, or “neutral”, based on their viewpoint. The nodes in

the Karate dataset [108] are members of a karate club, and the edges are friendships. The

labels are sub-communities, as defined by two subgroups that formed after a breakup

of the original community. The Dolphin dataset [70] is a similar social network of asso-

ciations between dolphins in a pod in Doubtful Sound, New Zealand, and labels corre-

spond to sub-community membership after a similar breakup. The nodes in the Football

dataset are Division IA colleges in the United States, and the edges represent games in

the 2000 regular season, and the labels represent regional conferences [41]. The nodes in

the MGEmail corpus [74] are MBA students, organized in teams of four to six members,

who ran simulated companies over a 14-week period as part of a management course

at Carnegie Mellon University. The edges correspond to emails, and the true cluster
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labels correspond to teams. In the UMBC [64], AG [5], and MSP [65] datasets, the nodes

are blogs, and an edge between two nodes represents hyperlinks. Blog sites are labeled

either liberal or conservative. The MSP dataset also contains news cites, which are unla-

beled. In the Cora and CiteSeer datasets [69], nodes are scientific papers, and links are

citations. The node labels are scientific subfields. The nodes in the Senate dataset are

US Senators, and edges are agreement on congressional votes. The labels correspond to

political party. Unlike other datasets, this is a complete graph.

The second type of datasets were used for author disambiguation [43]. Each of the

dataset corresponds to a first name initial and a common last name. The datasets were

constructed by extracting co-authorship information for papers authored by people with

these ambiguous first initial-last name pairs. In each dataset, there are two types of

nodes: (a) one node for each distinct name string, and (b) one node for each occurrence

of a name in the list of authors of a paper. Edges link a name occurrence with the

corresponding name string, and also link the name occurrence nodes for co-authors of a

paper. The label of name occurrence nodes correspond to the id of the person associated

with this name occurrence, and name string nodes are unlabeled.

The results on the real datasets are shown in Figure 2.3, with the following observa-

tions:

1. One-dimensional PIC loses clustering accuracy as the number of true clusters in-

creases (due to collisions).

2. One-dimensional PIC using the diagonal of D does not seem to improve clustering

accuracy in general on these datasets.

3. Multi-dimensional PIC is able to do as well or better than NCut or NJW imple-

mented using full eigendecomposition, even when the number of clusters is large.

4. Where generally spectral clustering methods are recommended to use number of

eigenvectors equal to that of the number of clusters (the subspace dimensionality
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(b) Clustering accuracy on 14 author disambiguation datasets.

Figure 2.3: Clustering accuracy on two types of datasets. In parentheses is the number
of clusters for that particular dataset. PICR and PICR4 results are averaged over 20
embedding trials and 50 k-means trials per embedding; PICD, NCut, and NJW results
are averaged over 50 k-means trials.

equal to k), multi-dimensional PIC require a much smaller number of dimensions

to do just as well or better as evident in Figure 2.3b.

To further illustrate how multi-dimensional PIC embedding works to avoid cluster

collision, we plot each college in the Football dataset according to a two-dimensional

PIC embedding (i.e., two one-dimensional PIC embedding) in Figure 2.4. The colors

represent the conferences and the histograms corresponding to the axis on which they

lie show what the embedding would be if only one of the dimensions were used. We

can see that some of the clusters that “collide” in a one-dimensional embedding is better

separated in two dimensions.
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Figure 2.4: A visualization of the Football dataset using a 2-dimensional PIC embedding.
Each point in the center scatter plot is a Division IA college, its x and y position deter-
mined by two independent one-dimensional PIC embeddings, and the color represent to
the college conference it belongs to. The histograms show what the embedding would
be if only one of the dimensions were used.

Multi-dimensional PIC shows substantial improvement over one-dimensional PIC

when the number of clusters k is large, but how do we determine the number of di-

mensions d? As a general strategy we recommend setting d according to a logarithmic

function of k (e.g., d = dlog ke). This is an intuitive strategy; if a line of length n pro-

vides just enough space so that k random and noisy clusters can be embedded with little

probability of collision, then a d-dimensional space will provide nd amount of space in

which to “fit” more of these clusters. Formal results can be obtained via PIC embed-

ding’s connection to diffusion maps and random projection (See Chapter 3 and Section 3.6

for details of the connection). For example, if we assume that the clusters in the space
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spanned by the λt-weighted eigenvectors of W are distributed according to k mixtures

of Gaussians, then the data can be projected onto just O(log k) dimensions while still

retaining the approximate level of separation between the clusters [26].
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Chapter 3

PIC’s Relation to Other Methods

Power iteration clustering (PIC) is a algorithmically very simple; however, the method,

especially the embedding on which does clustering, can be viewed in many ways. In

order to better understand how it works, how its different parameters affect the result,

and how to improve, extend, and apply the method to different tasks, it is important to

understand its connection to many of the existing methods and ideas. To that end we

devote a chapter to PIC’s relation to other methods.

3.1 Spectral Clustering

Spectral clustering began with the discovery of the correlation between the eigenval-

ues of the Laplacian matrix and the connectivity of a graph [36]. Much later it was

introduced to the machine learning community through Ratio Cut [88] and Normalized

Cuts [91], and it since has sparked much interest and lead to further modifications and

analyses [80, 103, 105, 109]. Typically, a spectral clustering algorithm has these following

steps:

1. Define a specific Laplacian matrix.

2. Find the k eigenvectors corresponding to the smallest eigenvalues.
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3. Embed data onto a k-dimensional space according to the eigenvectors.

4. Obtain cluster labels with a k-means algorithm.1

While spectral clustering is noted as an elegant way of clustering non-linearly separable

data and is shown to be effective on many datasets, these “classical” spectral clustering

approaches have two major shortcomings:

1. Finding eigenvectors of a large matrix is computationally costly. It takes O(n3) in

general using a full eigendecomposition method, and even with fast approximating

techniques like IRAM (which can run into convergence issues), much space and

time are required for larger datasets2.

2. Selecting which are “informative” eigenvectors a priori result in embeddings that

fail to capture cluster in datasets with significant noise. Spectral clustering meth-

ods usually select the eigenvectors corresponding to the largest (A) or the smallest

(Laplacian of A) eigenvalues, before the k-means step. This is problematic when

there is significant noise or outliers in the data. A selected eigenvector may corre-

spond to a particularly salient noise or outliers, while a discarded eigenvector may

contains good cluster indicators. This prompted much work on selecting “good”

eigenvectors and dealing with noise in spectral clustering [63, 105, 109]. However,

note that for every additional eigenvector that is evaluated for its quality, more

computational cost is incurred for both finding the eigenvector and evaluating it.

PIC is similar to spectral clustering in that it finds a low-dimensional embedding of

data, and a k-means algorithm is used to produce the final clusters. But as the results in

Section 2.6 have shown, it is not necessary to compute any specific eigenvector in order

1Other methods can be substituted in the place of k-means. For example, simply threshold one eigen-
vector to get two clusters, and recursively partition the clusters until k clusters are obtained [91]. k-means
is often used because the method is simple to implement, effective in practice, and quite scalable.

2For a sparse affinity matrix, IRAM has a space complexity of O(e) +O(nm) and a time complexity of
(O(m3) + (O(nm) +O(e))×O(m− k))× r; n is the number of nodes, e is the number of edges, m where
m > k is the Arnoldi length parameter, and r is the number of restarts [22].
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to find an eigenvector-inspired low-dimensional embedding useful for clustering. In this

respect, PIC is very different from the spectral methods mentioned above.

3.2 Kernel k-means

Another graph clustering approach closely related to spectral clustering, but with sub-

stantial speed improvement is multilevel kernel k-means [31], where the general weighted

kernel k-means is shown to be equivalent to a number of spectral clustering methods

in its objective when the right weights and kernel matrix are used. Performance wise,

spectral clustering methods are slow but tend to get globally better solutions, whereas

kernel k-means is faster but is more easily stuck in a local solution. Multilevel kernel

k-means exploits this trade-off using a multilevel approach: first an iterative coarsening

heuristic is used to reduce the graph to one with 5 · k nodes where k is the number of

desired clusters. Then spectral clustering is used on this coarse graph to produce a base

clustering, and then the graph and is refined iteratively (to undo the coarsening), and

at each refinement iteration the clustering results of the previous iteration is used as the

starting point for kernel k-means. Additional point-swapping can be used to further

avoid being trapped in local minima. Compared to PIC, multilevel kernel k-means is a

much more complex method, and similar to sampling [22, 38, 107] and a multilevel [97]

spectral methods, eigencomputation on the sampled or “coarse” version of the data will

still in general have a polynomial complexity.

3.3 Clustering with Matrix Powering

PIC is inspired by spectral clustering, and specifically, Normalized Cuts [91], but instead

of the normalized Laplacian matrix L = I−D−1A, it operates directly on the normalized

affinity matrix W = D−1A. Taking W to a certain power (in the case of PIC, the number
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of iterations) leads to a diffusion process (see Section 3.5 for further details) that provides

useful signal for clustering. Previous work have also used powers of W for clustering.

In [96] powers of W is viewed as a Markovian relaxation process; and when clus-

ter signals emerge with observation of the decay of mutual-information, clusters are

extracted using the information bottleneck method [95]. In [112] a simpler matrix pow-

ering algorithm is presented; instead of W, it uses the unnormalized affinity matrix A. It

is not clear how well it works due to the lack of results on real datasets. Gaussian blur-

ring mean-shift [77, 78] is yet another clustering method that involves matrix powering;

however, it is significantly different from the previous two in that (1) the affinity matrix

is typically a Gaussian kernel similarity manifold, and (2) the resulting clusters lie in the

original data space—typically a continuous Euclidean space (unlike network data).

The main difference between PIC and the above matrix powering methods is that the

core operation of PIC is the multiplication of a sparse matrix with a vector (or a few

vectors) instead of matrix-matrix multiplications. In the case of [96] and [112], even if W

is sparse, Wt quickly becomes dense even with a small t, and then the time complexity

for each iteration isO(n2) in terms of the number of data points—prohibitively expensive

even for medium-sized datasets. In the case of [77], the Gaussian blurring manifold

is typically a dense affinity matrix; and if the original data X does not lie in a low-

dimensional space (e.g., network data) it will also require O(n2) time for each iteration.

A summary comparing these matrix powering methods is shown in Table 3.1.

Method Matrix Iterate Stop Cluster
Markov relaxation [96] W = D−1A Wt+1 =WtW information loss inf. bottleneck
Matrix powering [112] A At+1 = AtA a small t thresholding

GBMS [77] W = D−1A Xt+1 =WXt entropy thresholding
PIC [64] W = D−1A vt+1 =Wvt acceleration k-means

Table 3.1: A summary of clustering methods using matrix powering. Matrix is the defi-
nition of powered matrix, Iterate is the calculation done in each iteration of the method,
Stop indicates the iteration stopping criteria, and Cluster is the final cluster label assign-
ment method.
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3.4 Dimensionality Reduction

As discussed in Section 3.3, instead of embedding the data points X in its original space,

PIC embeds them in a one-dimensional or a low-dimensional space. Therefore the PIC

is related to dimensionality reduction methods. There exists many techniques for dimen-

sionality reduction, and their results are applied to a wide variety of tasks. Here we will

discuss some of the commonly used ones and how they are related to PIC.

3.4.1 Latent Semantic Analysis

Latent semantic analysis (LSA) [28], also called latent semantic indexing (LSI) [29, 84]

in the context of information retrieval, is a method used in natural language process-

ing to reduce the dimensionality of text data where the instances are vectors in high-

dimensional space.

If our dataset is a collection of documents and each document is represented by a

vector of word counts, then the dataset can be represented as a matrix X where the rows

correspond to documents and columns correspond to the words and X(i, j) is the number

of times word j appears in document i.3 The document-word matrix can be factorized

via singular value decomposition (SVD):

X = UΣVT (3.1)

The singular values in the diagonal matrix Σ can be interpreted to correspond to the

latent topics in the document collection, and the magnitude of these non-negative real

values indicate the "importance" of these topics. The left singular vector matrix U is

the document-topic projection matrix and the right singular matrix V is the word-topic

projection matrix. We can then construct a matrix Vk by selecting columns of U that

3Often in the SVD literature the data matrix is instead XT (rows are words and columns are documents),
thus the mathematical results will be slightly different.
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correspond to the largest k singular values in Σ, and matrix XVk is the dataset in the

lower dimensional topic space.

3.4.2 Principal Component Analysis

Closely related to LSA is principal component analysis (PCA) [85]. When applied to

text data, PCA finds eigenvectors (principal components) and eigenvalues correspond-

ing to the document-document covariate matrix XXT or word-word covariate matrix

XTX. Eigendecomposition XTX = E∆ET gives us eigenvectors E and eigenvalues on the

diagonal of ∆, and we can construct a projection matrix Ek by selecting columns of E

corresponding to the largest k eigenvalues, then the dimension-reduced data is XEk.

The relationship between SVD and PCA is made evident by the following equation:

XTX = (UΣVT )T (UΣVT ) = (VΣTUT )(UΣVT ) = VΣTΣVT (3.2)

Since XTX is an invertible, real, symmetric matrix and ΣTΣ is diagonal, V contains eigen-

vectors of XTX. This implies that, if for LSA and PCA we select “interesting” dimensions

based on the magnitude of the values in Σ and ∆, respectively, then XVk and XEk would

yield the same dimension-reduced data.

Note that when selecting dimensions based on ∆we get dimensions corresponding to

the greatest variance in data (thus dimensions with the greatest variances are preserved

in the projection). As we will see later, this is not always desirable.

3.4.3 Random Projection

Random projection (RP) is based on the Johnson-Lindenstrauss lemma [49]: if points in

a vector space are projected onto a random subspace of an appropriate dimension (high

enough to capture interesting structure and low enough to filter out noise, outliers,

and uninteresting features) , then the distances between the points are approximately
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preserved. The process can be as simple as multiplying X by a random d× k matrix

R with unit-length rows. The resulting XR is, strictly speaking, not a proper projection

because the rows of R are generally not orthogonal. However, it has been shown that in

a high-dimensional space, there is a sufficient number of almost-orthogonal directions

so that RRT is approximately an identity matrix [46], making XR a reasonable pair-wise

distance preserving low-dimensional projection of X.

It has been suggested that random projection may be used in a two-step process to

speed up LSA [84]. First apply random projection to X to obtain X̂ = XR, and then apply

LSA to X̂ to obtain the final projection XV̂k. Since X̂ is much smaller than X, SVD on

X̂ is much faster than on X. The second step may not be necessary, however, if we are

simply looking to reduce the dimensionality of the data (as opposed to finding “latent

topics”) in vectorized image and text datasets [16]. We will see later in Section 3.5 how

this random mapping is related to PIC’s initial vector v0.

Random Projection and Clustering

Two noted characteristics of random projections are: (1) some high-dimensional distri-

butions “look more Gaussian” when projected onto a low-dimensional space, and (2) the

projection can change the shape of highly eccentric clusters to be “more spherical” [26].

These observations make random projections particularly suitable for clustering by fit-

ting the data to a Gaussian mixture model (GMM). However, experiments have shown

that clustering results from these random projection with Gaussian mixture models (RP-

GMM) can be quite unstable, perhaps due to both the random directions selected in RP

and random initial distributions for the expectation maximization (EM) procedure in

GMM. Therefore it is recommended that a stabilization technique is used, such as using

an ensemble of RP-GMMs and unifying the results with agglomerative clustering [35].
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Random Mapping

Presented independently in [52] but also motivated by the near-orthogonality of random

vectors in high-dimensional space shown in [46], like random projection, random map-

ping first projects X onto a lower dimensional space using a random matrix R where

the rows are unit-length random vectors, and then XR is fed into a self-organizing map

(SOM) [54] to produce a (usually two-dimensional) discretized, intuitive representation

of the data for exploratory analysis and visualization [54].

3.4.4 Locality Sensitive Hash

Locality sensitive hash (LSH) [21] is a hashing method closely related to RP that is often

used to find the nearest neighbors of a data point in vector space. A basic LSH algorithm

is as follows:

1. Obtain X̂ = XR as in random projection

2. Create a bit matrix H where Hi,j =

 1 if X̂i,j > 0

0 else

Instead of a projection onto a low-dimensional space, LSH projects (hashes) each data

point onto a bit vector. In the context of LSH, each column of R can be viewed as a

hyperplane, and each component of the resulting bit vectors tells us on which side of

the hyperplane the data points lie. It is not difficult to see that the Hamming distance

between two bit vectors is closely related to the cosine of the angle between the two

corresponding vectors. Specifically:

Prob(Hi,k = Hj,k) = 1−
θ(Xi,Xj)

π
(3.3)

Thus the Hamming distance between signatures can be used as an approximation of the

cosine distance between two data points. Because the signatures are usually a much
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more compact representation than the original vectors, LSH can be useful for efficiently

detecting and retrieving similar items in high-dimensional vector space. Analogous to

random indexing for random projection, there are also online versions of LSH [99, 100].

3.5 Diffusion Maps

Unlike LSA, PCA, RP, and RI, which are linear dimensionality reduction methods, diffu-

sion maps (DMs) [58] are a method for non-linear dimensionality reduction. Instead of

operating directly on Euclidean geometry of the vector space of the input data, it is based

on the connectivity of the data points. The connectivity between data points is defined

via a similarity function (a diffusion kernel) s(Xi,Xj) with the following properties:

1. s(Xi,Xj) = s(Xj,Xi) (i.e., symmetric)

2. s(Xi,Xj) ≥ 0 (i.e., non-negative)

If the dataset X are points in vector space, s may be a Gaussian kernel:

s(Xi,Xj) = e
−
‖Xi−Xj‖2

2σ2 (3.4)

which defines a neighbor around each data point in X parameterized by the σ, the

bandwidth. If the dataset is a simple undirected graph or a network, where each data

point is a node, then s may be defined as follows:

sXi,Xj =

 1 if an edge exists between Xi and Xj

0 else
(3.5)

In the context of DMs, it is often more convenient to see the dataset as a graph or a

network and talk about the relationship between data points in terms of their connectivity

or similarity.

32



Given a dataset X, we define an affinity matrix A where Aij = s(Xi,Xj) for some

similarity function s and a diffusion matrix W = D−1A. So W is then a row-normalized

stochastic matrix, defining transition probabilities on a Markov chain on X; in other

words, W defines probabilities for discrete-time random walk on data points in X

weighted according to A.

3.5.1 Diffusion Process

The diffusion matrix W defines the transition probabilities for a single time step, and

equivalently, Markov chains of length one. If we multiply W by itself, i.e., W2, then W2
i,j

would give us the probability for transitioning from i to j in two time steps. Taking

that a step further, Wt
i,j gives us the probability for randomly “walking” from i to j in t

time steps according to similarity function s. It is important to note that while t is the

time parameter in this diffusion process, it should be also viewed as a scale parameter—the

larger it is, the longer the Markov chain, and the more Wt gives us a coarse-grained look

at the connectivity between data points in X.

3.5.2 Diffusion Distance and Diffusion Space

If the transition probabilities in Wt give us the underlying geometry of the data, it is

useful to define a distance metric dt in terms of W, such that:

dt(Xi,Xj)2 =
∑
k

∣∣Wt
ik −W

t
jk

∣∣2 (3.6)

This definition is rather intuitive—according to this metric, in order for i and j to be

“close” to each other, the length-t path probability from i to an arbitrary data point k,

and the length-t path probability from j to k, should be roughly the same. Putting it in

terms of Markov random walks, if the nodes that are unlikely reached by walks from i

are also unlikely reached from j, and the nodes that are likely reached by walks from
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i are also likely reached by j, then the distance between i and j is small according to

dt. If i and j are the same node then dt = 0. We call this distance metric the diffusion

distance [23, 58].

An important and interesting characteristic of the diffusion distance is that it is very

much related to the Euclidean distance. In fact, if we view the rows of Wt as vectors and

the columns of Wt as coordinates in vectors space, then dt is the same as the Euclidean

distance between vectors in the space spanned by the rows of Wt. We call this space

the diffusion space, defined by the data points X, the similarity function s, and the scale

parameter t.

3.5.3 Diffusion Maps and Dimensionality Reduction

We can now define a mapping based on the previous sections: a diffusion map is the

mapping of a data point from X to a coordinate in the diffusion space associated with

Wt. This mapping is useful because we are now able to analyze the data with tools from

vector space and Euclidean geometry; for example, we can apply a k-means algorithm

to the mapped data for cluster analysis. However, from a practical and computational

point of view, the full diffusion space has as many dimensions as the number of data

points and therefore it is difficult to visualize, explain, and it is also computationally

expensive to store and process.

Given the high dimensionality of the diffusion space in most practical applications,

diffusion maps is most useful when the dimensionality of the target space is reduced.

It turns out, much like PCA, the dimensions that best preserve the pair-wise distances

between points in the diffusion space are related to the eigenvectors and eigenvalues of
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W [23, 27]. Specifically, the family of diffusion maps {Ψt} is given by:

Ψt(Xi) :=



λt1e1(i)

λt2e2(i)

...

λtded(i)


(3.7)

where d is the desired number of dimensions and λ0, λ1, λ2, . . . are the eigenvalues of

W, in order from the largest to the smallest, and e0,e1,e2, . . . are the corresponding

eigenvectors. Note that λ0 and e0 are omitted from the mapping because e0 is a constant

vector and therefore uninteresting in a dimensionality reduction setting.

The definition for Ψt also shows us how the scale parameter t affects the mapping—

it exponentially scales the coordinates in the dimension represented by an eigenvector

according to the corresponding eigenvalue. An interesting and useful corollary is that,

as t increases, d, the number of dimensions required to accurately represent the data

in a low-dimensional space, decreases, unless the eigenvalues are nearly the same. For

detailed analyses, proofs, and additional information on diffusion maps see [23, 27, 58].

3.6 Diffusion, Random Projection, and PIC

PIC is related to spectral clustering, and in particular, to Normalized Cuts. Both methods

project the data from the original space onto a lower-dimensional space based on the

eigenvectors of D−1A, and then uses a k-means method to output cluster labels. Here

we will see that PIC is also closely related to diffusion maps and random projection.

PIC, like spectral clustering methods, first embeds the data points from a pair-wise

similarity manifold onto a low-dimensional vector space before assigning clusters either

by thresholding or by a clustering method like k-means. We will refer to the PIC low-

dimensional embedding as the power iteration embedding (PIE).
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Since PIEs are typically constructed with one or a few random vectors, it is related to

random projection, which also make use of random vectors in high-dimensional spaces.

And like PIE, diffusion maps also allow us to represent non-linear, high-dimensional

data in linear, low-dimensional spaces. Recall that in power iteration:

vt =Wvt−1 =W2vt−2 = ... =Wtv0 (3.8)

where W = D−1S and v0 is a random vector and vt is the vector at the t-th power

iteration. As mentioned in Section 2, to avoid cluster collisions in one dimension, we can

run power iteration d times using d independently generated random vectors and create

a d-dimensional PIE on which to do clustering. If we make them all stop at the same t,

we can express it as:

E =WtR (3.9)

where R is a n× d matrix that is the concatenation of randomly generated vectors and E

is PIE, the low-dimensional embedding in PIC. Note that here W is the same diffusion

matrixW in Section 3.5, and recall that the t ofWt is a both a time and scaling parameter;

it is a time parameter in the diffusion process, and it is a scaling parameter in revealing

the underlying geometric structure of the data at different scales. If we restrict the

generation of R to be zero-mean and unit-variance, then we have the following result:

The power iteration embedding E is a random projection of data points of X in the

diffusion space defined by the similarity function s and the scale parameter t.

To illustrate this connection, we can imagine a procedure for finding clusters in a dataset

X, shown as Algorithm 3. This is a reasonable way to find clusters in data in a non-

linear manifold. Many clustering algorithms, such as k-means, do not work well (or at

all) in non-linear spaces or high-dimensional spaces (due to the curse of dimensional-
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ity [15]), but diffusion maps allow us to work with non-linear data in Euclidean space

and random projection is an efficient alternative to PCA or SVD for dimensionality re-

duction. However, if the number of data points n is large, Wt is prohibitively expensive

to calculate and store (O(n2)).

Algorithm 3 Diffusion+Random Projection+k-means

1: procedure DiffRPCluster(X,k, s, t)
2: Construct the diffusion matrix W from dataset X and similarity s
3: Raise W to the power of scale t to embed data in the diffusion space Wt

4: Determine d, the number of dimension desired
5: Reduce the dimensionality of Wt using random projection to get projection E
6: Run k-means on E to get clusters C1,C2, ...,Ck.
7: return C1,C2, ...,Ck
8: end procedure

On the other hand, PIC will produce the exactly same result as the above method with

storage and running time linear to the size (number of edges or non-zero features) of the

data. In addition, in PIC t can be determined efficiently on-the-fly, avoiding parameter

sweeps.
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Chapter 4

MultiRankWalk

4.1 Introduction

Traditional machine learning or supervised learning methods for classification require

large amounts of labeled training instances, which are often difficult to obtain. In

order to reduce the effort required to label the training data, two general solution

have been proposed: semi-supervised learning methods [113] and active learning meth-

ods (e.g., [39, 115]). Semi-supervised learning (SSL) methods learn from both labeled

and unlabeled instances, reducing the amount of labeled instances needed to achieve the

same level of classification accuracy. Active learning methods reduce the number of la-

bels required for learning by intelligently choosing which instances to ask to be labeled

next.

Many semi-supervised learning methods fall under the category of graph-based semi-

supervised learning [13, 45, 71, 92, 93, 111, 114], where instances are nodes in a graph and

similarities between the instances define weighted edges. This representation is useful

and powerful; most datasets can be represented as a graph through a pair-wise similarity

manifold and many existing graph algorithms and theories can be readily applied. Table

4.1 lists symbols we will use in the context of semi-supervised learning.
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Symbol Definition
X The dataset where X = XL ∪XU and XL ∩XU = �
XL Labeled “seed” instances in X

XU Unlabeled instances in the dataset X
YL Class labels for XL

YU Class labels for XU

Table 4.1: Symbol definitions for semi-supervised learning.

As the number of proposed graph-based SSL methods increases, many questions

remain unanswered. How do these methods relate to each other? Which methods do

better, under what condition, and for what type of data? What method should be use as

a strong baseline when working on a particular type of data? Here we aim to address

some of these issues, with a special focus on when there are very few labels.

First, we describe a semi-supervised learning method based on random graph walk

and relate it to methods that fall under a class of graph walk-based algorithms, such

as [42, 45, 111]. The core computation of these methods usually involves finding the

dominant eigenvector of some form of affinity matrix or transition matrix of the graph.

The proposed method is probably simplest of them all, yet it is also intuitive, scalable,

and extremely effective on a number of network datasets, leading us to highly recom-

mend the proposed graph walk-based method as a strong baseline for future research in

semi-supervised learning.

Second, for reducing the cost of obtaining instance labels, one issue has not been

considered: that in many practical settings, some instances are easier to label than others.

For example, in classifying websites, a better-known website is very likely easier for a

domain expert to label, since the expert would be more likely to be familiar with it,

and since the website would be less likely to be difficult-to-evaluate because of having

content that is limited (or simply incoherent). In selecting seeds (labeled instances), we

evaluate using highly authoritative instances. In addition to being arguably easier to la-

bel, these authoritative instances are arguably more likely to spread their influence (and
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their labels) to their neighbors in a network (assuming homophily), therefore making

them better seeds in a semi-supervised learning setting.

4.2 Semi-Supervised Learning with Random Walks

MultiRankWalk (MRW) is an iterative, label-propagation semi-supervised learning

method based on random graph walk [65]. Its core algorithm is directly related to

personalized PageRank [44, 82] and random walk with restart (RWR) [98]. Given a

graph representation A with n nodes, a vector of random walk probability distribution

over the nodes v with |v| = n satisfies the following equation:

v = (1− d)r+ dPv (4.1)

where P is the column-stochastic transition matrix of graph A, r is a normalized restart

vector where |r| = n and ||r||1 = 1, and d is the damping factor. The vector v can be

solved for efficiently by iteratively substituting vt with vt−1 until vt converges. The

vector v can be interpreted as the probability distribution of a random walk on A, with

teleportation probability 1− d at every step to a random node with distribution r. We

define the ranking vector v as a function of A, r, and d:

v = RandomWalk(A, r,d) (4.2)

The main difference between many random walk algorithms lies in the use and in-

terpretation of r. For PageRank [82], where A is the connectivity matrix of a network

of hyperlinked web pages, r is simply a uniform vector; with probability 1− d a web

surfer tires of following the links he sees and jump to a random page. For personalized

PageRank [44], each web surfer, instead of jumping to a random page, jumps to a page

according to his or her unique preference—encoded as a multinomial distribution vector
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r. For random walk with restart (RWR) [98], r is an all-zero vector except at position i,

where ri = 1; i is the starting node; at every time step the random walker either follows

an edge with probability d or jumps back to i (restarts) with probability 1− d.

In this work the nodes of A are instances and edges represent similarity or affinity

between the instances. Labeled training instances of each class are described by the

vector r, the seed vector, where each non-zero element corresponds to a labeled train-

ing node. The random walk describes classification as a process of finding unlabeled

instances similar to the labeled instances based on random walk probability. For each

class c, at every time step the search process may follow an edge with probability d or

it may decide to restart the process at an instance labeled c with probability 1− d. This

process is repeated for each class and an unlabeled instance is labeled according to the

class whose process most often visited it.

Algorithm 4 The MultiRankWalk algorithm

1: procedure MRW(A, YL,α)
2: Rci ← 1 if YLi = c, else Rci ← 0

3: Normalize columns of R to sum to 1
4: V0 ← R and t← 0

5: repeat
6: Vt+1 ← (1−α)AD−1Vt +αR and t← t+ 1
7: until Vt has converged
8: YUi ← argmaxc(Vci)
9: return YU

10: end procedure

Shown as Algorithm 4, we call it MultiRankWalk because it does classification by

creating multiple rankings using random walks from seed instances. This method was

developed independently, but it is similar to several previously described methods or

one of their variations [40, 42, 111] in the way labels are propagated from the “seeds” to

the rest of the instances. Details of the difference between these methods is discussed in

Section 5.
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4.3 Seed Selection

Semi-supervised learning methods require labeled training instances as seeds, and we

propose using more “authoritative” instances (e.g., blogs that are frequently referred to

and cited by other blogs). There are two reasons to prefer highly authoritative instances

as seeds:

1. Popular or authoritative instances are easier to obtain labels for because a) domain

experts are more likely to recognize them and label quickly, and b) they are more

likely to have already labels available.

2. Popular or authoritative instances will likely have many incoming links and some-

times outgoing links as well. Having many incoming and outgoing links may help

to propagate the labels faster and more reliably when using a graph-based semi-

supervised learning method.

Based on these assumptions, we propose a general seed labeling strategy to test our

hypothesis: ranked-at-least-m-per-class. This strategy takes as input an ordered list

of instances according to a ranking preference, the highest rank instance first. Given an

integer m, we start at the top and label each instance as a seed instance going down

until we have at least m seeds per class labeled as seed instances. It simulates a domain

expert labeling an ordered list of items and labeling instances one by one until he or she

runs out of time and stops.

For all experiments in the next section we varym and test these different seed ranking

preferences:

• Random is a baseline ranking where the order is uniformly random.

• LinkCount ranks the instances based on the number of connecting edges; instances

with higher number of edges are ranked higher.

• PageRank ranks the instances based on the PageRank citation ranking algorithm

[82]; nodes with higher PageRank scores are ranked higher.
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Note that all three of these ranking preferences can be efficiently calculated for most

network datasets.

4.4 Experiments

4.4.1 Datasets

To assess the effectiveness of our method, we test it on five network datasets. The first

three datasets are from the political blog domain: UMBCBlog, AGBlog, and MSPBlog.

The other two are from the scientific paper citation domain: Cora and CiteSeer. All of

these datasets contain explicit links between the instances in the form of hyperlinks or

citations. In constructing the graph from these datasets we take the simplest approach—

each dataset is a graph containing undirected unweighted edges:

• UMBCBlog is constructed as in [51]: first we find a set of overlapping blogs between

the ICWSM 2007 BuzzMetrics [3] dataset and the labeled dataset in [5], then a

graph is formed using links found in the BuzzMetrics dataset posts, and lastly we

take the largest connected component of the graph as the affinity matrix A, with

nodes labeled liberal or conservative.

• AGBlog is the largest connected component of the political blog network found

in [5], again with nodes labeled either liberal or conservative. Although the nodes

and labels in UMBCBlog are a subset of those in AGBlog, the edges in these two

datasets are very different. In UMBCBlog, the links are gathered in May 2006 from

the content of the blog posts; in AGBlog, the links are from two months before the

2004 presidential election and are extracted from the sidebars of the blogs [5]. The

links from UMBCBlog can be considered to indicate the bloggers’ interests at the

time of the post, and links from AGBlog can be considered to indicate the bloggers’

long-term interests and recommendations.
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• MSPBlog is provided by the researchers at Microsoft Live Labs and is constructed

separately from the above two datasets. From a large collection of automatically

crawled news and blog sites, a fraction of the politically themed blogs are manually

labeled either liberal or conservative.

• Cora is a scientific paper citation dataset that contains papers from 7 related but

distinct scientific fields. An edge exists in the graph between node a and node b

if paper a cites paper b or vice versa. The details of its construction can be found

in [69].

• CiteSeer is another scientific paper citation dataset from [69] and contains papers

from 6 related scientific fields. Summary statistics of these five datasets can be

found in Table 4.2 and class distribution in Tables 4.3 and 4.4.

Nodes Edges Density
UMBCBlog 404 2725 0.01670

AGBlog 1222 19021 0.01274
MSPBlog 1031 9316 0.00876

Cora 2485 5209 0.00084
CiteSeer 2110 3757 0.00084

Table 4.2: Node count, edge count, and density of the network datasets. Density is the
ratio of number of edges to the number of nodes squared.

UMBCBlog AGBlog MSPBlog
Liberal 198 586 375

Conservative 206 636 656

Table 4.3: Class distribution for the political blog datasets.

4.4.2 Setup

We compare MRW against the harmonic functions method of Zhu et al. [71, 114] on

five network datasets and the effect of different seed preferences on these learning al-

gorithms. We vary the number of labeled instances by changing the seeding parameter
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Cora
Neural Networks 726

Case Based 285
Reinforcement Learning 214

Probabilistic Methods 379
Genetic Algorithms 406

Rule Learning 131
Theory 344

CiteSeer
HCI 304
IR 532

Agents 463
AI 115
ML 308
DB 388

Table 4.4: Class distribution for the citation datasets.

m mentioned in Section 4.3 with m = 1, 2, 5, 10, 20, and 40. The reported numbers for

random seeding are averaged over 20 runs.

The harmonic functions method (HF) is a simple label propagation algorithm that

estimates class-membership probabilities by assuming the existence of homophily. It

was proposed in [114] to be used with Gaussian fields as a semi-supervised learning

method for general data. HF is "essentially identical" to the wvRN method of Macskassy

and Provost [71] except with a principled semantics and exact inference (for details see

Section 5), and is one of the best methods for classification on a number of benchmark

network datasets in [71]. Note that in our experiments the implementation of HF is the

one described in [71] for wvRN due to its efficiency on sparse networks, but we will refer

to it as HF since it came first and is more widely cited. Many other recent SSL methods

use a similar approach [13, 90, 93]; and they all generally produce very similar results.

We compare MRW’s performance with HF (and transitively, with wvRN as well) on the

five network datasets using different seed preferences.

4.4.3 Results

Comparing SSL Methods and Seeding Preferences

We use both classification accuracy and macro-averaged F1 according to the ground truth

labels as performance measures. For definitions of these measures see Appendix A.1.
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Here for discussion we will focus on the F1 score; for accuracy scores and additional

F1 score charts see Appendix B.1. The F1 score is usually preferred over accuracy as

an evaluation measure when the class label distribution is unbalanced, which is true of

most of these datasets.

In the results shown F1 score is associated a particular learning algorithm, seeding

preference, seed parameterm, and dataset. Figure 4.1 shows scatter plots of HF F1 scores

versus MRW F1 scores. A point lies above the center diagonal line when MRW F1 score

is higher than that of HF, and vice versa. The two scatter plots are identical except the

points are marked differently; the left according to the seeding preference and the right

according to the number of training labels as determined by m. Figure 4.2 shows bar

charts of the differences between MRW F1 scores and HF F1 scores on different datasets

and with different seeding preference and parameter m. A positive value means the

MRW F1 score is higher than that of HF, and vice versa.
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Figure 4.1: Scatter plots of HF F1 score versus MRW F1 score. The left plot marks
different seeding preferences and the right plot marks varying fraction of training labels
determined by m.

We make some observations from these figures:

1. MRW is able to achieve high classification accuracy with very few labeled instances.
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Figure 4.2: Bar charts of the differences between MRW F1 scores and HF F1 scores. The
x-axis is the seeding parameter m that determines the number of training labels, and the
y-axis is MRW F1 score minus the HF F1 score. The top, middle, and bottom charts are
results using Random, LinkCount, and PageRank seeding preferences, respectively.

2. On most datasets and seed preferences MRW outperforms HF by a large margin

when the amount of training data is very small. The only exception to this is on

the CiteSeer dataset when HF is paired with LinkCount or PageRank seeding. On

all datasets MRW and HF F1 scores converge when the training data size reaches

above 30% of the test data size.

3. The performance difference between MRW and HF is the greatest when seeds are

chosen randomly. This strongly suggests that MRW is more robust to varying

quality of the labeled data.

4. With HF, preferring more authoritative seeds dramatically outperforms random

seeds, especially when the number of labeled instances is small; on the blog
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datasets preferring more authoritative seeds reduces the amount of labeled in-

stances required to reach the same level of performance by a factor of 40 to 50. Out

of the two authority-based preferences, PageRank seems to be slightly better and

more consistent in yielding quality seeds.

5. With MRW, the difference between random seeds and the authoritative seeds are

not as dramatic, one reason being that on the political blog datasets the F1 is al-

ready very high with random seeding. However, a statistically significant differ-

ence is still observed on AGBlog, MSPBlog, and Cora datasets when the number

of labeled instances is very small.1

6. When comparing LinkCount and PageRank, PageRank is a better and more stable

seed preference, and the performance of different seed preferences converge when

the amount of training data is large enough.

Versus Relational Learning and Spectral Clustering To show how much classification

power can be gained from link structure alone, we compare the results of our algorithm

against some supervised relational learning methods, shown in Figure 4.3. The numbers

shown in the charts are accuracy scores. The algorithms are labeled on the figures as

follows:

• MRW is MultiRankWalk method using PageRank seeds.

• Kou is the best result reported in [55].

• Kou-Rerun is the result from our re-run of experiments described in [55].

• Kou-Rerun-C is our re-run of [55] using only the largest connected component of

the dataset.
1For comparing significant difference between HF and MRW when using CountLink and PageRank

seed preferences, a one-tail paired McNemar?s test on the classification result of individual instances is
used with p < 0.001 reported as significant. For comparing significant difference between HF and MRW
when using Random seed preference, the 20 accuracy scores from the 20 random trials are used in an
one-tail Mann-Whitney U test with p < 0.001 reported as significant. For comparison between the random
seeding and authority-based seed preferences, the classification result of individual instances is used in
an one-tail Mann-Whitney U test with p < 0.05.
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• Lu is the best result reported in [69].

• Content-Kou is the content-only baseline result reported in [55].

• Content-Lu is the content-only baseline result reported in [69].

MRW shows outstanding performance considering the simplicity of the algorithm, the

small number of labeled instances required, and the fact that it uses only the link struc-

ture. Based on these results we recommend label propagation algorithms such as MRW

as a strong baseline for semi-supervised learning or supervised relational learning for

network data.
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Figure 4.3: Citation datasets results compared to supervised relational learning methods.
The x-axis indicates number of labeled instances and y-axis indicates labeling accuracy.

Damping Factor

The effect of the damping factor d on the proposed learning method is shown in Figure

4.4. Generally, a higher damping factor result in slightly better classification perfor-

mance. This suggests that it is better for the algorithm to propagate the labels further by

not “damping” the walk too much, especially when the number of labeled instances is

small.
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Figure 4.4: Results on three datasets varying the damping factor. The x-axis indicates
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4.5 Scalability

The best seed preference algorithm is based on PageRank, so the run time is linear in the

number of edges in the graph and converges fairly quickly even when applied to large

graphs [82]. The proposed algorithm is based on random graph walk with restart, and

the run time is also linear to the number of edges in the graph; the core algorithm itself

has been well-studied and several performance-enhancing methods have been proposed

to minimized the amount of storage and time required such as the one found in [98].

4.6 Comparison with Clustering Methods

Graph-based SSL methods such as HF and MRW and graph-based clustering methods

such as NCut and PIC are all methods that reply on a strong homophily assumption

and are all related to random walks on graphs. Here we compare the performance

of these methods, plus a few hybrid ones, on 10 benchmark social network datasets.

The description of the datasets can be found in Sections 2.6, 2.7, 4.4.1. We compare 11

methods; 4 clustering methods and 7 learning methods: NCut is Normalized Cut [91];

NJW is the spectral clustering method proposed by Ng, Jordan, and Weiss [80]; PIC is

power iteration clustering (Chapter 2); PIC4 is multi-dimensional PIC (Section 2.7) with
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4 dimensions; HF is the harmonic fields method; MRW is MultiRankWalk; 1NN is the

1-nearest neighbor classifier applied directly to the graph data; PIE4+1NN is 1NN on

a 4-dimensional power iteration embedding; SVM is the support vector machine clas-

sifier [101] applied directly to the graph data; PIE4+SVM is SVM on a 4-dimensional

power iteration embedding; and PIE2k+SVM is SVM on a 2k-dimensional power itera-

tion embedding, where k is the number of clusters. For the SSL methods we vary the

amount of training/seed instances at 1%, 2%, 5% and 10%, and the rest of the dataset

are test instances. SVM uses a one-versus-all scheme [72] for multi-class classification.

For each method, dataset, and a training instance percentage, we run 50 trials and report

the average. Figure B.7 and B.8 show the macro-average F1 scores.

As shown before according to the experiments in Section 2.6 and 2.7, PIC does well as,

and sometime better, than the spectral clustering methods (NCut and NJW) on datasets

with a smaller number of classes, and on datasets with a larger number of classes (Foot-

ball and MGEmail) PIC4 is competitive with spectral clustering where PIC runs into

“cluster collision” problems. Also as expected, according to experiments in Section 4.4,

MRW outperforms HF, and it does so with a large margin when the number of seed

instances is small. Besides these observations that confirm previous results, we note the

following new observations:

• MRW, even with just 1% seed, is usually competitive with, and sometimes better,

than clustering methods; the same cannot be said of HF.

• While 1NN does not work well when applied directly to the graph data, it is much

better on the PIC embedding (PIE4+1NN); it shows that the PIC embedding is not

only useful for clustering, but also for SSL. For example, on Cora PIE4+1NN has

an F1 score about 0.6 even though PIC is at about 0.3.

• As expected, SVM turns out to be a very inaccurate classifier on many of the

datasets when applied directly to the graph data. However, we note that although

PIE4+SVM works well (better than SVM and competitive with MRW) on datasets
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with a small number of classes, it does not seem to work when the number of

classes gets larger (e.g., Football and MGEmail).

• When we increase the dimensionality of PIE from 4 to 2k, SVM is able to gain

some accuracy, although still not as accurate as PIE4+1NN. This suggests that at

PIE4, the classes are separated enough so 1NN is able to perform almost as well

as MRW, but they are not separated linearly, a requirement of linear SVMs. When

the dimensionality is increased the classes are more likely to be linearly separable,

therefore SVM is more likely to find a separating hyperplane.
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Figure 4.5: F1 comparison between SSL methods and clustering methods on network
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Chapter 5

MRW’s Relation to Other Methods

Broadly, both MultiRankWalk (MRW) and the harmonic fields method (HF) falls under

a category of graph-based SSL methods that use label propagation to determine which

class an instance (a node in the graph) belongs to. More specifically, MRW and HF are

probabilistic label propagation SSL methods—by which we mean the ways they propagate

labels are stochastic processes and the resulting classification confidence scores are prob-

abilities. They can be further distinguished from other probabilistic label propagation

methods in that they are both related to Markov random walks on graphs.

5.1 RWR Revisited

As discussed in Section 4.2, MRW uses random walk with restart (RWR) scores to classify

unlabeled nodes in a graph. Random walk scores are the stationary distribution of the

Markov chain induced from the column-stochastic transition matrix P, which is derived

from the affinity matrix A of the instances in dataset X. The stationary distribution is

represented by the vector v in the following equation:

v = (1− d)r+ dPv (5.1)
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where r is a normalized restart vector where |r| = n and ||r||1 = 1, and d is the damping

factor. We can solve for v analytically:

v = (1− d)r+ dPv

v− dPv = (1− d)r

(I− dP)v = (1− d)r

and since I− dP = (I− dPT )T , if I− dPT is strictly diagonally dominant1 and therefore

invertible, I− dP is also invertible, giving us

v = (1− d)(I− dP)−1r

which allows us to solve for v given r once we have (I− dP)−1. This matrix inversion,

however, is computationally infeasible if n, the number of instances, is large2, so we

approximate v iteratively with the power method:

vt+1 = (1− d)r+ dPvt

until vt converges. Here we show vt converges to v:

vt = (1− d)r+ dPvt−1

vt = (1− d)r+ dP((1− d)r+ dPvt−2)

vt = (1− d)r+ dP((1− d)r+ dP((1− d)r+ dPvt−3))

...

vt = (1− d)

t−1∑
i=0

(dP)ir+ (dP)t−1v0

1A matrix A is diagonally dominant if |Aii| ≥
∑
j 6=i |Aij| for all i, and it is strictly diagonally dominant if

|Aii| >
∑
j 6=i |Aij| for all i.

2In general, O(n2) space and O(n3) time.
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and given that 0 < d < 1 and the eigenvalues of P are in [−1, 1] (due to the Perron-

Frobenius theorem), we have

lim
t→∞(dP)t−1v0 = 0

and3

lim
t→∞

t−1∑
i=0

(dP)i = (I− dP)−1

which gives us

lim
t→∞ vt = (1− d)(I− dP)−1r

lim
t→∞ vt = v

Note that the result of the iterative algorithm does not depend on the initial vector

v0; vt will converge to the same result as long as v0 is nonzero. In practice, though, often

v0 is set to r so the iterative process simulates a spreading of labels from the seed nodes.

5.2 Steady-state Conditions for RWR

It is important to note that the RWR results in the previous section (5.1) are based on the

following assumptions:

1. There exists a unique stationary distribution v.

2. I− dPT is a strictly diagonally dominant matrix.

3See Appendix D.1 for detailed derivation.

57



Due to the Ergodic theorem, the first condition is met if the Markov chain underlying

Equation 5.1 is aperiodic4 and irreducible5 [44, 76]. Both aperiodicity and irreducibility

can be achieved by adding an edge with a relatively small weight between all pairs of

nodes, effectively making A a complete graph. Instead of modifying A, we can simply

make sure all elements of r are positive—this has the same effect as adding teleportation

as in [44, 82]. The second condition is met simply when d satisfies 0 < d < 1, since

each row of PT sums to 1.6 Teleportation is an efficient way to augment A to be a

complete graph to ensure a unique stationary distribution and is widely used in ranking

algorithms [44, 82]; however, in the context of SSL, it may not be necessary.

In the case that the Markov chain is reducible—which implies that the network un-

derlying A has more than one strongly connected component—v may reach a stationary

distribution, but such a distribution may not be unique. In the context of SSL classifi-

cation, this can be “fixed” by considering each component as its own learning problem.

This is an obvious solution since seed labels cannot propagate across disconnected com-

ponents, nor should they. By definition, this solution also ensures each subproblem has

an irreducible Markov chain.

In the case that the Markov chain is periodic7 (e.g., a bipartite graph), all we need to

do is augment all the nodes in the graph with a self-edge with a relatively small weight

to ensure aperiodicity (since the smallest cycle is of length 1). In fact, in the context of

SSL using RWR, no augmentation is necessary as long as the restart vector r is nonzero,

since a nonzero r implies the existence of at least one self-edge.

4A Markov chain is aperiodic if its periodicity is 1, otherwise it is periodic. A state i has period k if k is
the greatest common divisor of all possible number of steps it takes to return to state i. The Markov chain
has periodicity of k if k is the greatest common divisor of all its states’ periods.

5A Markov chain is irreducible if it is possible to get from any state to any other state.
6Note that this holds true whether PTii = 0 or PTii > 0.
7In general, aperiodicity is a very mild condition for “natural networks”; i.e., most of them, such as

friendship networks or email networks, are aperiodic.
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5.3 MRW Related SSL Methods

SSL classification methods closely related to MRW have been proposed previously. Here

we will briefly describe and compare some of the most popular ones.

5.3.1 Learning with Local and Global Consistency

The local and global consistency method (LGC) [111] is a semi-supervised classification

method with an iterative algorithm with the following regularization framework:

Q(F) =
1

2

 n∑
i,j=1

Aij

∥∥∥∥ 1√
Dii

Fi −
1√
Dii

Fj

∥∥∥∥2 + µ n∑
i=1

‖Fi − Yi‖2


where Fij contains the score for instance i with respect to class j and Yij = 1 if instance i

is a seed labeled with class j, otherwise Yij = 0. The class for an unlabeled instance i is

determined by argmaxjFij. F can be calculated by iterating:

Ft+1 = (1−α)Y +αSFt

where α = 1
1+µ and S = D−1/2AD−1/2. Two variations of this method are also proposed

where S = D−1A and S = AD−1, respectively. In fact, the second variation (LGCv2) is

equivalent to MRW, given that the affinity matrix A is also equivalent. We differentiate

our work from LGCv2 in the following respects:

• LGCv2 is only briefly described as a variation on a regularization framework for

SSL, with no mention of connection to random walks on graphs.

• The A associated with LGC is based on the Gaussian similarity kernel between

feature vectors, whereas we consider more general affinity matrices.

• No experiments were done on network datasets.

• No experiments were done on seeding preference.

59



5.3.2 Web Content Classification Using Link Information

In [42], RWR is also used for classifying websites using links between pages. In this

work (which we will abbreviate as WCC), information from class-based RWR is used

to generate a “profile” (a feature vector) for each instance, and this profile, optionally

combined with other sources of information, is the input to binary SVM classifiers that

output the final classification prediction. Experiments are done on a Yahoo! web graph

using the Open Directory for labels. In contrast, MRW uses RWR probabilities directly

for classification and we verify MRW’s effectiveness on a variety of network and text

classification tasks.

Table 5.1 is a summary of the above RWR-based SSL classification methods.

Work View Classify Application
LGCv2 [111] label consistency regularization max image, text

WCC [42] RW scores as features SVM websites
MRW [65] seed proximity via RW max blog & citation networks

Table 5.1: A summary of RWR-based SSL classification methods with equivalent iterative
update algorithm. View is how the method is motivated; Classify is to how class labels
are assigned after the iterative algorithm converges at a stable per-class distribution;
Application is the type of data on which the method is used.

5.4 Connections between HF and MRW

The harmonic fields method (HF) [114] can also be viewed as a probabilistic label prop-

agation SSL method related to random walks on graph. However, an important dis-

tinction must be made—that while the methods discussed in Section 5.3 are related to

forward random walks, HF is related to backward random walks.

The main strategy of HF is to first compute a real-valued function f : X → R with

respect to A with certain nice properties, and then assign labels based on f. Labeled

instances x ∈ XL are constrained to take on values based on their labels (e.g., for binary
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classification y ∈ {0, 1}, a positive labeled instance i would have f(i) = 1 and a negative

labeled instance j would have f(j) = 0). After f is computed, labels can be assigned with

a simple decision function, such as the following, in the case of binary classification:

yi =

 + if f(i) > 1
2

− otherwise

where yi is the predicted label of instance i and + is the positive label and − the negative

label. A desirable property for f would be that similar instances (e.g., nearly points

in Euclidean space) would have similar labels, thus motivating the quadratic energy

function:

E(f) =
1

2

∑
i,j

Aij(f(i) − f(j))
2

The minimum energy function f = argminf|YLE(f) is harmonic, meaning that the

values of f for each unlabeled instance is the weighted average of f for its neighbors:

f(i) =
1

Dii

∑
j

Aijf(j)

where Dii =
∑
jAij and i indexes over XU. It turns out that f is unique and can be

simply expressed as [114]:

f =Wf

where W = D−1A. Therefore W is the row-stochastic transition matrix of A. Recall that

in Section 5.1, the random walk transition matrix is P = AD−1; so it follows that W = PT

and P = WT . This shows there is a close relationship between MRW and HF. Actually,

since MRW is a label propagation method and Pt computes the transition probabilities
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if we run the random walk t steps forward, it follows that Wt computes the transition

probabilities if we run the random walk t steps backward.

With just the transition matrix (P = AD−1 or W = D−1A), neither forward random

walks (FRW) nor backward random walks (BRW) is useful as a SSL method. FRW is

made useful for label propagation by incorporating label-biased restart probabilities; and

using a random walk with restart (RWR) per labeled class allows us to learn from labeled

and unlabeled data, assuming that the similarity function represented by A captures the

underlying homophily of the data. BRW, on the other hand, is made useful for label

propagation by turning labeled instances into sink nodes.

If we view the affinity matrix A as a graph, where the nodes correspond to data

instances and edges are weighted according to A, and designate nodes corresponding to

instances in XL as sink nodes, then we can define a random walk process on this graph

as mentioned in Section 5.1, except that a walk terminates when it reaches a sink node.

These sink nodes are called absorbing states in the Markov chain corresponding to such

process, and the probability of a random walk ending up at an absorbing state is the

walk’s absorption probability by the state.

The Markov chain defined by the transition matrix P is reversible, allowing us calculate

the random walk probabilities in reverse given an “ending distribution”. FRW answers

the question “given the current probability distribution over the states, what is the most

likely distribution t time steps into the future?”, and BRW answers the question “given

the current probability distribution over the states, what is the most likely distribution

t time steps ago?” In other words, BRW with sink nodes allows us to compute the

probability that a random walker starting at a node (or state) a will end up at a sink

node (or absorbing state) b, as opposed to another sink node (or absorbing state).
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Class Mass Normalization

Class mass normalization (CMN) is a heuristic for adjusting the class decision function

f [114]; here we discuss it briefly because CMN is often recommended when using

HF. The idea is, given that we have prior knowledge (or an accurate estimate) of the

distribution of class labels for the unlabeled instances, we can adjust f so that the overall

probability mass matches the prior distribution. In the case of binary classification, and

we are able to obtain prior class distribution q and 1 − q, then the decision function

would be:

yi =

 + if q f(i)∑
i f(i)

> (1− q) 1−f(i)∑
i 1−f(i)

− otherwise

Note that the above decision function adjusts for the class mass counting both labeled

and unlabeled instances; if for some reason the labeled instances have a different distri-

bution from the class prior, CMN should be done on just the unlabeled instances. While

CMN could be useful when the data has a skewed class distribution, here are a few

items to consider:

• CMN is a heuristic that is applied apart from the HF objective function.

• In a non-experimental setting the prior class distribution may be difficult to esti-

mate.

• When resources only allow a few labeled instances, it is difficult to accurately

estimate a class prior; it may be of more importance to choose carefully which

instances to label, as shown in Section 4.4.3.

• It is not clear how to use CMN in a setting where an instance may have multiple

labels.
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Learning the Similarity Function

The harmonic functions methods was original proposed to be used with the Gaussian

similarity function where the affinity would be defined as:

Aij = exp

(
−
∑
d

(xid − xjd)
2

σ2d

)

Note that this particular definition has an anisotropic (different in different dimensions)

bandwidth parameter σ, as opposed to the more common isotropic one. An gradient

descent method was also proposed with HF to learn σ from data [114]. However, this

method is only applicable to the Gaussian similarity function and does not scale to large

datasets.8 Learning parameters for a manifold for various computation applications is

itself a growing field of study; in this work we will focus on cases where the affinity

matrix A is a given or can be obtained without complex learning methods.

5.5 HF Related SSL Methods

5.5.1 Weighted-voted Relational Neighbor Classifier

The weighted-voted relational neighbor classifier (wvRN) is one of the methods pre-

sented in a networked data classifier framework [71]. Though it is one of the simplest in

the framework, it is also one of the most accurate on a number of benchmark datasets

and therefore recommended as a strong baseline. Although it turns out that wvRN and

HF are equivalent [71], wvRN is proposed as a collection of local classifiers with an it-

erative solution, whereas HF is proposed as a global optimization problem with a linear

solution. Of course, the equivalence between the two solutions means that HF can be

more efficiently solved using an iterative algorithm like wvRN if A is sparse.

8In general, a Gaussian similarity function do not scale to large datasets due to its O(n2) time and
space complexity when constructing A.
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5.5.2 The Rendezvous Algorithm

The Rendezvous algorithm [9] associates each node with a particle that moves between

nodes according to W. As with the BRW SSL view described, labeled nodes are set to

be absorbing states of the Markov random walk, and the probability of each particle

to be absorbed by the different labeled nodes is used to derive a distribution over the

associated missing label. The difference between this method and HF [114] and wvRN

[71] are noted below:

• After A is computed using the appropriate similarity function, a sparse version, Â,

is derived using a k-nearest neighbor algorithm (kNN).

• Since kNN does not produce symmetric results (k-nearest neighbors of a may not

include b even if a is a nearest neighbor of b), Â is not necessarily symmetric.

• The solution is obtained via eigendecomposition.

5.5.3 Adsorption

Adsorption [13,93] uses an iterative method similar to that of wvRN, with the exception

that, instead of constraining the labeled nodes to have a probability of 1 (or a maximum

score) matching their assigned labels, it instead uses shadow nodes to “inject” the assigned

labels into the propagation process. Only a labeled node has a shadow node, and a

shadow node has only one edge connecting it to its corresponding labeled node. In each

iteration, only the shadow nodes are constrained to their assigned values, so even the

labeled nodes will allow labels other than their assigned label to “propagate through”

or take on a label other than their originally assigned label (though unlikely). Shadow

nodes are very similar to the “dongle” nodes proposed in the original HF paper for

incorporating external classifiers [114]. Shadow nodes or dongle nodes may be useful

where there are noisy labels.

65



Work View Algorithm Similarity
HF [114] harmonic energy minimization gradient descent Gaussian

wvRN [71] consistent networked classifiers iterative network links
Rendezvous [9] random walk+absorbing states eigendecomposition Gaussian+kNN
Adsorption [13] iterative averaging iterative network links

Table 5.2: A summary comparison of backward random walk (BRW) SSL classification
methods. In general all of these methods can be solved using a similar (though not
entirely the same) iterative method. View refers how the method is motivated; Algorithm
refers to the core algorithm used to derive the solution; Similiary refers to the similarity
function used in constructing the affinity matrix A.

We summarize the comparison of the above mentioned BRW-related methods in Table

5.2, which shows how the methods differ in motivation, similarity function, and imple-

mentation. For a formal comparison of these methods we refer to Koutra et al. [56],

which shows that many of these methods are inversions of closely related matrices.

5.6 Discussion

We note that PIC (Chapter 2), MRW, and HF as defined in Section 5.4 all use a static,

predefined pair-wise similarity function that specifies the input affinity matrix. In other

words, the notion of “distance” between different clusters or between labeled and unla-

beled data points is fixed, and these methods assume the fixed distances will result in a

good classification solution or a good clustering. Though for the scope of this thesis we

assume this is the case, an adaptively learned distance or similarity function may result

in a better solution, especially if the similarity is a function of different features or edge

types (e.g., a social network where the each edge is labeled with a relation type such as

“friend”, “family”, and “co-worker”).

For example, if we have node-level features for the input network, instead of taking

the edge weights “as is”, we can learn a weight function, parameterized by a weight vec-

tor over the similarity of node-level features between neighbors and optimized based on

the RWR scores (the notion of distance behind MRW) of the training data [10]. Another
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example is learning the bandwidth parameter σ of the Gaussian kernel similarity func-

tion for the harmonic functions method [114]. We also propose an adaptively learned

version of PIC as future work in Section 9.5 when some supervision is available in the

form of clustering constraints.
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Chapter 6

Implicit Manifolds

6.1 Introduction

PIC provides a simple and scalable alternative to spectral clustering methods for cluster-

ing large network datasets; and graph-based semi-supervised learning methods such as

MRW have shown to be efficient and effective on network data by propagating labels to

neighboring nodes. They are well-suited for large datasets with “natural” graph struc-

tures, such as a network of hyperlinked political blogs [64] or a YouTube video dataset

where nodes represent videos and weighted edges between nodes represent how often

the same users view these two videos [13]. These methods are efficient for large datasets

because their computational complexities are linear in the number of edges in the graph,

and most large natural graphs are sparse in the number of edges.

For other types of data that do not come naturally as a graph, these methods can also

be applied by constructing a graph where the nodes are the instances and the edges are

weighted by the pair-wise similarity between the instances. However, whereas a natural

network or a natural graph is often sparse, a graph of pairwise similarities between

instances can be dense.
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A classic example of such type of data is natural language text in the form of a “bag

of words” (BOW) representation. BOW is a simple but intuitive way to represent the

meaning of a document by its word tokens, without additional linguistic or semantic

structure. BOW is popular for information retrieval (IR) [72] and text categorization

tasks [62] due to its simplicity and scalability. To use many graph-based clustering or SSL

methods, we first need to construct a manifold in the form of a pair-wise affinity matrix—

a graph where the nodes are documents and weighted edges denote word similarity

between documents. An important observation is that while documents themselves

can be represented efficiently (e.g., a sparse n ×m matrix where n is the number of

documents and m is the size of the word dictionary), the affinity matrix A will be rather

dense (∼ n2 edges) because most document pairs will share at least a few common

words, which means non-zero similarity, resulting in a dense affinity matrix.

With dense matrices many graph-based methods are no longer scalable. To construct,

to store, and to operate on such a graph is at least O(n2) in terms of both time and space.

In order to make clustering and semi-supervised learning methods practical to general

data, prior work has mostly relied on explicitly sparsifying the dense affinity matrix in

one of two ways:

1. Sample the data (i.e., sample the nodes and/or the edges) and do computation on

a much smaller matrix [22, 38, 107, 110].

2. Construct a much smaller or sparser graph that represents the original large dense

graph [22, 31, 68, 103]. A common method is constructing a k-nearest neighbor

graph, where a node is connected to k other nodes that are most similar to it.

A drawback of sampling and sparsifying methods is that they gain speed and storage

efficiency at the cost of losing some pair-wise similarity information available in the

data. In addition, the construction of these sparsified graphs incurs additional non-trivial

computation costs, and often expertise and familiarity with the sparsifying technique is

required in order to apply it properly. These techniques have in common that all of them
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they still use the same core algorithm; ultimately, a similarity matrix is computed and

stored, and a rather expensive computation like eigendecomposition is performed.

In contrast, we proposed a simple, practical, and general technique and framework,

called implicit manifolds (IM) [66, 67], under which particular similarity functions and

learning algorithms can provide solutions that are exactly equivalent to using a complete

pair-wise similarity manifold while keeping runtime and storage linear to the input size;

and this is done without sampling or calculating a sparse representation of the data.

This is possible based on a simple observation. If a graph-based clustering or an

SSL method has at its core iterated matrix-vector multiplications, where the matrix is

based on the adjacency matrix of the graph, then if the graph is sparse (number of

edges |E| = O(n)), the method terminates quickly and requires a relatively small amount

of memory; in other words, sparse matrix-vector multiplication is cheap. If the graph

is dense (e.g., |E| = O(n2)), the method will be slow and require a large amount of

memory; in other words, dense matrix-vector multiplication is expensive. So if we are

able to decompose the dense matrix into a number of sparse matrices, the dense matrix-

vector multiplication becomes a series of sparse matrix-vector multiplications, reducing

the cost of both space and time to linear w.r.t. input size. Because the pair-wise similarity

manifold represented by the affinity matrix is never constructed explicitly, we call this

general technique implicit manifold construction.

6.2 Path-Folding

The idea of path-folding (PF) is often used in network science to transform a two-mode

network (a graph with two distinct types of nodes) into a one-mode network. PF is

related to the notion of a bipartite graph. A bipartite graph consists of two mutually

exclusive sets of nodes where only edges between nodes of different groups are allowed.

Any dataset with instances and features can be viewed as a bipartite graph, where one
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set of nodes corresponds to instances and the other set corresponds to features. If an

instance has a certain feature, an edge exists between the instance node and the feature

node; if the feature is numerical or if it is weighted, the edge can be weighted accordingly.

If two instances contain the same feature, a path of length two exists between them. If

two instances are very similar (i.e., they share many features), there will be many paths of

length two between them; if two instances are very dissimilar, then there would be very

few such paths or none at all. Thus the number of paths (and their weights) between

two instance nodes in this graph can be viewed as a similarity measure between two

instances.

If we are just interested in the similarity between instances, we may “fold” the paths

by counting all paths of length two between two instances and replacing the paths with

a single edge, weighted by the path count. This “folding” can be expressed concisely

with a matrix multiplication:

A = FFT

where rows of F represent instances and columns of F represent features. A is then the

“folded” graph—each node is an instance, and a weighted edge between two instances

(Aij) represents the count of all paths of length two in the original “unfolded” graph F.

Now consider the density of these two different representations, the “unfolded” bi-

partite graph F and the “folded” graph A, as the size of the dataset (the number of

instances) grows. In real datasets, F is often considered sparse because either (a) the fea-

ture space is small w.r.t. dataset size (e.g., census data with a small set of per-household

questions) or (b) the feature space is large but each instance has only a small fraction of

these features (e.g., document data with word features). A, on the other hand, is likely

dense.
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In the context of large text datasets. F will most certainly be a sparse matrix; there

are a large number of words in the vocabulary, but only a very small fraction of them

will occur in any single document. A is quite the opposite. Aij is zero only if no

words are shared between documents i and j; yet the very skewed distribution of word

occurrences [72], and in particular that of the most common words, makes Aij highly

likely to be non-zero, which subsequently makes A dense. As the number of documents

increases, A, an explicit representation of document similarity, becomes very costly in

terms of storage and processing time.1 What we want to do is to not calculate A and use

its “unfolded” form FFT on-the-fly for the matrix-vector multiplication operations—the

core of iterative clustering and SSL methods such as PIC, MRW, and HF (Sections 6.4

and 6.5).

Before using the affinity matrix in its “unfolded” form, we need to do one more thing.

Recall thatW and P are the normalized forms of AwhereW = D−1A and P = AD−1. We

need to find the diagonal matrix D−1 without constructing A. It turns that the values of

the diagonal matrix D−1 can also be calculated efficiently via a number of sparse matrix-

vector multiplications using the same idea that gave rise to IM. Since we can calculate a

vector di =
∑
jAij of row sums by

d = A1

where 1 is the constant vector of all 1’s, then

d = FFT1

1Besides text data, many other types of data display a similar behavior. For example, a census dataset
of a large population would have a small number of features per individual (because the feature space is
small), but would result in a large and dense affinity matrix.
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Then we can construct the matrix D by setting its diagonal to d: Dii = d(i). Now the

normalized matrices W and P become:

W = D−1(F(FT ))

P = F(FT (D−1))

As we will see later, the parentheses specifying the order of operations is vital in making

them efficient series of sparse matrix-vector multiplications.

6.3 Implicit Manifolds for Text Data

If instead of a bipartite graph we view the rows of F as feature vectors of documents

in vector space, then “path-folding” is equivalent to the inner product similarity of docu-

ments in a document vector space model, often used in information retrieval problems [72].

However, this is just one of many similarity functions often used for measuring docu-

ment similarity. For example, one may want to normalize the document feature vectors

by their lengths.

6.3.1 Inner Product Similarity

As mentioned in Section 6.2, the inner product similarity simply decomposes the affinity

matrix as:

A = FFT (6.1)

6.3.2 Cosine Similarity

It turns out that the implicit manifold is readily applicable to other similarity functions,

as long as the manifold can be represented with a series of sparse matrix multiplications. Here
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we consider cosine similarity [62, 72], widely used for comparing document similarity:

cos(a,b) =
a · b
‖a‖ ‖b‖ (6.2)

Here cos(a,b) is the cosine of the angle between vectors a and b. For the normalizing

term 1/(‖a‖ ‖b‖) we calculate an additional diagonal matrix Nii = 1/
√

(FiF
T
i ) where Fi

is the ith row-vector of F, resulting in the following decomposition for A:

A = NFFTN (6.3)

Following inner product similarity the values of the diagonal matrix D can be com-

puted by d = NFFTN1. All operations in constructing N and D are sparse matrix-vector

multiplications.2

6.3.3 Bipartite Graph Walk Similarity

Another useful similarity measure is based on bipartite graphs. Unlike the inner prod-

uct similarity where a bipartite graph is “folded” into a unipartite graph, here we are

interested in simulating a Markov random walk on a bipartite graph.

For methods that correspond to forward random walks such as MRW, P is defined

here as

P = FC−1FTR−1 (6.4)

where R is the diagonal matrix containing the row sums of F such that Rii =
∑
j Fij, and

C is the diagonal matrix containing the column sums of F such that Cii =
∑
i Fij.

2While we could preprocess F to be cosine-normalized and consequently simplify the above to a inner
product similarity, we point out that with large datasets it may be inefficient to store a different version of
the dataset for every similarity function one might want to use; calculating similarity functions on-the-fly
may prove to be a more efficient approach.
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For methods that correspond to a backward random walks such as PIC and HF, W is

defined as

W = R−1FC−1FT (6.5)

where R and C are defined as above. Note that unlike inner product similarity or cosine

similarity, for bipartite graph walk manifold W 6= P ′. However, if here we define A =

FC−1FT , then W = R−1A and P = AR−1—the two are still closely related. Note also that

it is unnecessary to calculate D−1 here since W and P are already properly normalized

transition matrices.

The bipartite similarity manifold can be interpreted in two ways. First, like its name-

sake, it simulates a random walk on F as a bipartite graph, where each iteration is

equivalent to taking two random steps—the first step walks from the instances to the

features, and the second step walks from the features back to the instances. It can also

be interpreted as a inner product similarity with the features re-weighted inversely pro-

portional to their dataset frequency. This is closely related to the tf-idf weighting scheme

found in document retrieval literatures [72].

6.4 Implicit Manifolds for Clustering

At the core of PIC is a simple calculation: a matrix-vector multiplication Wvt, which

readily fits into the implicit manifold framework: If we decompose the matrix W into

a series of matrix multiplications, the original PIC matrix-vector multiplication becomes

a series of matrix-vector multiplications. To use implicit manifold for PIC, we simply

replace W with the appropriate manifold construction. For example, to use cosine simi-
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larity, the Wvt in Figure 2 becomes:

D−1(N(F(FT (Nvt)))) (6.6)

where N and D−1 are defined and calculated as in Section 6.3.2. The parentheses above

emphasize again that the order of operations is vital in preserving the computational

efficiency of the algorithm.

In this section we present evaluation results for the implicit manifolds version of PIC

on a document clustering task [66], showing clustering performance similar to that of

spectral clustering using a full affinity matrix; this is achieved without incurring the cost,

time-wise and space-wise, of constructing and operating on a dense similarity matrix.

6.4.1 Accuracy Results

We choose the RCV1 text categorization collection [62] as the dataset for the document

classification task. RCV1 is a well-known benchmark collection of 804,414 newswire sto-

ries labeled using three sets of controlled vocabularies. We use the test split of 781,256

documents and category labels from the industries vocabulary. To aid in clustering eval-

uation, documents with multiple labels and categories with less than 500 instances were

removed, following previous work [22]. We ended up with 193,844 documents and 103

categories.

We generate 100 random category pairs and pool documents from each pair to create

100 two-cluster datasets: first, we randomly draw a category from the 103 categories—

this is category A. Then for candidates of category B, we filter out category A itself and

any other category that is more than twice the size or less than half the size of category

A. Finally, category B is randomly drawn from the remaining categories. This whole

process is repeated 100 times. The filtering is done so we do not have datasets that

are overly skewed in cluster size ratio, leading to accuracy results that are difficult to
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interpret. Since the industries vocabulary supports many fine distinctions, we end up

with 100 datasets of varying difficulty.

Each document is represented as a log-transformed if-idf (term-frequency � inverse

document-frequency) vector, as is typically done in the information retrieval community

for comparing similarity between documents [62, 72].

We compare PIC against two methods—the standard k-means algorithm and Nor-

malized Cuts [91]. We compare results with two versions of Normalized Cuts: NCutEVD

and NCutIRAM. NCutEVD uses the slower but more accurate classic eigenvalue decom-

position for finding eigenvectors. NCutIRAM uses the fast implicitly restarted Arnoldi

method [60], a more memory-efficient version of the Lanczos algorithm that produces

approximations to the top or bottom eigenvectors of a square matrix.

In this experiment we use PIC modified with the cosine similarity function, with

0.00001/n as the convergence threshold, where n is the number of documents, and with

random initial vectors where components are randomly drawn from [0,1). For both PIC

and the NCut methods, we run k-means 10 times on the embedding and choose the

result with the smallest WCSS as the final clustering.

We evaluate the clustering results according to the industries category labels using

two metrics: accuracy and normalized mutual information (NMI).

Accuracy in general is defined to be the percentage of correctly labeled instances out

of all the labeled instances. Clustering accuracy here is the best accuracy obtainable by a

clustering if we were to assign each cluster a unique category label by consider all such

possible assignments and then pick one that maximizes the labeling accuracy. NMI is a

information-theoretical measure where the mutual information of the true labeling and

the clustering are normalized by their entropies. See Appendix A.2 for definitions of

these metrics.

The experimental results are summarized in Table 6.1, showing the accuracy and NMI

for the methods compared, averaged over 100 category pair datasets. The “baseline”

77



number for accuracy is the average accuracy of a trivial clustering where all the data

points are in one cluster and none in the other (i.e., the accuracy of having no clusters).

This is provided due to the tendency for clustering accuracy to appear better than it

actually is. The differences between numbers in Table 6.1 are all statistically significant

with the exception of those between NCutEVD and PIC, where the p-values of one-tailed

paired t-tests of accuracy and NMI are 0.11 and 0.09 respectively.

Accuracy NMI
baseline 57.6 -
k-means 69.4 0.263
NCutEVD 77.6 0.396
NCutIRAM 61.6 0.094

PIC 76.7 0.382

Table 6.1: Summary of clustering results. Higher numbers indicate better clustering
performance according to ground truth labels. All differences are statistically significant
with the exception of those between NCutEVD and PIC.

The accuracy values correlate with those of NMI, and NCutEVD is the most accurate

algorithm, though not statistically significantly more so than PIC. Both NCutEVD and

PIC do much better than k-means, a typical result in most prior work comparing k-

means and methods using pair-wise similarity [22, 80, 103]. We are surprised to find

NCutIRAM doing much worse than all other methods including k-means; the degree to

which it failed the task is even more pronounced in NMI, showing the clustering is close

to random. In prior work [22, 60] and in our previous experience with other datasets

NCutIRAM usually does as well or nearly as well as NCutEVD. Perhaps a more advanced

tuning of the parameters of IRAM is required for better approximations to eigenvectors.

Regardless, the conclusions we draw from these experiments is no less significant even

if NCutIRAM were to perform just as well as NCutEVD.

Since the datasets are of varying difficulties, we are interested in how well PIC per-

forms compared to other methods on the individual datasets. So we plot the accuracy of

other methods against that of PIC in Figure 6.1. The x-axes correspond to PIC accuracy
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and the y-axes correspond to that of the compared method. A point above the diagonal

line indicates a “win” for PIC over the compared method for a category pair and a point

below indicates otherwise. A point on the diagonal line corresponds to a “tie”.
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Figure 6.1: Clustering accuracy correlation plots between PIC and other methods. When
PIC does better on a dataset, the corresponding point lies above the diagonal line.

Looking at k-means vs PIC accuracy chart, we see that there are clearly some “easy”

datasets, with their corresponding points concentrated near the top right, and some

“difficult” datasets concentrated near the bottom left. Aside from these, points lie mostly

above the center diagonal line, showing that most of the time, PIC does as well or better
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than k-means. There is not a strong correlation between k-means and PIC accuracy,

possibly due to them being very different clustering methods, one using centroid-to-

point similarity and one using all point-to-point similarities.

The NCutEVD vs PIC accuracy plot, with the exception of less than 10 datasets, forms

a nearly diagonal line through the middle of the chart, showing that most datasets are

“equally difficult” for these clustering methods. This may be an indication that the

clusters produced by these methods are very similar, possibly due to them both using all

point-to-point pair-wise similarity. We will not discuss NCutIRAM vs PIC accuracy here

since NCutIRAM seems to have failed completely on this dataset to produce approximate

eigenvectors.

6.4.2 Similarity between PIC and NCut Clusters
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Figure 6.2: Histogram of the normalized mutual information between the clusters pro-
duced by PIC and by NCutEVD. The x-axis corresponds to the NMI value and the y-axis
correspond to the number of cluster comparisons.

Since PIC and NCut display a similar per-dataset accuracy performance as shown

in Figure 6.1, and since that both methods derive their low-dimensional embedding

from the normalized affinity matrix W, it makes sense to compare the output clusters of

these two methods directly. Using the same 100 two-cluster datasets, we run both PIC

and NCutEVD 50 times on each dataset. Each time a different v0 is used for PIC and a

random set of initial k-means centers are used for both PIC and NCutEVD, and the two
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output clusters are paired. At the end we have 5,000 output pairs. We calculated the

NMI between each of these pairs; the average NMI is 0.832 and a histogram is shown in

Figure 6.2.

6.4.3 Scalability Results
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Figure 6.3: A size versus runtime plot on a log-log scale. The dots show runtime (in
seconds) of various methods on datasets of increasing sizes. The lines show the slope
of a linear curve and a quadratic curve for comparison purposes and do not correspond
directly to any method.

We plot data size versus runtimes on a log-log chart in Figure 6.3. What is imme-

diately noticeable is that PIC is much faster than either NCutEVD or NCutIRAM. On the

smallest dataset of 1,070 documents, PIC took only a hundredth of a second, 50 times

faster than NCutIRAM and 175 times faster than NCutEVD. On the largest dataset of

16,636 documents, PIC took about a tenth of a second, roughly 2,000 times faster than

NCutIRAM and 30,000 times faster than NCutEVD.

Note this time is with PIC calculating cosine similarities on-the-fly in each iteration,

whereas NCut is given the pre-calculated cosine similarity matrix. What is even more

remarkable is the asymptotic runtime behavior. To visualize this in the figure, we include
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a line with quadratic behavior (y = ax2) and a line with linear behavior (y = ax). With

these are guidelines, we can see that NCutIRAM time is slightly above quadratic and

NCutEVD close to cubic. PIC, on the other hand, displays a linear behavior. The runtime

asymptotic behaviors of NCutEVD and NCutIRAM are more or less better understood [22]

so these results are no surprise.

As Algorithm 2 and Equation 6.6 show, the runtime of each PIC iteration is strictly

linear to the size of the input—that is, linear to the number of non-zero elements in the

input document vectors. Assuming the vocabulary size is constant, then PIC runtime is:

O(n)× (# of PIC iterations)

Generally, it is difficult to analyze the number of steps required for convergence in an

iterative algorithm (e.g., k-means), but if we are interested in the asymptotic behavior on

certain datasets, we can instead ask a simpler question: does the number of iterations

increase with dataset size? To observe this experimentally, we plot a correlation chart of

the size of the dataset and the number of PIC iterations and calculate the R2 correlation

value, shown in Figure 6.4a. We find no noticeable correlation between the size of the

dataset and the number of PIC iterations. This implies that the number of iterations is

independent of dataset size, which means that asymptotically, the number of iterations

is constant with respect to dataset size.

What if larger datasets are more “difficult” to PIC? It is less meaningful if the linear

algorithm fails to work on bigger datasets. To observe this we calculate R2 values and

plot correlations between dataset size and PIC accuracy in Figure 6.4c and between

dataset size and the ratio of PIC accuracy to NCutevd accuracy in Figure 6.4b. Again, with

no discernible correlation in these figures, we conclude that PIC accuracy is independent

of dataset size (Figure 6.4c) and that PIC is as accurate as NCut as dataset size increases

(Figure 6.4b).
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Figure 6.4: Correlation plots and R2 correlation values. None of these plots or R2 values
indicates even a slight correlation, providing further evidence of PIC’s runtime linear-
ity. On average it takes 15 iterations for PIC to converge, with 31 iterations being the
maximum.

An additional correlation statistic that may be of interest between that of PIC’s accu-

racy and number of iterations. It is not unusual for an iterative algorithm to converge

much faster on a “easy” dataset and slower on a more “difficult” dataset. Since the num-

ber of iterations is directly related to runtime, we may expect PIC to be slower on more

“difficult” datasets. Figure 6.4d does not show correlation between the two, indicating

that PIC work just as fast on “difficult” datasets as on “easy” datasets. With these re-

sults we conclude that, as far as text datasets are concerned, PIC’s runtime is linear with

respect to input size.
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Perhaps PIC’s runtime scalability is only matched by its small memory footprint.

In addition to the input dataset, the “bipartite graph” PIC embedding requires exactly

4n storage (vt, vt−1 and diagonal matrix δt−1,D) for inner product similarity and 5n

(an additional diagonal matrix N) for cosine similarity, regardless of vocabulary size. This

is much more feasible compared to at least n2 storage required by methods requiring

explicit construction of a similarity matrix.

6.5 Implicit Manifolds for SSL

Similar to PIC for clustering, the implicit manifold framework can also be applied to

graph-based SSL methods where the core operations are iterative matrix-vector multi-

plications. MultiRankWalk (MRW) and the harmonic functions method (HF), introduced

in Chapter 4 and described in more details in Chapter 5, are representative of two types

of graph SSL methods that are a good “fit” for implicit manifolds. Algorithm 4 and 5

correspond to the basic MRW algorithm and an iterative solution implementation of HF,

respectively.

Algorithm 5 An iterative harmonic functions algorithm

1: procedure HarmonicIT(A, YL)
2: V0ci ← 1 if YLi = c, else Vci ← 0 and t← 0

3: repeat
4: Vt+1 ← D−1SVt;
5: ∀i ∈ YL : Vt+1i ← V0i and t← t+ 1
6: until Vt has converged
7: YUi ← argmaxc(Vci)
8: return YU

9: end procedure

Differences aside, an important algorithmic similarity between MultiRankWalk and

HarmonicIT is that both have as their core operation iterative matrix-vector multiplica-

tions (Step 6 and Step 4, respectively). This allows us to replace the costly dense matrix
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as in Equation 6.1, and the iterative operations for MRW and HF become:

MRW: Vt+1 ← (1−α)FFTD−1Vt +αR

HF: Vt+1 ← D−1FFTVt

Again, the usefulness of this representation is made more apparent if we specify the

order of multiplication:

MRW: Vt+1 ← (1−α)F(FT (D−1Vt)) +αR

HF: Vt+1 ← D−1(F(FTVt))

For document similarity, we can similarly apply Equation 6.3 to the matrix-vector

multiplication step. Then the iterative operations for MRW and HF become:

MRW: Vt+1 ← (1−α)N(F(FT (N(D−1Vt)))) +αR

HF: Vt+1 ← D−1(N(F(FT (NVt))))

For bipartite graph walk similarity, again we apply Equation 6.4 and 6.5 for MRW

and HF:

MRW: Vt+1 ← (1−α)F(C−1(FT (R−1Vt))) +αR

HF: Vt+1 ← R−1(F(C−1(FTVt))) (6.7)

6.5.1 Datasets

We carry out a series of experiments to see whether these graph-based SSL methods

are effective on large, non-graph data under our implicit manifold framework and to

see how HF and MRW compare against each other. For all experiments we use the
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MATLAB implementation of SVM for a supervised learning baseline in a one-versus-all

setting. We run HF fixed at 10 iterations (for reasons noted later), and we run MRW to

convergence with parameter α = 0.25.

We assemble a collection of four datasets; they are all from the text domain and are of

two very different types of text datasets. The first type is document categorization, where

the data is a collection of documents and the task is to predict category labels for each

document. Here an instance is a document and the features are word occurrence counts.

The second type is noun phrase categorization, where the data is a collection noun phrases

(NPs) extracted from web and the context in which they appear. The task is to retrieve

NPs that belong to the same category as a small set of “seed” NPs. For example, given

“Seattle” and “Chicago” as seeds, we would like to retrieve NPs such as “Pittsburgh”,

“Beijing”, and all other NPs corresponding to cities. Statistics of the datasets are found

in Table 6.2, and note the memory requirement of using implicit manifolds (IM Size)

versus constructing explicit manifolds (EM Size). We will describe each dataset in more

detail in the following sections.

We choose implicit manifolds based on prior knowledge of what similarity functions

work well on each type of data. For document collections we use cosine similarity [72].

For NP-context data, this particular task of NP categorization has been performed suc-

cessfully using co-EM [81], which is closely related to the bipartite graph walk manifold.3

6.5.2 Document Categorization Results

The 20 Newsgroups dataset (20NG) is a collection of approximately 19K newsgroups

documents, roughly 1,000 per newsgroup [75]. The class labels are the newsgroups

groups; the features are word tokens, weighted according to the log-normalized TF-

IDF scheme [62, 72]. The Reuters Corpus Volume 1 (RCV1) dataset is a benchmark

3In fact, the harmonic functions method with bipartite graph walk manifold is exactly equivalent to
the co-EM algorithm used for performing information extraction from free text proposed by [50]. See
Appendix C for details.
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Name 20NG RCV1 City 44Cat
Instances 19K 194K 88K 9,846K
Features 61K 47K 99K 8,622K

NZF 2M 11M 21M 121M
Cats 20 103 1 44
Type doc doc NP NP

Manifold cosine cosine bipart bipart
Input Size 39MB 198MB 330MB 2GB

IM Size 40MB 207MB 335MB 2.4GB
EM Size 5.6GB *540GB *80GB *4TB

Table 6.2: Dataset comparison. NZF is the total number of non-zero feature values and
Cats is the number of categories. Type is the dataset type, where doc and NP corre-
spond to document collection and noun phrase-context data, respectively. Manifold is
the choice of manifold for the dataset, where cosine and bipart refers to cosine similarity
and bipartite graph walk, respectively. Input Size is the MATLAB memory requirement
for the original sparse feature matrix; IM Size is the total memory requirement for using
the implicit manifold, including the feature matrix; EM Size is the memory requirement
for constructing a explicit manifold. An * indicates that the memory requirement is
estimated by extrapolating from a random sample.

collection of 804K newswire stories [62]. We use the test split of 781K documents and

industries category for labels. To simplify evaluation, documents with multiple labels

and categories with less than 500 instances were removed, following previous work

[22]. We ended up with 194K documents and 103 categories. We evaluate HF and

MRW performance on these multi-class categorization datasets with the macro-averaged

F1 score, where F1 score is the harmonic mean between precision and recall [72]. We

randomly select a small number of instances per class as seeds and vary that number

to observe the its effect on classification accuracy. The choice of manifold here is the

cosine similarity commonly used for comparing document-document similarity. We also

compare the results to that of SVM, a supervised learning method that has been proven

to be state-of-the-art on text categorization datasets. The results for 20NG and RCV1 are

shown in Figure 6.5
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We see that SVM, the tried-and-true text classifier, outperforms both HF and MRW

on these text categorization datasets, though MRW’s performance is nearly as good as

SVM on 20NG. HF does very poorly on both datasets. The difficulty of RCV1 may due

to the imbalance in class distribution; the largest category consists of 23K documents

where as the smallest consists of only 504 documents.
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Figure 6.5: F1 scores on the 20NG and RCV1 datasets. The x-axis indicates the number
of labeled instances and the y-axis indicates the macro-averaged F1 score. Vertical lines
indicate standard deviation (over 20 trials for 20NG and 10 for RCV1) using randomly
selected seed labels.

A notable result from previous work comparing HF and MRW on network data is

that the “quality” of seeds (labeled training examples) is extremely important and makes

a marked difference when only a few seeds are given [65]. We are interested to see if

the same can be observed in document categorization. In network datasets good seeds

can have a high degree (neighboring many nodes) or a high PageRank score (popular

or authoritative); these nodes propagate labels better and are arguably much easier for a

human to label, making them more cost-effective. Here we rank the quality of instances

by its feature-sum—the sum of all of its feature weights. This roughly corresponds to the

length of the document; it can be argued that longer documents have more information
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to allow human labelers to confidently assign it to the right category, and they also

make better seeds because they are able to propagate their labels through a larger set of

features.

To verify this, we first rank all instances by their feature-sum and pick the top k in-

stances from each category to be seeds; the results are shown in Figure 6.6. While HF

does not seem to improve at all, MRW does improve on both datasets, with more dra-

matic improve on 20NG with a small number (1, 2, and 5) of seeds, outperforming SVM.

An interesting note is that SVM performance suffered on 20NG with high feature-sum

seeds; a probable explanation is that high feature-sum seeds are likely to be “central”

instances within its category cluster in the feature space, and whereas central instances

are good for propagating their labels within its cluster, they are not good “boundary”

instances that make good support vectors as required by margin-based classifiers such as

SVM.
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Figure 6.6: F1 scores on the 20NG and RCV1 datasets using preferred (high feature
weight sum) seeds. Subscript HFS indicates result using high feature-sum seeds and R
indicates result using random seeds—included for comparison.
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6.5.3 Noun Phrase Categorization Results

The City and 44Cat datasets are derived from the NP-context data described in [18]. The

NP-context data is extracted from a collection of approximately one billion web pages;

unique English sentences are extracted from these web pages and a noun phrase chunker

is ran over these sentences to extract a set of noun phrases (NPs) and their surrounding

word patterns (contexts). Statistics of the co-occurrence counts of these NPs and contexts

makes up a the NP-context dataset. Here we use this data for NP categorization; in this

framework, each unique NP is an instance and its co-occurring contexts are features.

For example, if the NP “Pizza” is found to co-occur with the context “we ordered _” 2

times and “I love _” 5 times, then “Pizza” would have these features with weights 2 and

5, respectively. The choice of graph-based SSL manifold for this dataset is the bipartite

graph walk manifold because HF with this manifold is closely connected to the co-EM

algorithm (see Appendix C), which worked well on this type of data [50]. Our general

framework enables us to apply the same manifold to MRW as well.

City is the smaller dataset which consists of the most common (occurrence > 500)

88K NPs and 99K contexts, 7 “city” and 14 “non-city” hand-picked seeds. We also have

ground truth labels for all of the NPs, created thus: first we obtained an exhaustive list

of city names from World Gazetteer [4]; by matching the NPs in the dataset with the list

from World Gazetteer, we end up with 5, 921 NPs that are candidates belonging to the

“city” category. However, many of these are obscure city names that never appear in

the data as cities. To filter these false positives we use Amazon Mechanical Turk [1] and

have human labelers decide whether a NP refers to a city according to its top 15 most

frequent contexts. This resulted in a final list of 2, 404 “city” NPs.

Unlike document categorization datasets where every document has a label, here we

are retrieving a small set of positive instances from a much larger set of uncategorized

negative instances. Additionally, since the output of task (a list of NPs belonging to spec-

ified categories) has been used to create a high-quality ontology [19], we also want to see
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Method SVM HF MRW HF MRW
Manifold - inner inner bipart bipart

NDCG 0.026 0.040 0.041 0.041 0.041
AP 0.021 0.673 0.707 0.713 0.739

P@10% 0.012 0.873 0.893 0.880 0.909
P@20% 0.014 0.870 0.900 0.895 0.916
P@30% 0.017 0.877 0.910 0.904 0.912
P@40% 0.020 0.857 0.896 0.912 0.918
P@50% 0.021 0.823 0.865 0.883 0.904
P@60% 0.024 0.760 0.799 0.809 0.831
P@70% 0.027 0.634 0.674 0.681 0.719
P@80% 0.027 0.413 0.453 0.509 0.530
P@90% 0.027 0.193 0.216 0.252 0.293

P@100% 0.027 0.028 0.028 0.028 0.029

Table 6.3: City dataset result. Boldface font indicates the highest number in a row;
inner refers to the inner product manifold and bipart refers to the bipartite graph walk
manifold.

if a classifier is able to assign higher confidence to correctly labeled NPs (i.e., we want

the classifier to rank these NPs in order of their likelihood of being in a category). So

for evaluating this dataset we choose to use measures for ranking quality from informa-

tion retrieval literature: NDCG (normalized discounted cumulative gain), AP (average

precision), and precisions at increasing level of recall.

Here for HF and MRW the confidence score is simply the ratio between the positive

(city) score and the negative (non-city) score. For these experiments, we also add a

smoothing parameter β to MRW so that step 6 in Algorithm 4 becomes:

Vt+1 ← (1−α−β)AD−1Vt +αR+β(1/n)

where α+β ≤ 1. Typically β is very small, and can be considered an uniform smoothing

factor on the confidence. Note that the label prediction does not depend on β at all; this

only affects the ranking to avoid problems such as divide-by-zeros and over-confidence
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on ratios with very small values. The confidence ranking of SVM is determined by the

distance of an NP to the margin of its assigned class.

The result is shown in Table 6.3: using the bipartite graph walk gives a noticeable

advantage over inner product manifold, and MRW outperforms other methods. Here

SVM does poorly due to feature sparsity, which highlights the effectiveness of graph-

based SSL methods with a small number of seeds. Table 6.3 also illustrates an advantage

of viewing co-EM as HF with a bipartite graph walk manifold—it shows that using this

particular manifold improves performance for MRW as well as for HF.

Top k Sample SVM HF MRW
100 50% 0.31 0.52 0.52
500 10% 0.29 0.50 0.47

1000 5% 0.29 0.48 0.47

Table 6.4: Averaged estimated precisions of the top 100, 500, and 1000 retrieved NPs on
the 44Cat dataset. Precisions are averaged over 44 categories and sampled at a rate of
50%, 10%, and 5%, respectively. No statistical significance is found between the results
of HF and MRW.

44Cat is a much larger NP-context dataset, consisting roughly 10 million English NPs

found in one billion web pages and 9 million co-occurring contexts. We removed any

NP-context with co-occurrence count less than three and used roughly 15 hand-picked

NPs as seeds for each of the 44 categories as found in [19]. We do not have a set a ground

truth labels for these categories prior to running experiments, as obtaining them would

be extremely expensive. Instead, we first obtained a list of 1,000 NPs for each category

using SVM, HF, and MRW, ranked by their confidence. Then we computed the estimated

precision for the top 100, 500, and 1,000 NPs of each ranked list, estimated by judging

the precision at a 50%, 10%, and 5% sample of the NPs, respectively. The judging is

again done using AMT; every sampled prediction is given three workers, and when they

disagree we take the decision of the majority. The algorithm settings for this dataset is

the same as the City dataset. An overall result, averaged across 44 categories, is shown

in Figure 6.4. Here we see that again SVM does poorly compared to graph-based SSL
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Figure 6.7: Sampled per-category accuracies of the top 1000 retrieved NPs on the 44Cat
dataset. The categories are ordered from left to right according to the difference between
the MRW accuracy and HF accuracy, from the high to low.

methods. Both HF and MRW are equally effective on this dataset with no statistically

significant difference. We conjecture that the lack of statistical differences may be due to

the relatively small number of samples per category and large per-category differences;

for example, for the top 1,000 NPs, HF did the best on 23 categories and MRW on 22

(with ties in 4 categories).

We also break down the results of the estimated precision at top 1,000 retrieved NPs

into 44 categories in Figure 6.7. In this figure the categories are arranged from left to right

in order of the difference in precision between MRW and HF. An immediate observation

is that no one method can claim to be the best on all categories, though we see that

for most categories SSL methods outperforms SVM by a good margin. Note that points

where all three lines dip on the chart correspond to categories that have a small, closed

set of items (e.g., “country” and “bodypart”), this is understandable since, for example,

the number of countries in the world is much less than 1,000. Results for the top 100 and

500 NPs can be found in Appendix B.3.
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6.5.4 Runtime Efficiency

Implicit manifolds also yield fast runtimes. The smallest dataset (20NG) takes less than

1 second for both HF and MRW, and the largest (44Cat) takes less than 3 minutes. We

did not try running explicit manifold versions of the algorithm for runtime comparison

because that would require more memory than we have available for most of these

datasets (See Table 6.2). Experiments were done on a Xeon 2.27GHz Linux machine

using a MATLAB implementation.

6.5.5 Parameter Sensitivity
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Figure 6.8: Parameter sensitivity. The x-axis correspond to parameter values and the
y-axis shows average precisions; α ranges from 0.05 to 0.65, β ranges from 0.0001 to 0.01;
the number of iterations τ is indicated below the x-axes.

The parameter sensitivity of a method is an issue for larger datasets where tuning

or sweeping of parameters may be impractical. Parameters for MRW are α, β, and the

number of iterations τ (correlated with the convergence threshold). The only parameter

for HF is τ. We plot varying parameters and their effect on average precision in Figure

6.8. Here neither method appears to be very sensitive. Note that HF’s AP peaks around

τ = 5 and it actually degrades with more iteration. This suggests early-stopping HF may
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yield better performance—hence why we fixed τ = 10 for HF. This also points to an

advantage MRW has over HF—unlike HF, MRW does not seem to “over-iterate”.

6.5.6 Mislabeling Resistance
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Figure 6.9: City dataset result using all the World Gazetteer-matched NPs as seeds. The
x-axis correspond to varying α values and the y-axis indicates the average precision.

An important difference between HF and MRW is that for HF, all seeds are “equal”

in the sense that every seed node has the same classification influence on its neighbors,

whereas in MRW, a more “central” seed node (one closer to other seed nodes) has more

influence on its neighbors. For example, a node close to a central seed node is more

likely to be positive than a node close a non-central seed node. This property of MRW

becomes useful when the seeds are noisy (e.g., some are mistakenly labeled positive). To

illustrate this, we give both HF and MRW as input seeds the entire set of 5, 921 NPs that

matched city names in World Gazetteer, and evaluate the outputs as before. The result

is shown in Figure 6.9. As expected both methods are less accurate than those using

hand-picked seeds, but MRW is able to do significantly better. This is because noisy

seeds are more likely to be isolated—i.e., “less central”. Note also that unlike Figure 6.8

the average precision of MRW is slightly higher with a higher value of α—this is perhaps

due to all city NPs are already seeds (propagating to non-seed nodes do not help), and a
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higher restart probability concentrate the walk probability around more “central” seeds,

distinguishing them from the noisy seeds.

6.6 Discussion

Manifold learning [48] is an area of study in machine learning and data mining where the

tasks are often to construct (or learn) an appropriate similarity function or a nonlinear

dimensionality reduction mapping of the data for subsequent clustering, classification,

or visualization. In this regard, implicit manifolds is related to manifold learning in that

it provides efficient solutions for a class of pair-wise similarity manifolds in combination

with a class of learning algorithms where an explicit construction of the similarity matrix

would be impractical. However, though similarly named, the general idea behind im-

plicit manifolds can be applied to a much wider array of computational methods beyond

manifold learning—as long as the method has at its core matrix-vector multiplications

and the matrix is composed of, or can be decomposed into, sparse matrices.
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Chapter 7

Edge Clustering

7.1 Introduction

As discussed in Section 2.2 and 3.1, Spectral clustering [103] is a data clustering paradigm

where the bottom eigenvectors of a specific Laplacian (e.g., the Normalized Cuts Lapla-

cian [91] or the symmetric normalized Laplacian [80]) of the affinity matrix of the data

points are used to construct a low-dimensional embedding in which clusters are clearly

separated in a metric space. Spectral clustering is popular due to its simplicity, effective-

ness, and its ability to deal with non-linearly separable clusters.

There are two major drawbacks to spectral clustering methods. The first drawback is

that they are computationally expensive because of the eigenvector computation, which

is non-trivial even with faster sparse and approximate techniques [22]. As discussed and

shown in Chapter 2, power iteration clustering (PIC) ameliorates this drawback, provid-

ing a highly scalable approach that outputs a similar clustering. The second drawback

is that, as a type of graph partition method, unlike probabilistic topic models [17] or

probabilistic network models [6, 11], spectral methods do not allow mixed membership

clustering (overlapping clusters).
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To address these problems, first we describe a method for converting a node clus-

tering (graph partition) method into a mixed membership clustering approach by trans-

forming a node-centric representation to a scalable edge-centric representation, and then

we describe how this transformation can be used with PIC. We show a substantial im-

provement in performance in mixed membership clustering tasks using the proposed

approach.

7.2 Edges, Relationships, and Features
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Figure 7.1: An example graph G and its corresponding bipartite feature graph B(G) and
line graph L(G). In (b) and (c), the blue nodes represent the edges in G; e.g., edge ab
represents the edge connecting a and b in (a).

To achieve a mixed membership effect, instead of clustering the nodes in the graph,

we propose to cluster the edges in the graph.

A central assumption we make in this work is that, while nodes in a graph can belong

to more than one cluster, an edge between two nodes, indicating an affinity relationship,

belongs only to one cluster. If we can determine the membership of these edges correctly,

then we can assign multiple labels to the nodes based on the membership of the incident

edges. In the context of a social network, edge clustering can be interpreted as relation-

ship clustering—instead of forcing every person to belong to only one social community,
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each of the relationships will be assigned to a social community. For example, person

a’s relationships with a’s parents, siblings, and cousins belong to the community of a’s

family and relatives, and a’s relationships with his co-workers belong to the community

of the company a works for. One-community-per-relationship is a much better assump-

tion than one-community-per-person because it better fits our understanding of a social

network structure and allows multiple community labels per person—in fact, person a

can have as many labels as the number of relationships a has.

If we are to apply graph partition methods to edges of the graph, first we need

to transform the graph so to an “edge-centric” representation. In this work, we will

construct what we call a bipartite feature graph (BFG). A BFG B(G) on a graph G is a

bipartite graph satisfying the following conditions:

• B(G) = (VV ,VE,E) where VV and VE are disjoint sets of nodes and E is the set of

edges.

• Each node in VV corresponds to a node in G and each node in VE corresponds to

an edge in G.

• An edge e ∈ E exists between nodes a ∈ VV and b ∈ VE if and only if node a is

incident to edge b in G.

In other words, for each edge ei(u, v) in G, we add a new node ei to the node set of

B(G), and connect ei to the nodes u and v in B(G). See Figure 7.1 for an example.

We compare BFG to line graphs, a more common edge-centric representation. A line

graph L(G) on a undirected, unweighted graph G is a graph where (1) each node of L(G)

represents an edge of G, and (2) an edge exists between two nodes of L(G) if and only

if their corresponding edges in G have an incident node in common; In other words, for

each edge ei(u, v) in G, we create a node ei in B(G), and connect ei to ej if u or v is also

an end point of ej.

There are several advantages to BFG as an edge-centric representation over line

graphs: (a) unlike a line graph, the original graph G can always be constructed from
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a BFG B(G), (b) B(G) has the same space complexity as that of G, and (c) it is trivial

to modify the BFG to correspond to a directed, weighted graph. The biggest drawback

with line graphs is that they not scalable. For example, a set of nodes and edges in G

that form a “star” pattern—one node in the middle connected to n nodes via n edges—

translates to n nodes and n2 edges in L(G). This is especially a problem in most large,

social networks that display a power-law distribution in the number of incident edges

per node [33, 61].

A graph G can be represented as a square matrix A where the rows and columns

correspond to nodes and a non-zero element A(i, j) corresponds to an edge between

nodes i and j; similarly, a BFG B(G) = (VV ,VE,E) can be represented as a rectangular

matrix F where the rows correspond to VE and the columns correspond to VV , and a

non-zero element F(i, j) correspond to an edge between i and j, which in turn represents

an incidence of edge i on node j in G. An immediate corollary is that F will always

be sparse, since every row in F will always have only two non-zero elements, and the

number of non-zero elements in F is 2m where m is the number of edges in G. Thus,

while a BFG transformation does not increase the space complexity of the original input,

methods that work with the BFG need to be sparse matrix-friendly in order to scale to

large datasets.

An important observation we want to make here is that a B(G) is a valid edge-

centric representation of G regardless of G’s structure, even if, let’s say, G is itself a

bipartite graph. This observation generalizes BFG to represent not just graphs, but any

data represented by weighted feature vectors. Actually, a bipartite graph has been often

used to represent large feature vector-based datasets such as noun phrases found on the

web [67,93], large document collections [66,67], and social network communities [94,104]

for scalable semi-supervised learning and clustering analysis.

A bipartite graph can be constructed from a dataset of feature vectors X as follows.

Let xi ∈ X be the i-th instance of X, and let xi(j) be the weight of xi’s j-th feature. Then
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create a bipartite graph G = (VI,VF,E) where the i-th node in VI correspond to the xi

and the j-th node in VF correspond to the j-th feature, and an edge e(i, j) ∈ E is weighted

by xi(j). The BFG can be applied as above and therefore we can transform any graph or

dataset of feature vectors into an edge-centric representation.

An intuitive interpretation of edge clustering on the bipartite instance feature graph

is that, instead of clustering instances, where each instance can belong to multiple clus-

ters, we want to cluster each feature occurrence. For example, a text document on the

subject of sports management may belong to both “sports” and “business administra-

tion” categories. However, we can assign each word occurrence to a specific category

(e.g., the word “football” to the sports category and the word “budget” to the business

category), and then assign the document multiple labels depending on the labels of its

word features.

7.3 Edge Clustering

After transforming a graph into a BFG, edge clustering can be done with any graph-

based clustering method, like spectral clustering methods such as Normalized Cuts [91]

and the Ng-Jordan-Weiss method [80]. Then the cluster labels assigned to the edge nodes

VE in the BFG can be used to determine mixed membership labels for the nodes in the

original graph. Algorithm 6 outlines the steps for the general procedure, where A is

the matrix representation of the input graph, k is the number of desired clusters, and

Cluster and Labeler are the specified clustering method and the node label assignment

strategy, respectively.

An issue to consider when choosing the graph clustering method is its scalability. If

the original graph G = (V ,E) is represented by a |V |× |V | matrix, then its BFG matrix

is (|E|+ |V |)× (|E|+ |V |), a much larger matrix for most types of data. In order for this
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Algorithm 6 General mixed membership clustering method via edge clustering
1: procedure MMCluster(A,k,Cluster,Labeler)
2: Transform A into a BFG and get B(A)
3: Run Cluster(B(A),k) and get edge clusters E1,E2, ...,Ek
4: Run Labeler(E1,E2, ...,Ek) and get mixed membership node clusters C1,C2, ...,Ck
5: return C1,C2, ...,Ck
6: end procedure

approach to scale to large datasets, the graph-based method must be able to take full

advantage of the sparsity of BFG.

7.3.1 Edge Clustering with PIC

For the graph-based clustering method we use PIC, discussed in detailed in Chapter 2.

Here we rewrite the PIC algorithm, Algorithm 2 in Chapter 2, as Algorithm 7. Here we

rewrite W as D−1A and separate Steps 4 and 5 so it is easier to explain how to adapt it

for edge clustering.

Algorithm 7 The PIC algorithm
1: procedure PIC(A,k)
2: Initialize v0 and t← 0

3: repeat
4: vt+1 ← D−1Avt

5: Normalize vt+1

6: δt+1 ← |vt+1 − vt| and t← t+ 1
7: until |δt − δt−1| ' 0
8: Use k-means on vt to get clusters C1,C2, ...,Ck.
9: return C1,C2, ...,Ck

10: end procedure

The diagonal degree matrix D is defined as D(i, i) =
∑
jA(i, j). Typically, the indica-

tor v0 is first assigned uniformly random values, as in the power method for determining

the principle component of a square matrix. The normalization in Step 5 can be used to

keep the numerical values in v from overflow or underflow, and can also used to keep v

a probability distribution (e.g., vt+1 ← vt+1

‖vt+1‖
1

).

102



The input to PIC is A, a non-negative square affinity matrix where A(i, j) represents

the similarity between instances i and j (or, in the context of a graph, the weight of

the edge between node i and j). If we want to cluster the nodes of a graph G (assuming

homophily), then we can simply use G for A. However, here we want to cluster the edges

of G. As mentioned in Section 7.2, the most direct edge-centric representation of G is the

line graph L(G), but the problem with L(G) is that not only is it potentially a very dense

graph, it will most likely be dense for many types of data such as social networks and

document collections. The bipartite feature graph B(G) is a more scalable representation,

but it introduces another problem. A BFG, which is a bipartite graph, is always periodic,

and therefore iterative algorithms such as the power iteration and PageRank [82] do not

converge. Likewise, PIC, which is based on the power iteration, cannot be used on B(G).

Here we propose to turn B(G) into a unipartite graph as follows. Let cn(i, j) ⊆ VV

be the set of common incident nodes of edge i and j in G, and let F be the matrix

representation of B(G) (as in Section 7.2), and we define a similarity function s(i, j)

where i, j ∈ VE as follows:

s(i, j) =
∑
h

1∑
j F(j,h)

F(i,h) · F(j,h) (7.1)

In other words, the similarity between edge i and j in G is the number of common

incident nodes they have (at most 2), weighted proportionally to the product of the edge

weights but inversely proportional to the number of edges each node is incident to. This

is an intuitive similarity function between two edges that incorporates the number of

common incident nodes, their weights, and the inverse frequency of the incident nodes1.

Then we can define a square matrix S where S(i, j) = s(i, j), and use S in place of A in

Algorithm 7.

1The assumption is that a node should not be considered important for determining similarity if it is
incident to many edges; e.g., two links both pointing to the popular search engine Google.com is hardly
a evidence of their similarity. This is similar to the tf-idf term weighting commonly used for comparing
document similarity in information retrieval methods [72]
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One final difficulty remains: S could still be dense. As Equation 7.1 implies, s(i, j) is

non-zero as long as i and j have one incident node in common—which brings us back

to the problem with line graphs mentioned in Section 7.2. However, the implicit manifold

“trick” in Chapter 6 can be applied to obtain a solution with time and space complexity

linear to the size of the input because (a) The (likely) dense similarity matrix S can be

decomposed as S = FNFT , a product of sparse matrices, where the diagonal matrix N

defined as N(j, j) =
∑
i F(i, j), and (b) A is only used in Step 4 of Algorithm 7 for a

matrix-vector multiplication. We can then replace Step 4 of Algorithm 7 with

vt+1 ← D−1(F(N(FTvt))) (7.2)

and produce the exact same result as using S directly. As before, D can computed

efficiently by computing a vector d = FNFT1 (where 1 is a vector of 1’s) and let D(i, i) =

d(i).

7.3.2 Assigning Node Labels

After obtaining a cluster label for every edge, we can proceed to assign labels for every

node based on the labels for its incident edges. Let L(i, j) be the number of node i’s

incident edges assigned the j-th label. We propose three simple variations:

Max The label assigned to node i is argmaxjL(i, j). This will assign only one label to

a node as in typical node-based clustering methods, and is useful for comparing

against them in a single-membership setting.

T@p Label j is assigned to node i if L(i,j)∑
j L(i,j)

≥ p
100 ; i.e., T@20 means that node i will be

assigned label j if at least 20% of its incident edges are assigned j. It falls back to

Max if no labels meet the criteria.

All Label j is assigned to node i if L(i, j) ≥ 1; i.e., node i will be assigned all the labels

of its incident edges.
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Putting together the various parts of the method, the mixed membership clustering

via edge-clustering using PIC, which call PICE, is outlined in Algorithm 8. Note that

unlike Algorithm 6, PICE uses the compact representation F instead of B(A).

Algorithm 8 Mixed membership clustering using PIC
1: procedure PICE(A,k,p)
2: Transform A into a BFG as F
3: Run PIC(F,k), replacing Step 4 with Equation 7.2, and get edge clusters E1,E2, ...,Ek.
4: Use T@p on E1,E2, ...,Ek to get node clusters C1,C2, ...,Ck.
5: return C1,C2, ...,Ck
6: end procedure

7.4 Experiments

For experiments we compare the proposed method with different node label assignment

methods on a number of datasets. In addition we will use the original node-centric

PIC and the closely related normalized cuts method (NCut) [91] as baselines. Instead

of evaluating clustering methods indirectly using a supervised learning task as done

in some previous work [94, 104], we want to compare output clusters directly with hu-

man assigned categories. For the evaluation metric we will report the macro-averaged

F1 score2, often used for multi-label categorization tasks [62, 72], after aligning output

clusters with ground-truth category labels using the Hungarian algorithm. We prefer

this metric over label accuracy because the latter tend to inflate prediction performance

when the cluster sizes are not balanced.

7.4.1 Modified Network Datasets

We gather a set of eight benchmark network datasets with single-membership ground-

truth labels for our first set of experiments. For each dataset we synthesize mixed mem-

bership instances by randomly drawing and merging pairs of nodes. We prefer mod-

2The harmonic mean of precision and recall
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Figure 7.2: Mixed membership parameter m (x-axis) versus macro-averaged F1 score
(y-axis) on the modified network datasets.

ifying a variety of existing real datasets over purely synthetic ones such as the planted

partition model [24] as they may be a better predictor on how well these methods would

perform on these types of real mixed membership datasets. Our primary goals for these

experiments are:
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• To verify that edge clustering works as well as node clustering on single-

membership data.

• To vary the degree of “mixed membership-ness” and see how well each method

does.

The merging process is follows. (1) Split nodes of graph G = (V ,E) into two sets S

and T such that S ∪ T = V and S ∩ T = ∅, such that |S|·100
|V |
≈ m. (2) For each node s ∈ S,

randomly select a node in t ∈ T , and add all labels and edges of s to t (i.e., add a new

edge (t, c) if (s, c) ∈ E). (3) Remove all nodes in S and their incident edges.

The parameter m controls the degree of mixed membership-ness and goes from 0

to 100, where 0 would result in the original single membership graph and 100 would

result in a graph with a single node with all possible membership labels. In between,

m guarantees that at least m% of the nodes in original single membership graph G is

merged in the mixed membership graph G ′.

For the experiments this process is repeated 50 times per dataset and the reported

evaluations are averaged over these 50 runs.

Here we briefly describe the eight datasets. The Karate dataset [108] form a two-

community social network among 28 members a karate club; the nodes are people and

the edges are friendships. The Dolphin dataset [70] is a two-community social network

of associations between dolphins in a pod in New Zealand. The UMBCBlog [51] and

AGBlog [5], datasets are networks of 404 and 1222 political blogs, respectively. The

nodes are blogs and edges are hyperlinks between them, and each blog belong either to

the liberal or conservative community. The Senate dataset contains nodes corresponding

to 98 US senators and edges are agreement on congressional votes; labels correspond to

affiliations with either a liberal or a conservative political party; unlike other datasets, this

dataset is a complete graph. The nodes in the Football dataset [41] are 115 US Division

IA colleges, each belonging to one of 10 conferences, and the edges represent games in

the 2000 regular season. The Cora and CiteSeer datasets [69] are 2485 and 2114 scientific
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papers belonging to 7 and 6 related scientific fields, respectively; edges are citations. All

of these datasets have weighted, undirected edges.

The experiment results on the network datasets are shown in Figure 7.2, where Node

refers to the original PIC algorithm using Node-based clustering. Results for NCut is

nearly the same as that of Node and is not shown in the figure for sake of clarity. Here

we make a few observations: (a) Except for Senate, on most datasets, edge clustering

methods do just as well as Node for m = 0 (single membership). (b) As m increases,

All and methods with a low p perform better as expected. (c) The performance of Max

is very similar to that of Node—it does well at low m’s but not at higher m’s, whereas

All usually is the worst (not by much) at low m’s and best at high m’s. (d) The poor

performance of edge clustering methods on Senate suggests that they may not be well-

suited for certain dense network datasets. (e) The threshold parameter p should be

tuned for an optimal result—Max and All do not do well at particular extremes of m,

while T@20 consistently outperform Node at almost anym, except on the Senate dataset.

The results verify that edge clustering will generally work well on single-membership

datasets as well as mixed membership ones. Note that at the very high end of p edge

clustering methods, especially All, would do well simply because most instances will

have membership in most classes.

7.4.2 BlogCatalog Datasets

BlogCat1 and BlogCat2 [94, 104] are two blog datasets crawled from BlogCatalog.com,

during two different time periods. BlogCat1 contains 10,312 blogs/users, links between

these blogs, and each of the blog is manually assigned one or more labels from a set

of 39 category labels. BlogCat2 is a similar dataset with 88,784 blogs and 60 category

labels, and additionally each blog may be associated with a subset of 5,413 tags. For our

experiments we will consider links between blogs and associated tags as input, and use

the manually assigned category labels as gold-standard for evaluation.
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Instead of evaluating a clustering method indirectly using a supervised learning task

as done previously on these blog datasets [94, 104], we want to directly compare output

clusters directly with human assigned categories. However, on a large, noisy dataset

with many possible multi-category assignments, it may not be fruitful to compare all

clustering and category assignments at once—many of the possibilities can be considered

correct and the manually assigned categories may be deficient. Here we will tease out

some of these kinds of noise by evaluating a clustering method on one pair of categories

at a time, instead of the entire dataset.
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Figure 7.3: Summary statistics for the BlogCatalog datasets. Each dot on the chart is a
category-pair dataset. The x-axes correspond to the size ratio between the two categories,
and the y-axes correspond to the ratio of instances that belong to both categories.

We want to focus on cases where there are actual mixed membership instances, so

we select category pairs where when instances belonging to them are pooled together,

2% to 70% of them are mixed membership (belong to both categories). The 70% cap is

so there is enough signal there from either category to “guide” the clustering method

in separating the data according to the selected categories. We also filter category pairs

based on the size ratio between the two categories so that the number of instances in

the larger of the pair is at most twice that of the smaller one. We end up with 86

category-pair datasets for BlogCat1 and 158 for BlogCat2. Figure 7.3 plots the pair size

ratio against the ratio of mixed membership instances for these datasets. Note that most

category pairs have only a small percentage of mixed membership instances. For each
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Figure 7.4: BlogCat1 dataset results. (a) is the overall F1 score averaged over all category
pairs, and (b)–(d) are detailed per-category pair charts for detailed comparison of two
specific methods.

category-pair dataset, the same method is run 10 times (since all methods involve some

random initialization) and the average F1 score of runs are reported.

For BlogCat1, we simply use the blog network as input. The overall F1 scores aver-

aged over 86 datasets are shown in Figure 7.4a. An interesting observation here is that

not only does edge clustering in general do better than node clustering, even Max is able

to outperform both NCut and Node, which suggests that edge clustering may be better

than node clustering even on single membership clustering tasks.

Figures 7.4b–7.4d are detailed comparison between two specified methods that re-

quire some explanation. Each marker on the plot correspond to one category-pair

dataset, and the color and shape of the marker shows which method outperforms the

other method, according to the legend in the upper right corner. The legend addition-

ally shows the number of times the method outperforms the other in parentheses. The
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x-axes correspond to the ratio of instances in the category pair that have membership to

both categories, and the y-axes correspond to the margin by which the winning method

outperforms the other on the category pair. For example, in Figure 7.4b, we can see that

although Node outperforms Max on more category pairs (53), when Max outperforms

Node it is often by a large margin, versus where the winning margins of Node are quite

low, indicating that there is very little utility in choosing Node over Max. A general

observation of Figures 7.4b–7.4d is that PICE with an appropriate labeling threshold is

almost always better than single membership methods not just in terms of overall perfor-

mance, but even on a per-dataset scale, and especially for datasets with a higher mixed

membership ratio.

For BlogCat2, we want to take advantage of the additional tag information. To test

PICE’s performance on general features (not just networks) and even a mixture of dif-

ferent features, the BlogCat2 dataset input contains both links between blogs and tags

associated with each blog. Each instance is a feature vector of both tags and links for

each blog, which can be interpreted as a bipartite graph and transformed into a BFG

as described in Section 7.2. The results for BlogCat2 are shown in Figure 7.5, using the

same types of plots as BlogCat1. Note that there are no NCut results for BlogCat2 since

NCut does not take general feature vectors as input.

Unlike BlogCat1, where the overall edge clustering methods in Figure 7.4a are rather

“flat” with respect to the label assignment threshold parameter p (except for All), the

overall result in Figure 7.5a shows a trend for a specific node label assignment parameter

p. This trend can be further examined in the detailed comparisons in Figures 7.5b–7.5f,

showing that for most category pairs (a) edge clustering method outperform node clus-

tering methods, (b) the methods with high “win” margins are edge clustering methods,

and (c) edge clustering methods do better on category pairs with higher mixed member-

ship ratios. In addition, BlogCat2 shows that for certain datasets tuning p is important
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Figure 7.5: BlogCat2 dataset results. (a) is the overall F1 score averaged over all category
pairs, and (b)–(f) are detailed per-category pair charts for detailed comparison of two
specific methods.

for an edge clustering approach to output cluster labels that match the ground-truth

categories.

112



7.5 Related Work

Palla et al. [83] emphasized the importance of recognizing overlapping communities in

naturally occurring network data instead of just disjoint communities, and proposed a

community discovery method that uses cliques in the graph as the basic structure for

inferring communities. The time complexity of the method is exponential to the number

of edges in the graph; therefore, even with a small exponent, it does not scale to large

datasets.

Mixed membership stochastic blockmodels [6] are a probabilistic method that models

both the pairwise presence of links between objects in a network and a global “block”

structure that indicates the interaction between clusters. This method provides a proba-

bilistic framework and has the ability to learn parameters (e.g., the interaction between

two clusters) and generate random networks based on these parameters. However, since

each of the n2 possible edges are a random variable in these models, they are in general

not scalable to larger datasets.

EdgeCluster [94] is method for finding the social dimensions of a social network graph.

Similar to our proposed method, it first construct an edge-centric graph from the social

network, where edges become nodes and nodes become edges. Then a modified version

of k-means, which is efficient for sparse graphs, is used to produce clusters that corre-

sponds to social dimensions. The nodes of the original graph then are assigned weights

along these social dimensions based on its incident edges. Then analysis and predictions

can be done based on these social dimensions. The goal of our work is different in that

we want to produce clusters that represent real communities, rather than a transformed

feature space (though we can also use it for representing such social dimensions).

Correlational learning [104] aims to discover overlapping social groups in social net-

works supplemented with tags (or generally, labels specifying user interest) by first per-

forming a singular value decomposition on the user-tag matrix, and the left and right

singular vectors associated with the largest singular values (except the principle singu-
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lar vector) are used as features in the latent space for users and tags, respectively. Then

the similarity between two user-tag edges are defined as a linear combination of the

similarity between the two users and the two tags. Finally, the EdgeCluster k-means

algorithm [94] is used to discover the social groups given the edge similarities. A draw-

back of this approach is that SVD computation is in general O(mn2 +n3) where m and

n are the number the users and tags, whereas BFG integrated with PIC is O(|E|) where

|E| is the number of edges in the input graph. In addition, the proposed approach is able

to cluster network data and data with arbitrary feature vectors.

Here edge clustering is used as an intermediate step to provide mixed membership

clustering. However, if the data is in the form of a graph where nodes are entities and

edges are relationships between entities (e.g., social networks, family trees, relational

databases, etc.), then edge clustering can be viewed as the clustering of relationships,

which is itself an interesting and useful task. While not much work has been done on

clustering relationships in social networks (such a task may be even more difficult to

evaluate then clustering of entities in social networks), unsupervised methods such as

LDA has been applied to the task of discovering selectional preferences, the clustering of

entity-relationship-entity triples on relational data [87].
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Chapter 8

Gaussian Kernel Random Walks

8.1 Introduction

Random walk methods like PIC (Chapter 2) and MRW (Chapter 4) have runtime and

storage requirements linear to the number of edges; therefore, while they are efficient

when the graph, or the manifold, is sparse, they do not scale if the graph is dense; i.e.,

|E| ≈ |V |2, where |E| and |V | are number of edges and nodes, respectively.

One approach to the dense manifold problem is to preprocess the graph so it is no

longer dense [22, 22, 31, 38, 68, 103, 107, 110], e.g., by constructing a k-nearest neighbors

(kNN) graph from the original. Another (arguably more elegant) approach is using an

implicit manifold (IM), introduced in Chapter 6.

The Gaussian kernel (GK) is a widely-used similarity function and data manifold

[77, 91, 114]. It is useful in tasks where a notion of a “neighborhood” on a continuous

space is desirable, and the “size” of the neighborhood can be controlled by tuning the

Gaussian bandwidth parameter σ. A notable advantage of having such neighborhoods

is that it allows classification and clustering of non-linearly separable data. However,

GK manifolds are dense, and currently there is no known sparse decomposition that

reconstructs a GK manifold exactly. As a step towards the goal of opening up GK to
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many efficient and effective random walk-based learning methods, and more generally

to other random walk-based tasks such as ranking [53,82] and retrieval [59], in this paper

we present two new approximate GK implicit manifolds for continuous data, and analyze

their effectiveness on several synthetic and real datasets.

8.2 Gaussian Kernel Hilbert Space

In the context of machine learning, kernel-based methods extend linear algorithms

to work with non-linear problems by transforming the data to a high- or infinite-

dimensional space where only inner product computation is required. Here we are

interested in working with the Gaussian kernel (GK), defined as:

K(x,y) = e−
‖x−y‖2

2σ2 (8.1)

where x and y are vectors (data points in vector space) and σ is the “neighborhood

width” of the kernel [77, 91, 114]. The σ parameter controls the “size” of a “neighbor-

hood” in the manifold space and the kernel is shift- and rotation-invariant (and thus

well-suited for data with continuous features like physical space, time, and colors). Be-

cause a GK similarity manifold is usually dense and we want to use it on a number of

random walk-based learning methods via IM, we seek an sparse, explicit representation

of the data instances in the Gaussian kernel Hilbert space (GKHS); i.e., we seek F so that

the i-th row of F is the representation of example i in the RKHS. Then FFT can be used

in the IM as in Equation 6.6. Currently no such sparse finite decomposition of a GKHS

similarity matrix is known. In the following sections we present two approximate GKHS

implicit manifolds.
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8.3 Random Fourier Basis (RF)

One way to approximate an GKHS is by using random Fourier bases in the form

cos(ωTx+ b) where ω ∈ Rd and b ∈ R are random variables, drawn from the Fourier

transform p(ω) of the Gaussian kernel K and the interval [0, 2π], respectively. The inner

product of two points x and y transformed this way is an unbiased estimate of K(x,y).

This transformation has been proposed to provide random features for large-scale

kernel machines [86].

This random Fourier (RF) transformation can be interpreted as first projecting a point

onto a random direction in Rd (making RF rotation-invariant) and passing it through a

sinusoidal function with a random bandwidth drawn according to σ, and then “sliding”

the sinusoidal function by a random amount (making it shift-invariant). We can con-

struct a new feature vector x ′ for each x where each element in x ′ is the result of an i.i.d.

RF transformation. As the dimension of x ′ increases, the error p(|K(x,y)−αx ′ ·y ′|) goes

to zero, given the appropriate normalizing constant α [86]. This means that we can use

the product of a matrix of RF features with its transpose to approximate the GK similar-

ity matrix A, and as long as the matrix of RF features is sparse, it is IM-compatible.

We can explicitly construct a Gaussian RKHS approximated with random Fourier

features as follows. Given a matrix X with n rows corresponding to data points in

features vector space and m columns corresponding to features, we define a matrix R

with n rows and l columns. Let Ri,j = K̂(Xi,Xj), then S = RRT yields a similarity matrix

S where Si,j is the approximated Gaussian kernel similarity between data points i and j.

R is constructed as follows [86]:

1. Draw l i.i.d. samples ω1, ...,ωl from p (ω ∼ 1
σN(0, 1)).

2. Draw l i.i.d. samples b1, ...,bl from uniform distribution on [0, 2π].

3. Let Rij =
√
2/l[cos(ωTj Xi + b)].
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The space and time complexities of constructing a RF IM are both simply l, the

number of random Fourier features drawn.

8.4 Taylor Features (TF)

Another way to approximate GKHS is by a truncated Taylor expansion of the exponen-

tial function. Since GK is in the form of an exponential function, it can be expression as

an infinite sum of polynomial functions via Taylor expansion. Explicit construction of

an approximate GKHS using truncated Taylor expansion has been proposed for efficient

Gaussian kernel large-margin learning [106] [25]; here we will re-derive the approxi-

mation and adapt it to the IM framework. We can rewrite the Gaussian kernel from

Equation 8.1 as:

K(x,y) = e−
‖x−y‖2

2σ2 = e
−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 · e
〈x,y〉
σ2 (8.2)

The construction for the first and second terms are straight forward, so we will focus

on the third term. Using Taylor expansion of the exponential function about 0 we have:

e
〈x,y〉
σ2 =

∞∑
k=0

1

k!

(
〈x,y〉
σ2

)k
(8.3)

and expanding 〈x,y〉k we get:

〈x,y〉k =
(

m∑
i=1

xiyi

)k
=
∑
j∈[m]k

(
k∏
i=1

xji

)(
k∏
i=1

yij

)
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where j enumerates all possible selections of k elements of x or y as per the definition of

raising a sum of m terms to the kth power. Plugging this back into Equation 8.3 we get:

∞∑
k=0

1

k!

(
〈x,y〉
σ2

)k
=

∞∑
k=0

1

σ2kk!

∑
j∈[m]k

(
k∏
i=1

xji

)(
k∏
i=1

yij

)

and plugging this back into Equation 8.2 we get:

e
−
‖x−y‖2

2σ2 = e
−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 ·
∞∑
k=0

1

σ2kk!

∑
j∈[m]k

(
k∏
i=1

xji

)(
k∏
i=1

yij

)

=

∞∑
k=0

∑
j∈[m]k

e
−
‖x‖2

2σ2
1

σk
√
k!

(
k∏
i=1

xji

)
e
−
‖y‖2

2σ2
1

σk
√
k!

(
k∏
i=1

yij

)

Therefore an explicit feature representation φ for each k and j is:

φk,j(x) = e
−
‖x‖2

2σ2
1

σk
√
k!

k∏
i=1

xji (8.4)

where K(x,y) = 〈φ(x),φ(y)〉 =
∑∞
k=0

∑
j∈[m]k φk,j(x)φk,j(y), and [m]k denotes the set

of permutations of size k on m objects. An obvious problem with putting this formu-

lation into practice is the summing up of infinite terms indexed by k; however we can

approximate the sum by restricting to k ≤ d, thus the Gaussian kernel is approximated

by polynomials of degree d:

K̂(x,y) =
d∑
k=0

∑
j∈[m]k

φk,j(x)φk,j(y)

Following [25], we will call each φk,j(x) in Equation 8.4 a Taylor feature of x and d controls

the quality of the approximation. Results on an error bound of this approximation can

be found in [25].
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Taylor Feature IM Construction Next we will see how we can represent this explicit

construction as a series of sparse matrix multiplications for incorporation into the im-

plicit manifold framework in Chapter 6.

Given a matrix X with n rows corresponding to data points in features vector space

and m columns corresponding to features, we define a matrix P with n rows and∑d
k=0m

k columns. Let Pi,j = K̂(Xi,Xj). Then S = PPT yields a similarity matrix S

where Si,j is the approximate Gaussian kernel similarity between data points i and j. We

can simply plug in PPT into the methods described in Section 6.5; alternatively, we can

decompose the matrix of Taylor features P as:

P = AFB

Let X be the original feature matrix, n be the number of data points, and l be the number

of Taylor features. Then A, F, and B can be constructed as follows:

• A is an n× n sparse diagonal matrix and Ai,i = e
−
‖Xi‖2
2σ2 .

• F is an n× l matrix and Fi,ξ(k,j) =
∏k
i=1

∏
j∈[m]k xji where ξ is an indexing opera-

tor that “flattens” the indexing over each polynomial degree k and its associated

multinomial combinations j.

• B is an l× l sparse diagonal matrix and Bξ(k,:),ξ(k,:) =
1

σk
√
k!

.

We make the following notes on the decomposition of P. (1) F is the “base” Taylor

feature matrix and contains the values of different combinations of multinomials for

each polynomial degree k. (2) A performs a scalar modification on each data point and

can be thought of as a weighting on data points. (3) B performs a scalar modification on

each Taylor feature and can be thought of as a weighting on features. (4) Once F and B

are constructed, when running learning algorithms, we only need to use the part of the

matrices that correspond to the desired degree of approximation d; i.e., we never need to

reconstruct these matrices if the degree of approximation we want is the same or lower
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than what we already have. (5) The Gaussian kernel bandwidth parameter σ affects only

the sparse diagonal matrices A and B. This means we can adjust σ efficiently without

having to reconstruct all components of P.

The space complexity of a TF IM is determined by the number of non-zero entries

in X; here we want to know, for each data point x, how many non-zero entires are in

F given an approximation parameter d. The number of non-zero entries in F of a data

point x is related to the product of the permutations (with replacement) of its feature

values (see Equation 8.4). For a data point with c non-zero feature values for a particular

polynomial degree k in the approximation, the number of non-zero entries nz(x) can be

bounded by (c+d)!
d!c! . Note that the number of non-zeros nz(x) depends on c and d but not

on the size of the dataset n or the size of the feature space m. This means that with a

fixed d and a fixed max non-zero feature value count ĉ, the density of F is linear in the

size to X, hence TF IM is practical for datasets with a small ĉ.

The time complexity of the constructing a TF IM is same as its space complexity,

because each of the Taylor features can be calculated in constant time based on already

computed values (also noted in [25]). Specifically:

φk,j(x) = e
−
‖x‖2

2σ2
1

σk−1σ
√

(k− 1)!k
co(k, j)xjk

k−1∏
i=1

xji

Note that, unlike Equation 8.4, we allow j to enumerate over all multinomials (combina-

tions of k coordinates) and use a multinomial coefficient function co(k, j).

8.5 Experiments

To test the feasibility of this approach, we compare the classification accuracy of two rep-

resentative random walk-based SSL methods on the two proposed approximate GKHS

IMs. In addition, we report the accuracy of a linear support vector machine (SVM) clas-
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sifier on the same dataset as a reference, as well as a (non-approximate) GK (which has

n2 costs).

The first SSL methods we use is MultiRankWalk (MRW), a simple and effective

random walk classifier that is representative of a number of SSL methods that can be

roughly described as label propagation methods via random walk with restart (RWR)

[42, 65, 111]. See Algorithm 4 for the implementation we use. For a baseline we will use

the cosine similarity IM and we will also explicitly construct the full (size |V |2) GKHS

manifold as a performance upper bound. The cosine IM, random Fourier IM, Taylor

feature IM, and full GKHS versions of MRW are called MRWCOS, MRWRF, MRWTF,

MRWGK, respectively.

The second SSL method we use is the harmonic functions method (HF) [114], another

simple and popular classifier that is representative of a number of SSL methods that can

be roughly described as label propagation methods via reverse random walk with “sink

nodes” [9, 13, 71]. The particular implementation we use is also called a weighted-voted

relational network classifier [71]. Class mass normalization [114] is an optional heuristic

that often improves the output of HF; in our experiments we run HF both with and

without it and report only the best of these two. The four IM versions of HF are called

HFCOS, HFRF, HFTF, MRWGK.

For SVM we use LIBLINEAR [34] using the L2-regularized L1-loss support vector

classification setting with a bias of 1. All together we have 9 classifiers for the experi-

ments.

Synthetic Data We constructed three types of spatial synthetic datasets, shown in Fig-

ure 8.1. 8.1a are points generated from Gaussians of two uniformly random means in

R2 within a unit interval; 8.1b are two copies of a set of points generated with a Markov

random walk in R2 biased in a random direction, with one copy “shifted” in a direction

orthogonal to the biased direction from the other copy; 8.1c are points that form three

122



“noisy” spirals in R3 that together form a helix-like structure—each point deviates inde-

pendently from the perfect spiral by a small random amount. The colors indicate class

labels.

(a) 2-Gaussians example (b) 2-random walks example (c) 3-spirals example

Figure 8.1: Examples of randomly generated synthetic datasets. Colors indicate class
labels.

Each type of synthetic dataset is designed to test different problem conditions. In

8.1a, the two classes can potentially be very close and even overlap each other; to accu-

rately separate the two classes the SSL method needs to make full use of the unlabeled

instances. In 8.1b, although the points are linearly separable by a large margin, the man-

ifold must be rotation-invariant because the random walk can be biased in any direction.

In 8.1c, the points are not linearly separable.

We generate 100 datasets for each type of synthetic data, and each dataset contains

100 points per class. The restart parameter for all MRW methods is set at α = 0.05.

For both the random Fourier and Taylor feature IMs we set parameters that control the

approximation complexity at 16 features per instance. The classification accuracy result

is shown in Figure 8.2, where the best result from a parameter sweep of σ is reported.

For each dataset a specified percentage of instances are used as the training set and the

rest are the test set.

We make a number of observations based on Figure 8.2. (1) As expected, the full

GKHS manifold are always as good or better than the approximations. (2) MRW in gen-

eral outperforms HF when the amount of training data is small as observed previously
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(b) 2-random walks F1 scores vs. training set size
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(c) 3-spirals F1 scores vs. training set size

Figure 8.2: Classification accuracy on three types of synthetic datasets. The vertical axis
corresponds to the F1 score and the horizontal to the training set size.

on network datasets [65]. (3) As expected, SVM does poorly on noisy dataset when the

training set is small (Figure 8.2a), and on datasets that are strongly non-linear separable

(Figure 8.2c). (4) RF IM does not work as consistently as TF IM; RF IM works well on

the Gaussian data, fails to work on the spirals data, and works only with MRW on the

random walks data. (5) The only method that work consistently across the data types

without using the computationally expensive full GKHS manifold is MRWTF.
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On GeoText Data We test the proposed methods on a challenging real dataset. The

GeoText dataset [32] consists of a week’s worth of about 380,000 microblog posts from

9256 users in the United States, with the user’s geolocation in latitude and longitude,

collected from the microblog website Twitter. Given a training set of user messages and

locations, the task is to predict an unseen user’s location given his or her message text.

To do well on this task, a method must leverage the textual similarity between user’s

posts and the geolocation proximity between users. Eisenstein et al. [32] trained a latent

variable geographic topic model that outperformed several strong baseline methods on

both a geolocation prediction task and a 4-label region classification task.

Since there is no explicit modeling, or even representation, of continuous manifolds

such as geolocations using IMs, there is not a straightforward way to do geolocation pre-

diction using GK IMs. However, we can do the region classification task by propagating

region labels between users that are nearby each other and users with similar posts. To

do this, we want to construct an IM that uses both the text data and the geographic data.

LetW be a square word-similarity matrix between users and G be a square geo-similarity

between users, then D−1
WWD

−1
G G, where DW(i, i) =

∑
jW(i, j) and DG(i, i) =

∑
jG(i, j),

specifies a two-step transition matrix where the first step the transition probability is

according to the word-similarity, and the second step according to the geo-similarity.

This is a simple way to compose two types of similarity features in IMs. By replacing W

and G with the appropriate IMs (e.g., cosine IM and TF IM) and substituting the entire

composition for A in the desired SSL method (e.g., Step 6 of Algorithm 4), we end up

with a method that efficiently finds similar groups of users via geolocation and textual

similarities. Prior work on this dataset [32] used a fixed training (60%), develop (20%),

and test (20%) split; here we use a random 60% training and 40% test split for each of 20

trials and report the average classification accuracy in Table 8.1.

We see that on this task MRWTF+ is competitive with the much more complex state-of-

the-art geographic topic model, and beats all other baselines. We also see that MRWTF+
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Method Accuracy
Geographic topic model 0.58
Mixture of unigrams 0.53
Text regression 0.41
Supervised LDA 0.39
K-nearest neighbors 0.37
Most common class 0.37
MRW (text) 0.52 +- 0.0091
MRWTF+ (geo+text) 0.57 +- 0.0078

Table 8.1: GeoText results from prior work and MRW with composed IMs. Accuracy is
the micro-averaged classification accuracy, and Time is the wall-clock time in seconds.
Results above the double line are reproduced from prior work [32] for comparison. MRW
uses only the word-similarity and MRWTF+ uses both word- and geo-similarity.

is able to take advantage of the geolocation feature to outperform a mixture of unigrams,

text regression, and MRW (text only). The wall-clock running time is 0.12 seconds on

average.

Though our experiments show TF to outperform RF with these SSL methods, an im-

portant thing to note is that unlike RF, the approximation error made by TF is dependent

of where the instance lie in the original space. Because a Taylor expansion is about a

particular point (the origin in this case), the error increases as we get further away from

the point of expansion. The following bound from Cotter et al. [25] bounds the error in

terms of feature vector lengths:

|K(x,y) − K̂(x,y)| ≤ 1

(d+ 1)!

(
‖x‖ ‖y‖
σ2

)d+1

Note the inverse correlation between the vector lengths and σ2. In addition to re-

centering the data around the origin, we may need to adjust σ as to balance between

the right bandwidth parameter and an adequately large “effective radius.” This also

implies that a σ that works well with a full GK manifold may need to be re-tuned for TF

IM.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

We showed that power iteration clustering (PIC) is a general and scalable alternative to

graph-based clustering methods such as spectral clustering, and that MultiRankWalk

(MRW) is a scalable and effective graph-based semi-supervised classification method

when given only a small amount of training instances—and where those training in-

stances are located in the graph structure may greatly affect the classification perfor-

mance.

We presented implicit manifolds (IM), a technique and a framework for extending

iterative graph-based learning methods such as PIC and MRW to general data in vector

space for a class of similarity functions; in particular, we have shown both PIC and MRW

to work effective with text data via IM on applications such as document clustering and

noun phrase categorization.

We then further extended PIC to do mixed membership clustering via edge clus-

tering, and we also showed that where an exact IM is not feasible, as is the case with

Gaussian kernels, we can use an approximate IM for random walk learning tasks.
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The ideas and methods presented in this thesis lay a groundwork for many interest-

ing extensions and applications; in sections to follow we list a few of them.

9.2 PIC Extensions

PIC is a basic method that can be extended in many ways. We have described multi-

dimensional PIC for dealing with a large k (Section 2.7), PIC for general feature vec-

tor data via implicit manifolds (Section 6.4), and PIC for mixed-membership clustering

(Chapter 7). Here we will describe additional extension ideas that are also compatible

with all the existing extensions.

9.2.1 Initialization

Similar to other learning algorithms that involve random initialization (e.g., k-means,

Gibbs sampling, expectation-maximization, etc.), the initial vector v0 of PIC maybe have

a significant effect the clustering result. There are two items to considering when ini-

tializing PIC: (a) instances in different clusters should be as far away from each other

as possible, and (b) for multi-dimensional PIC, the initial vectors v0i should be such

that the final vectors vti are linearly independent and as close to orthogonal as possible.

These considerations pose a chicken-and-egg problem: if we know the optimal initializa-

tion then we have solve the problem already. However, if we make certain assumptions

about the data based on prior knowledge, we can tweak the otherwise uniformly random

initial vectors and achieve better clustering results.

Normal Initialization Mentioned in connection to random projection in Section 3.6, ini-

tializing PIC according to a Gaussian distribution may help to preserve the relative

pair-wise distances between points in the PIC embedding, according to prior results

on random projection [16, 26, 99].

128



Degree Initialization Initializing PIC such that each element of the initial vector is

set to the degree of its corresponding node (i.e., v0(i) =
∑
jA(i, j)) can lead to better-

separated clusters if the average degree of each cluster is different. This average degree

heterogeneity assumption can be inferred from other assumptions; for example, if can

assume the average degree is correlated to cluster size and that the clusters are of dif-

ferent sizes, than the average degree will also differ between clusters. An additional

benefit of degree initialization is that it leads to faster convergence. This is because at

convergence elements of the PIC vectors corresponding to the same cluster will have the

same value, and concentrating the high values in nodes with higher degree will allow

them to more quickly “propagate” the values to nodes with lower degrees.

Skewed Initialization To better separate a larger number of clusters with one or few

PIC vectors, we want to further “skew” the distribution of the initial values so that

the average degree of a cluster is not likely to be the same. An example of a skewed

initialization procedure would be: (1) run PageRank on A and create a rank vector r

such that r(i) = 1 if i has the highest PageRank value, and r(j) = 2 if j has the second

highest PageRank value, and so on, (2) pick h highest ranked nodes (e.g., h = 32), (3) set

v0(i) = 2h−i if r(i) < h, and (4) set the rest of v0 to zero.

9.2.2 Stopping

In Section 2.5 we introduced a simple and intuitive criterion for stopping PIC iterations—

“acceleration”, based on the assumption that there is a noticeable eigengap between the

eigenvalues of the normalized affinity matrix W. PIC can be used with other stopping

criteria based on the desired clustering result or other prior assumptions or prior knowl-

edge about the data.
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The Normalized Cut Objective SinceW is directly related to the normalized Laplacian

used for Normalized Cut (NCut) [91], it makes sense to use its objective function as a

criteria for PIC. At every PIC iteration we can run k-means and calculate the NCut

objective; the loop continues if the objective is better than the previous iteration and it

terminates when the objective is the same or worse than the previous iteration. Note

that while running k-means and calculate the NCut objective at every iteration can be

rather expensive for large datasets, this can be made more efficient by initializing k-

means using the final centers from the previous iteration and doing so only once every

few steps instead of every step.

Modularity Given a graph and a number of clusters, modularity is the fraction of the

edges that fall within the given clusters minus the expected such fraction if the edges

were randomly distributed [79]. Like NCut, modularity can be optimized directly using

matrix decomposition methods for finding communities in a network [79] and we can

also use it as the stopping criterion in the same way we use the NCut objective.

The Earth Mover’s Distance As noted in Chapter 2 and 3, with proper normalization,

the PIC vector vt can be viewed as the random walk probability distribution t steps

before v0. We can then calculate the change in this probability distribution between

iterations and stop when the change in this probability is low. A well-known method for

calculating the distance between two distributions is the earth mover’s distance (EMD) [89],

used in computer vision research for computing distances between grayscale images

and color histograms. The idea is that a categorical distribution p has certain amount

of “earth” which is to be moved into “holes” with capacity according to a categorical

distribution q, over a certain amount of “ground distance”. A unit of work is done

when transport a unit of earth by a unit of ground distance, and the EMD between two

distribution is the least possible amount of work done moving all of the earth from p to

q.
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There are two problems applying EMD to PIC. First, it is not clear how to assign

ground distances between different categories as in image applications (e.g., the ground

distance between grayscale pixels can simply be the euclidean or Manhattan distance be-

tween their locations in the image). Second, the general computation method for EMD is

the Hungarian algorithm, which is O(n3) and very expensive for larger datasets. A sim-

ple solution to these problems is setting the ground distance to 0 between corresponding

categories and 1 for everything else.

Variable Stopping Points In Section 2.5 we show that as the number of iteration in-

creases, the signals from eigenvector ei disappears from the embedding at a rate of(
λi
λ1

)t
; and later in Section 3.6 we show that t is a scaling factor in the diffusion space.

These observations imply that, rather than viewing PIC as having a definite stopping

point with the “best” embedding, we can view an embedding with a smaller t as fine-

grained and one with a larger t as coarse-grained. Since the embedding reveals the

structure of the data at different scales, it may be useful to create a multi-dimensional

PIC embedding based on different t’s, instead of setting a particular stopping point.

9.3 Data Visualization

Data visualization is the task of representing data in a high-dimensional space or a com-

plex manifold in a low-dimensional Euclidean space (usually in 2 or 3 dimensions) so

that is can be displayed on a computer screen or in print for data exploration, analysis,

and representation. An algorithm that projects data onto a low-dimensional space for vi-

sualization is typically called a layout algorithm, and layout algorithms found in popular

graph visualization tools such as JUNG [2] and Gephi [14] are often based on physical

simulation of objects. For example, the SpringLayout algorithm in JUNG simulates the

input graph as a network of interconnected coil springs, which act as attraction forces

between connected nodes. Of course, nodes should also repel one another to avoid form-
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ing a single large cluster in the visualization. The simulation of repelling and attracting

forces lies at the core of many layout algorithms, and almost all of them are O(n2) in the

number of nodes. Aside from the capability of the graphics rendering hardware, this is

the main reason why many of these tools are limited to visualizing a small dataset or a

small sample of a large dataset.

A natural application of a low-dimensional PIC embedding is data visualization, and

its main advantage over traditional spectral-based dimensionality reduction approach

such as PCA (Section 3.4) is again its speed. In addition, with implicit manifolds (Chap-

ter 6) PIC can also be used to visualize other types of data. To avoid data points overlay-

ing each other, we can use simple heuristics to “spread” the data points over available

space while preserving the general look of the clusters. Figure 9.1 shows a PIC visu-

alization of the Football dataset with and without “spreading”. Note that while Figure

9.1a and 9.1b look very similar and both reveal the structure (football conferences) of the

network data, in Figure 9.1b the points are much more evenly spread out, as indicated

by the colored histograms, so data points can be accessed individually. For example, the

light blue and dark blue points in the top right corner are no longer displayed directly

on top of each other.
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UCLA
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Florida

Duke Tulane

(a) without “spreading”

Akron Purdue

Florida
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UCLA

Colorado

(b) with “spreading”

Figure 9.1: A 2D visualization of the Football network data using the PIC embedding.
Points are American colleges and colors correspond to football conferences. The x and y
axes are overlaid with histograms to show the concentration of points on that dimension.
Some colleges are labeled as example instances of the conferences they belong to.
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9.4 Interactive Clustering

Since a PIC visualization, as described in Section 9.3, is directly derived from the PIC

embedding, we can turn this around—the position of objects in a visualization can also

be used to “fix” the PIC embedding and thus give better clustering results. Based on this

idea, we can imagine an iterative clustering procedure like Algorithm 9.

Algorithm 9 Interactive PIC
1: procedure PICINT(A,k)
2: Run PIC(A,k) and get 2D embedding E and clusters C

3: repeat
4: Display E as points in 2D colored according to C

5: Ask user to fix E by dragging points, update colors as needed
6: Update E according to dragged points
7: Run PIC(A,k) with E but “lock” the position of the dragged points
8: until User no longer make changes
9: Save the positions of the dragged points for future use

10: return C = {C1,C2, ...,Ck}
11: end procedure

This clustering procedure is interactive because of iterative refinement of the clusters

based on user input. The proposed method is very different from most prior work

on interactive clustering, where the user input is primarily choosing cluster features or

cluster membership [47]. Here we combine interactive clustering with data visualization,

which may prove to enhance the user experience and provide better clustering results

per unit of user input.

9.5 Learning Edge Weights for PIC

In Chapter 2 PIC is proposed as an unsupervised clustering method. Some cluster-

ing methods are supervised. For example, constrained clustering is a class of clustering

methods that are supervised via a set of constraints such as must-link and cannot-link

constraints. Unlike semi-supervised classification, no class label is given, but instead the
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training data specifies which instances should be in the same cluster and which ones

should not.

PIC’s main task is to provide a low-dimensional metric embedding for data that lie in

a pair-wise similarity manifold for a downstream clustering method (such as k-means)

to assign the cluster labels, so it makes sense to replace k-means with one of these

constrained clustering methods to handle must-links and cannot-links. However, we can

also use these types of training data to re-weight the edges of the input graph if the

graph contains multiple types of nodes or edges.

For example, in a social network of people, the edges maybe labeled with edge types

such as “friends”, “spouse”, “siblings”, etc.; or perhaps the edges are not labeled, but

we have nodes labeled with attributes such as sex and age, which we can use to la-

bel the edges with types such as “male-female”, “same-sex”, “old-young”, or “same-

generation”. With multiple edge types it may be helpful to consider different types of

edges of different importance; for example, a “close-friend” edge type may indicate a

stronger affinity than a “colleague” edge type.

Suppose we are given a set of pair-wise must-link constraints P = {(a1,b1), (a2,b2), ...}

and a set of cannot-link constraints Q = {(a1,b1), (a2,b2), ...} on the nodes of affinity

matrix A, where the set edges E are composed of edges of different types: E = E1 ∪ E2 ∪

...; ∀i,jEi ∩ Ej = ∅. Let the row-normalized matrix W be parameterized by α according

to the edge types, and recall that the PIC embedding vector at time t is vt = Wtv0 and

W = D−1A where A is the affinity matrix and the diagonal matrix D =
∑
jA(i, j). Then

W(i, j) =
A(i, j)
D(i, i)

and

A(i, j) = exp

(∑
k

α(k)φ(i, j,k)

)
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where φ(i, j,k) is a function indicating if the edge (i, j) ∈ Ek. We then have the following

objective function:

min
α

∑
(a,b)∈P

(vt(a) − vt(b))2 −
∑

(a,b)∈Q
(vt(a) − vt(b))2 (9.1)

In other words, we want the values of the must-link pairs to be “close” to each other in

vt and the values of the cannot-link pairs to be “far away” from each other. We then take

partial derivative of Equation 9.1 with respect to α:

∂

∂α

 ∑
(a,b)∈P

(vt(a) − vt(b))2 −
∑

(a,b)∈Q
(vt(a) − vt(b))2


=
∂

∂α

 ∑
(a,b)∈P

(vt(a) − vt(b))2

−
∂

∂α

 ∑
(a,b)∈Q

(vt(a) − vt(b))2


=
∑

(a,b)∈P
2

[
∂

∂α
vt(a) −

∂

∂α
vt(b)

]
−
∑

(a,b)∈Q
2

[
∂

∂α
vt(a) −

∂

∂α
vt(b)

]

For each ∂
∂αv

t(i) term in the sum:

∂

∂α
vt(i) =

∂

∂α
Wvt−1(i)

=
∂

∂α

∑
j

W(i, j)vt−1(i)

=
∑
j

∂

∂α

[
W(i, j)vt−1(i)

]
=
∑
j

[
vt−1(i)

∂

∂α
W(i, j) +W(i, j)

∂

∂α
vt−1(i)

]
(9.2)

The above equation is recursive, but we can also apply the chain rule recursively until

∂
∂αv

0(i) and compute the gradient iteratively. For multi-dimensional PIC we can sim-

ply minimize the same equation over multiple v0’s, or we can replace (vt(a) − vt(b))2
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in Equation 9.1 with
∥∥vta − vtb∥∥2 where vti ∈ Rd is the vector for instance i in a d-

dimensional PIC embedding.

The recursive derivation in Equation 9.2 is similar to the derivation of the objective

function for learning edge weights in supervised random walks (SRW) [10] for the task of

predicting and recommending links in a social network. However, the objective function

and the propagation matrix used in the SRW work are quite different from ones pre-

sented here; in the SRW work the task is to provide rankings instead of clusters, and the

propagation is via forward random walks (with restarts) rather then backward random

walks (with sink nodes).

9.6 Improving Edge Clustering

We proposed transforming a graph into a bipartite feature graph (BFG) as a general

approach to apply graph partition methods such as spectral clustering to mixed mem-

bership clustering tasks. We show that a well-suited method is power iteration cluster-

ing (PIC), and when appropriately combined with BFG, it is able to show substantial

improvement over single membership methods on even moderately mixed membership

datasets.

An improvement to the proposed approach is learning the label assignment threshold

parameter p based on some statistics or prior knowledge of category distribution. We

can also extend this approach to apply BFG transformation to hypergraphs by clustering

hyperedges. Lastly, we want to verify the generality of mixed membership clustering via

edge clustering on a number of other efficient graph partition methods.
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9.7 Other Methods for Random Walk Learning on Contin-

uous Data

In Chapter 8 we described methods for random walk learning on the Gaussian kernel

Hilbert space. GKHS is just one of many kernel functions that can be applied to data

in continuous spaces. For example, we can use apply similar approximation methods to

other radial basis kernels such as the Laplacian kernel and Cauchy kernel [86]. If we are

interested in kernels that depend on the L1 distance between pair-wise points instead

of L2, we can also use methods such as randomly “binning” the points with randomly

shifted grids at randomly chosen resolutions, which has been shown to work well with

SVM on a number of datasets [86].

The Taylor features method and the random Fourier method described in Chapter 8

and many other random approximation methods such as ones described in Rahimi and

Recht [86] approximate a continuous space by partition it with functions drawn from

distributions independent of the data. We may improve accuracy on a learning task

by drawing random functions according to the data distribution; for example, we may

want to set a minimum and maximum bandwidth according to prior knowledge about

the data when drawing random Fourier features.

If the dimensionality of the space we want to approximate is large, the complexity

of the approximation methods mentioned above may become intractable if we want to

keep the approximation error below a certain threshold [25]. In such cases we can first

reduce the dimensionality of the data using random projection or locality sensitive hash

(Section 3.4) before using a kernel approximation method.
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9.8 k-Walks

An interesting application of the semi-supervised method MRW is to use it for cluster-

ing. The basic idea to use standard k-means algorithm (Lloyd’s algorithm), but replace

the Euclidean distance functions with random walk probabilities. In each iteration the

random walk probabilities from k centers to all the instances is computed using MRW

(Algorithm 4)—i.e., k random walks with restart, and the new centers are obtained using

k PageRank [82] computations; a basic version is shown as Algorithm 10.

Algorithm 10 The k-walks algorithm

1: procedure KWalks(A,k,α,β)
2: Random pick cluster centers M0 = {m0

1,m
0
2, ...,m0

k} ∈ X

3: t← 0.
4: repeat
5: Obtain clusters Ct1,C

t
2, ...,Ctk via MRW(A,Mt,α) using Mt as seed instances

6: for each Ci do
7: Form graph Ati as a subgraph of A formed by Cti
8: Compute PageRank rti on Ati with teleport probability β
9: Set new center mt

i ← maxjr
t
i(j)

10: end for
11: t← t+ 1
12: until Mt = Mt−1 or a maximum t reached
13: return Ct1,C

t
2, ...,Ctk

14: end procedure

Here we make some observations about this method:

• Since computing k PageRank probabilities is the same as running MRW with a

uniform restart vector r, all MRW extensions can be applied (e.g., adapting to

general feature vector data via implicit manifolds).

• Assuming the number of iterations per MRW is constant 1, it has the same com-

plexity as that of k-mean, which is generally considered very efficient.

1It does not depend on the size of the dataset; rather, it depends on the restart probability and the
structure of the data—the eigenvalues.
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• Like k-means, initial centers M can be chosen more cleverly; we can chose them ac-

cording to prior knowledge, choose them according to a desirable statistical prop-

erty (e.g., k-means++ [8]), or even fix some of the centers if we want to do a mixed

SSL and clustering task.

• Instead of choosing a point as the center in Step 9 we can pick a few points or

even a distribution over the points as the center. Using a distribution as the center

makes k-walks more analogous to k-means (Lloyd’s algorithm).

• Similar to PIC and kernel k-means [30], k-walks can be viewed as k-means on a

random walk embedding; however, unlike these, the embedding changes every

iteration according to the current centers and clusters.

• It can be shown that, using points as centers, Algorithm 10 may not converge; we

have yet to analyzed and see if it would converge if we use distributions as centers.

NCut NJW KWalksP KWalksD

UMBCBlog 0.953 0.953 0.930 0.910
AGBlog 0.342 0.342 0.940 0.944

MSPBlog 0.389 0.389 0.750 0.744

Table 9.1: Macro-averaged F1 scores on 3 political blog datasets. KWalksP and KWalksD
are the k-walks algorithm using point centers and distribution centers, respectively.

A preliminary result comparing k-walks to two spectral clustering methods on the

political blog datasets described in Section 4.4.1 is shown in Table 9.1. It shows that

k-walks is very competitive with spectral clustering methods UMBCBlog and is able to

do well on AGBlog and MSPBlog, both of which the spectral clustering methods fail

completely.
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9.9 Uniform Sampling for Random Walk Learning

Methods such as HF and MRW (Section 4) are generally efficient as long as the graph is

sparse because the random walk probabilities for each class can be computed in O(|E|)

where |E| is the number of edges. However, what if the number of classes scales up with

the number of edges or nodes in the dataset? This is not unlikely if, say, the classes are

small communities (e.g., families or student organizations) in a social network. In that

case HF and MRW will incur a O(n2) computational cost, where n is the number of

nodes, even if the graph is sparse.

An observation that can be made about multiple biased random walks on graphs

(e.g., HF and MRW) is that, if we have k random walks representing k classes, the

probabilities of most biased random walks will reach a given node is typically very

small—only a few of the walks will have enough probability to compete for the node’s

membership, and the probability of the rest of them are negligible.

One way to ameliorate this problem is to sample the random walks instead of cal-

culating them exactly as in Chapter 4. We can sample the random walks, approximate

the probabilities with this sample, and then determine class membership based on the

approximated probabilities. To sample the random walks, we can label each biased ran-

dom walker with its class label, and then simulate a Markov random walk with each of

the walkers. Each node will act as an “observer”—it will record the number of times it

has been visited by random walkers from each of the class label. Since the amount of

memory is limited, especially for large datasets, we cannot record every node visit by

every random walker—we need to decide when to record, when not to record, and when

to erase an old record if the space limit has been reached, until the algorithm converges.

A common solution is to simply record everything until the space limited has been

reached, and then only record visits by classes of higher probabilities based on current

records and erase records by classes of low probabilities based on current records if

needed. This solution is problematic in that it does not produce an uniform sample of all

141



the visits. The sample is biased toward the initial visits, making it sensitive to random

paths taken at the beginning of the simulation and biased toward short paths and away

from long ones.

Algorithm 11 A reservoir sampling algorithm

1: procedure RS(a,n,m)
2: for i = 1→ m do
3: s(i)← a(i)
4: end for
5: for i = m+ 1→ n do
6: j← rand([1, i])
7: if j ≤ m then s(j) = a(i)
8: end for
9: return s

10: end procedure

For getting a random walk sample we propose to use reservoir sampling (RS) [102],

an elegant and computationally efficient method for obtaining a uniform sample from a

stream of objects. Given an array or stream a, a stopping index n, and a sample size m,

RS returns a uniform sample s of sizem such that an element in a is in swith probability

m
n . A basic RS algorithm is shown as Algorithm 11.

Note that the proposed method for scaling up multiple random walks is very dif-

ferent from sampling methods that scales up a single random walk, such as strategies

to prune random walk paths below a certain threshold [20]. For a single random walk,

where the application is often the retrieval and ranking of top items, we are interested in

computing accurate random walk probabilities for a small subset of nodes with a high

likelihood of being reached by the walk; therefore we can safely “prune away” nodes or

edges that we predict to have a low likelihood of being reached by the walk. However,

for multiple random walks where the application is to classify each item, we need to es-

timate random walk probabilities for each node (no pruning), but for each node we only

need to know which one of the random walks visits it the most—an accurate probability

is not necessary.
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Appendix A

Evaluation Measures

A.1 Classification

Here we define quantitative evaluation measures used for classification tasks according

to a set of ground-truth labels. We assume a multi-class classification setting (i.e., the

number of classes k ≥ 2). All the measures used are in range [0, 1] and in all the measures

a higher value means better classification performance. Although most datasets used

are single-label classification tasks (i.e., an instance in a dataset x ∈ X has only one class

label), with the exception of accuracy, the same evaluation measures are also used for

multi-label classification tasks (i.e., x can have more than one class label).

Let Ti be the set of instances with class label i according to the ground-truth, Yi be

the set of instances with class label i according to the classifier output, and n and k be

the number of instances and the number of clusters, respectively. Then:

Accuracy (Acc) is the fraction of correctly labeled instances in the entire dataset, in a

single-label classification setting. Formally,

Acc =
1

n

∑
i

|Ti ∪ Yi|
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Precision (P) is the fraction of predicted labels for a class that corresponds to the

ground-truth. Formally, the precision of class i is defined as

Pi =
|Ti ∪ Yi|
|Yi|

and the macro-averaged precision is the arithmetic mean of the precision of all the

classes in the dataset:

PM =
1

k

∑
i

Pi

Recall (R) is the fraction of ground-truth labels for a class that corresponds to the pre-

diction. Formally, the recall of class i is defined as

Ri =
|Ti ∪ Yi|
|Ti|

and the macro-averaged recall is the arithmetic mean of the recall of all the classes in

the dataset:

RM =
1

k

∑
i

Ri

F1-score (F1) is the harmonic mean of precision and recall. Formally, the F1-score of

class i is defined as

F1i =
2PiRi
Pi + Ri
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and the macro-averaged F1-score is the arithmetic mean of the F1-scores of all the

classes in the dataset:

F1M =
1

k

∑
i

F1i

For additional background and details regarding these measures see Manning,

Raghavan, and Schütze [72].

A.2 Clustering

Here we define quantitative evaluation measures for clustering results according to a set

of ground-truth labels. All the measures used are in range [0, 1] and in all the measures

a higher value means better classification performance. Unless otherwise noted, we

assume a single-label setting where an instance in a dataset x ∈ X can only belong to

one cluster.

Let Ti be the set of instances in the i-th ground-truth cluster, Cj be the set of instances

in the j-th predicted cluster, and n = |X| be the number of instances in the dataset. Then:

Purity is the best accuracy obtainable by a clustering, subject to the constraint that all

elements in a cluster are assigned the same label. To compute purity, for each

cluster Cj returned by a clustering algorithm, the true labels of instances within Cj

are revealed and counted, and the entire cluster is assigned the label of with the

highest count. Purity is then the accuracy of this assignment. Formally,

Purity =
1

n

∑
j

maxi|Ti ∪Cj|

Normalized mutual information (NMI) is an information-theoretical measure where

the mutual information of the ground-truth and the predicted clusters are nor-
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malized by their respective entropies. Formally,

NMI =
I(T ,C)

1
2(H(T) +H(C))

where I(T ,C) is the mutual information between T1, T2, ... and clustering C1,C2, ...

and H(T) and H(C) are their respective entropies, given by

I(T ,C) =
∑
i

∑
j

P(Ti,Cj) log
P(Ti,Cj)
P(Ti)P(Cj)

H(T) = −
∑
i

P(Ti) log P(Ti)

H(C) = −
∑
i

P(Ci) log P(Ci)

where P(Ti) =
|Ti|
n and P(Ti,Cj) =

|Ti∪Cj
n . Definitions for P(Cj) follows.

Rand index (RI) compares the ground-truth and the predicted clusters for every pos-

sible pair of instances. The prediction for a particular pair is deemed correct if

(a) they are in the same ground-truth cluster and in the same the predicted cluster,

or (b) they are in different ground-truth clusters and in different predicted clus-

ters. The Rand index is the number of correctly clustered pairs divided by the total

number of possible pairs. Formally,

RI =
2

n(n− 1)

∑
p,q|p<q


1 if ∃i, j | {xp, xq} ∈ Ti and {xpxq} ∈ Cj

1 if @i | {xp, xq} ∈ Ti and @j | j{xpxq} ∈ Cj

0 otherwise

Note that RI is more expensive to calculate than other measures because it makes

O(n2) comparisons.

In addition to the above methods, if we produce a mapping from ground-truth clus-

ters Ti to predicted clusters Cj, then classification evaluation measures such as the ones
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found in Appendix A.1 can be used to evaluate the mapped clusters. In this work we use

the Hungarian algorithm whenever we use classification measures such as precision, re-

call, or F1-score for cluster evaluation. For additional background and details regarding

the above mentioned measures see Manning, Raghavan, and Schütze [72].
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Appendix B

Additional Experiment Results

B.1 SSL Methods on Network Datasets

For comparing difference between HF and MRW when using CountLink and PageRank

seed preferences, a one-tail paired McNemar’s test on classification results of individual

instances is used with p < 0.001 reported as significant. For comparing difference be-

tween HF and MRW when using Random seed preference, 20 accuracy scores from 20

random trials are used in a one-tail Mann-Whitney U test with p < 0.001 reported as

significant. For comparison difference random seeding and authority-based seed prefer-

ences, classification results of individual instances is used in a one-tail Mann-Whitney U

test with p < 0.05 reported as significant.
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Figure B.1: F1 score results varying the learning algorithm. The x-axis indicates number
of labeled instances and y-axis indicates labeling macro-averaged F1 score. Square block
around a point indicates statistical significance with p < 0.001.

158



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90

UMBCBlog Random Seeding Accuracy

wvRN
MRW

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90

UMBCBlog LinkCount Seeding Accuracy

wvRN
MRW

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90

UMBCBlog PageRank Seeding Accuracy

wvRN
MRW

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

AGBlog Random Seeding Accuracy

wvRN
MRW

 0.9

 1

 0  10  20  30  40  50  60  70  80  90

AGBlog LinkCount Seeding Accuracy

wvRN
MRW

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

AGBlog PageRank Seeding Accuracy

wvRN
MRW

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250

MSPBlog Random Seeding Accuracy

wvRN
MRW

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160  180

MSPBlog LinkCount Seeding Accuracy

wvRN
MRW

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160  180

MSPBlog PageRank Seeding Accuracy

wvRN
MRW

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

Cora Random Seeding Accuracy

wvRN
MRW

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

Cora LinkCount Seeding Accuracy

wvRN
MRW

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900

Cora PageRank Seeding Accuracy

wvRN
MRW

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

CiteSeer Random Seeding Accuracy

wvRN
MRW

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800

CiteSeer LinkCount Seeding Accuracy

wvRN
MRW

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700

CiteSeer PageRank Seeding Accuracy

wvRN
MRW

Figure B.2: Accuracy results varying the learning algorithm. The x-axis indicates number
of labeled instances and y-axis indicates labeling accuracy.
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Figure B.3: Harmonic fields F1 score results varying the seeding method. The x-axis
indicates number of labeled instances and y-axis indicates labeling macro-averaged F1
score. Square block around a point indicates statistical significance with p < 0.05.
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Figure B.4: MultiRankWalk F1 score results varying the seeding method. The x-axis
indicates number of labeled instances and y-axis indicates labeling macro-averaged F1
score. Square block around a point indicates statistical significance with p < 0.05.
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Figure B.5: Harmonic fields accuracy results varying the seeding method. The x-axis
indicates number of labeled instances and y-axis indicates labeling accuracy.
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Figure B.6: MultiRankWalk accuracy results varying the seeding method. The x-axis
indicates number of labeled instances and y-axis indicates labeling accuracy.
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B.2 SSL and Clustering Methods on Network Datasets
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Figure B.8: F1 comparison between SSL methods and clustering methods on network
data.
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B.3 IM SSL Methods on 44Cat
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(a) Sampled per-category accuracy of the top 100 NPs
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(b) Sampled per-category accuracy of the top 500 NPs
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(c) Sampled per-category accuracy of the top 1000 NPs

Figure B.9: Sampled per-category accuracies of the top NPs on the 44Cat dataset. The
categories are ordered from left to right according to the difference between the MRW
accuracy and HF accuracy, from the high to low.
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Appendix C

Relation between HF and co-EM

The basic idea behind co-EM is to combine features of co-training (having two views

of the data) and Expectation-Maximization (iteratively maximize data likelihood) as an

iterative bootstrapping classifier. The bipartite graph walk can be thought of as having

two views with two types of classifiers: first, we train a feature classifier based on the

instance labels and classifies (walks to) the features; then we train an instance classifier

based on the newly labeled features and classifies (walks to) the instances. Co-EM with

these two views and two classifiers proved to be effective in extracting noun phrases

in [50].

Algorithm 12 is the co-EM algorithm for extraction of noun phrases [50], where f̂n

and f̂c are the two classifiers corresponding to two views of the data, noun phrases

and contexts, respectively. If we let vt be the vector corresponding to f̂n and F be the

matrix form of co-occurrence data X, then step 6 of Algorithm 12 can be computed

by C−1Fvt (where C is the diagonal matrix of column sums), and thus step 8 can be

computed directly by R−1F(C−1Fvt) (where R is the diagonal matrix of row sums), which

is equivalent to a single-class version of Equation 6.7. This shows that co-EM can be

viewed as a graph-based SSL method with the implicit manifold constructed according

to the particular classifiers and two views of the data. While this connection is based
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on a particular formulation of co-EM, it generalizes to any classifiers/views where the

computation can be described in terms of sparse matrix operations.

Algorithm 12 The co-EM algorithm for information extraction [50]

1: procedure coEM(X,L)
2: if Xi: ∈ L then f̂n0(Xi:) = 1
3: elsef̂n0(Xi:) = 0
4: end if
5: repeat

6: f̂c(X:j) =

∑
Xi:
f̂n(Xi:)∗Xij∑
i Xij

7: if Xi: ∈ L then f̂n(Xi:) = 1

8: elsef̂n(Xi:) =
∑
X:j
f̂c(X:j)∗Xij∑
j Xij

9: end if
10: until f̂n has converged return f̂n, f̂c
11: end procedure

167



Appendix D

Math

D.1 Power Series of Damped Column-Stochastic Matrix

We want to show the following equation holds:

lim
t→∞

t−1∑
i=0

(dP)i = (I− dP)−1 (D.1)

Let M = dP. Then

lim
t→∞

t−1∑
i=0

(dP)i = lim
t→∞

t−1∑
i=0

Mi

= lim
t→∞(M0 +M1 +M2 + ... +Mt−1)

= lim
t→∞(I+M1 +M2 + ... +Mt−1)
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Multiply by (I−M)−1:

(
lim
t→∞

t−1∑
i=0

Mi

)
(I−M) =

(
lim
t→∞(I+M1 +M2 + ... +Mt−1)

)
(I−M)

= lim
t→∞

(
(I+M1 +M2 + ... +Mt−1)(I−M)

)
= lim
t→∞

(
(I−M) + (M−M2) + (M2 −M3) + ... + (Mt−1 −Mt)

)
= lim
t→∞(I−Mt)

Since 0 < d < 1 and the eigenvalues of P are in [−1, 1], limt→∞Mt = 0, therefore we

have

(
lim
t→∞

t−1∑
i=0

Mi

)
(I−M) = I

Finally,

(
lim
t→∞

t−1∑
i=0

Mi

)
(I−M) = (I−M)−1(I−M)(

lim
t→∞

t−1∑
i=0

(dP)i

)
(I− dP) = (I− dP)−1(I− dP)

lim
t→∞

t−1∑
i=0

(dP)i = (I− dP)−1
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D.2 GKHS Approximation with Taylor Features Detail

We can rewrite the Gaussian kernel from Equation 8.1 as:

K(x,y) = e−
‖x−y‖2

2σ2

= e
−

(x−y)T (x−y)

2σ2

= e
−

xTx−2〈x,y〉+yTy

2σ2

= e
−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 · e
〈x,y〉
σ2 (D.2)

The construction for the first and second terms are straight forward, so we will focus

on the third term. Using Taylor expansion of the exponential function about 0 we have:

e
〈x,y〉
σ2 =

∞∑
k=0

1

k!

(
〈x,y〉
σ2

)k
(D.3)

Expanding 〈x,y〉k we get:

〈x,y〉k =
(

m∑
i=1

xiyi

)k
=
∑
j∈[m]k

(
k∏
i=1

xji

)(
k∏
i=1

yij

)

where j enumerates all possible selections of k elements of x or y as per definition of

raising a sum of m terms to the kth power. Plugging this back into Equation D.3 we get:

∞∑
k=0

1

k!

(
〈x,y〉
σ2

)k
=

∞∑
k=0

1

k!

∑j∈[m]k

(∏k
i=1 xji

) (∏k
i=1 yij

)
σ2k


=

∞∑
k=0

1

σ2kk!

∑
j∈[m]k

(
k∏
i=1

xji

)(
k∏
i=1

yij

)
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and plugging this back into Equation D.2 we get:

e
−
‖x−y‖2

2σ2 = e
−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 ·
∞∑
k=0

1

σ2kk!

∑
j∈[m]k

(
k∏
i=1

xji

)(
k∏
i=1

yij

)

=

∞∑
k=0

1

σ2kk!

∑
j∈[m]k

e
−
‖x‖2

2σ2

(
k∏
i=1

xji

)
e
−
‖y‖2

2σ2

(
k∏
i=1

yij

)

=

∞∑
k=0

∑
j∈[m]k

e
−
‖x‖2

2σ2
1

σk
√
k!

(
k∏
i=1

xji

)
e
−
‖y‖2

2σ2
1

σk
√
k!

(
k∏
i=1

yij

)

Therefore an explicit feature representation φ for each k and j is:

φk,j(x) = e
−
‖x‖2

2σ2
1

σk
√
k!

k∏
i=1

xji

where K(x,y) = 〈φ(x),φ(y)〉 =
∑∞
k=0

∑
j∈[m]k φk,j(x)φk,j(y), where [m]k denotes the

set of permutations of size k on m objects. An obvious problem with putting this for-

mulation into practice is the summing up of infinite terms indexed by k; therefore we

can approximate it by restricting k ≤ d–thus the Gaussian kernel is approximated by

polynomials of degree d via a truncated Taylor expansion:

K̂(x,y) =
d∑
k=0

∑
j∈[m]k

φk,j(x)φk,j(y) (D.4)

D.3 Taylor Features about Non-zero Points

Equation 8.3 uses Taylor expansion of the exponential function about 0. If we generalize

the expansion about any real number a, in place of Equation 8.3 we have:

e
〈x,y〉
σ2 =

∞∑
k=0

ea

k!

(
〈x,y〉
σ2

− a

)k
=

∞∑
k=0

ea

k!

(
〈x,y〉− σ2a

σ2

)k
(D.5)
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Expanding (〈x,y〉− σ2a)k we get:

(〈x,y〉− σ2a)k =
(

m∑
i=1

xiyi − σ
2a

)k
=
∑

j∈[m ′]k

(
k∏
i=1

x ′ji

)(
k∏
i=1

y ′ij

)

where m ′ = m+ 1, and x ′ and y ′ are x and y appended with an additional constant

coordinate iσ
√
a (with i being the imaginary number). Now j enumerates all possible

selections of k elements from m coordinates of x and y plus iσ
√
a. Note that the imagi-

nary number i will always be canceled out during computation. Plugging this back into

Equation D.5 we have:

∞∑
k=0

ea

k!

(
〈x,y〉− σ2a

σ2

)k
=

∞∑
k=0

ea

k!

∑j∈[m ′]k
(∏k

i=1 x
′
ji

) (∏k
i=1 y

′
ij

)
σ2k


=

∞∑
k=0

ea

σ2kk!

∑
j∈[m ′]k

(
k∏
i=1

x ′ji

)(
k∏
i=1

y ′ij

)

and plugging this into Equation 8.2 we get:

e
−
‖x−y‖2

2σ2 = e
−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 ·
∞∑
k=0

ea

σ2kk!

∑
j∈[m ′]k

(
k∏
i=1

x ′ji

)(
k∏
i=1

y ′ij

)

=

∞∑
k=0

ea

σ2kk!

∑
j∈[m ′]k

e
−
‖x‖2

2σ2

(
k∏
i=1

x ′ji

)
e
−
‖y‖2

2σ2

(
k∏
i=1

y ′ij

)

=

∞∑
k=0

∑
j∈[m ′]k

e
−
‖x‖2

2σ2
e
a
2

σk
√
k!

(
k∏
i=1

x ′ji

)
e
−
‖y‖2

2σ2
e
a
2

σk
√
k!

(
k∏
i=1

y ′ij

)

Therefore a generalized explicit feature representation φ for each k and j about a is:

φk,j(x) = e
−
‖x‖2

2σ2
e
a
2

σk
√
k!

k∏
i=1

x ′ji = e
σ2a−‖x‖2

2σ2
1

σk
√
k!

k∏
i=1

x ′ji (D.6)
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where K(x,y) = 〈φ(x),φ(y)〉 =
∑∞
k=0

∑
j∈[m ′]k φk,j(x

′)φk,j(y
′), where [m ′]k denotes

the set of permutations of size k on m+ 1 objects. Note Equation D.6 is very similar to

8.4.
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