Modular Approach to Error Analysis and Evaluation for
Multilingual Question Answering

Hideki Shima, Mengqiu Wang, Frank Lin, Teruko Mitamura

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213 USA
{hideki, menggqiu, frank+, teruko}@cs.cmu.edu

Abstract
Multilingual Question Answering systems are generally very complex, integrating several sub-modules to achieve their result. Global
metrics (such as average precision and recall) are insufficient when evaluating the performance of individual sub-modules and their
influence on each other. In this paper, we present a modular approach to error analysis and evaluation; we use manually-constructed,
gold-standard input for each module to obtain an upper-bound for the (local) performance of that module. This approach enables us to
identify existing problem areas quickly, and to target improvements accordingly.

1. Introduction

In this paper, we present a new approach for the
evaluation of Multilingual Question Answering (MLQA)
systems. Our focus is the JAVELIN MLQA system for
factoid questions, which integrates multiple modules in a
sequential pipeline with no backtracking or dynamic
planning (Lin et al., 2005). The system requires complex
integration of several modules. In order to evaluate our
system, we analyzed the performance of each module on
the evaluation data from the NTCIR CLQA1 task'. We
created gold-standard data (perfect input) for each module,
in order to establish performance upper bounds for each
module. Our analysis allows us not only to identify
several research issues, but also to compare the
performance of our system across different languages
(English-Chinese and English-Japanese) on a per-module
basis.

For evaluating the performance of the same system
handling different languages, modular analysis is also
useful in identifying language-specific issues in individual
modules.

Since our evaluation focuses on the performance of the
system, it is a form of information-based evaluation rather
than wutility-based or architectural evaluation (Nyberg &
Mitamura, 2002). We adopted a fully-automatic,
information-based approach to support regular batch
evaluation during development and maintenance of the
system.

2. Javelin Architecture

Our JAVELIN MLQA system consists of five
modules: Question Analyzer (QA), Translation Module
(TM), Retrieval Strategist (RS), Information eXtractor
(IX) and Answer Generator (AG). Input question
sentences in English are processed by these modules in the
order listed above. The answer candidates are returned in
one of the two languages (Japanese and Chinese) as final
outputs. The QA module is responsible for parsing the
input question, choosing the expected answer type, and
producing a set of keywords. The QA module calls the

" http://www.slt.atr.jp/CLQA/

TM module, which translates the keywords into the
language(s) required by the task.

We use a combination of machine translation (MT)
approaches for translating keywords: web-based-MT,
dictionary-based-MT and text-mining-based-MT. The
system selects the combination of translated keywords
which are most likely to co-occur. Subsequently,
translated keywords are passed to the RS module in order
to retrieve a ranked list of relevant documents. Given
these documents, the IX module extracts answer
candidates and assigns confidence scores to each
candidate. Finally, the AG module normalizes and clusters
the answers, and attempts to boost the ranks of the most
probable answer candidates. The overall architecture is

Execution

shown in Figure 1.
Answer
:/ Candidates
Manager

=N

Question Retrieval Information Answer
Analyzer Strategist eXtractor Generator
Transcllatlicm 3 >
Module i
Chinese || Japanese [[[Chinese, |f Japanese
Corpus COerS atterns atterns
P Features || Features

Figure 1: System Architecture

3. Result and Analysis

In addition to evaluating the overall performance of
our system (e.g., by measuring average answer precision),
we performed evaluations on a per-module basis in order
to identify and analyze specific failure points. We used the
formal run dataset from NTCIR task CLQAI1, which
includes English-Chinese (EC) and English-Japanese (EJ)
subtasks. 200 input questions were provided for each of
the subtasks.

1143

QAATYPE ™ RS IX Overall
Gold Standard Input | Accuracy Accuracy | Topl5 Topl00 MRR Topl R Topl R+U
None 86.5% 69.3% 30.5% 30.0% 0.130 7.5% 9.5%

Ec | ™™ 86.5% - 57.5% 50.0% 0.254 9.5% 20.0%
TM+QAATYPE - - 57.5% 50.5% 0.260 9.5% 20.5%
TM+QAATYPE+RS - - - 63.0% 0.489 41.0% 43.0%
None 93.5% 72.6% 44.5% 31.5% 0.116 10.0% 12.5%

EJ ™ 93.5% - 67.0% 41.5% 0.154 9.5% 15.0%
TM+QAATYPE - - 68.0% 45.0% 0.164 10.0% 15.5%
TM+QAATYPE+RS - - - 51.5% 0.381 32.0% 32.5%

Table 1: Modular basis performance given gold standard input

To evaluate the system’s output, we used the gold
standard data from NTCIR, which includes correct
answers and the documents where they came from. We
distinguish “correct and well-supported” answers from
“correct but unsupported” answers, in the following way.
We define documents in the gold standard dataset as
supporting documents.

Correct answers that came from supporting documents
are deemed correct and supported (denoted by R),
whereas correct answers that did not come from
supporting documents are called unsupported answers
(denoted by U). Let “top n frequency” be the frequency
of the event where at least one correct answer was
included in the top n answer candidates returned. And let
“average top n accuracy” be an average of the top n
frequency over the questions. Note that this metric does
not evaluate the number of correct answers returned for
each question, whereas “average precision at n”,
commonly used in the field of information retrieval, does
for the number of correct documents (Buckley &
Voorhees, 2000). Following the evaluation method in the
CLQAT1 formal run, we will use top I average accuracy
as the metric for evaluating overall performance.

In Table 1, the overall performance (top 1 average
accuracy) is shown in the last two columns of the top
rows for EC and EJ. If we examine only such global
measures, we will not be able to understand the
performance of individual modules in a complex system.
The next section provides further discussion of the
modular analysis results shown in Table 1.

3.1. Module-by-Module Analysis

In order to gain different perspectives from the test
runs and to compare the system’s capabilities across two
different target languages, we conducted a module-by-
module analysis. This analysis was based on gold-
standard answer data, composed of answers and their
supporting documents. In the third column of Table 1, we
evaluated the QA module by the average accuracy of its
answer type classification, and the TM module (fourth
column) by the average accuracy of its keyword
translation. For the RS module (fifth column) and IX
module (sixth column), if a correct document or answer is
returned, regardless of its ranking, we consider the
module to be successful, because all top » documents (e.g.
15 in our case) are used in the extraction following the RS,
and then top m (e.g. 100 in our case) answer candidates
are used for the re-ranking process in the AG. Mean
Reciprocal Rank or MRR is calculated for the IX in order
to evaluate correct answers and their ranks. More
precisely, MRR is calculated by averaging the reciprocal

of the extracted correct answer’s rank over questions. If
there are multiple correct answers in the ranked list given
one question, we use the highest rank for the calculation.

To separate the effects of errors introduced by earlier
modules, we created additional gold standard data for
answer type and keyword translation by manually
correcting answer type and keyword translation errors.
We also created “perfect” IX input using the gold-
standard document set. The rows in Table 1 show what
perfect input was fed to the system; the row ‘“None”
indicates the original performance without any manually-
created perfect input.

3.1.1. Question Analyzer (QA) Performance

The QA module performed well in identifying the
answer type in both runs. As we can see from the QAarvre
column in Table 1, the QA achieved 86.5% for the EC
run and 93.5% for the EJ run. An additional analysis of
accuracy by answer type is shown in Table 2. Compared
to the row TM+QAaryee in Table 1, we can see that
further improvement of the answer type accuracy via
manual correction did not make a significant difference in
EJ.

EC EJ
of # of
#of | correct #of | correct
A type Q A type % Q A type %

PER 79 64 81.0% 34 34 | 100.0%
LOC 45 44 97.8% 34 33 97.1%
ORG 15 12 80.0% 13 8 61.5%
ARTIFACT 27 23 85.2% 21 19 90.5%
DATE 18 18 | 100.0% 25 25 | 100.0%
TIME 1 1| 100.0% 14 13 92.9%
MONEY 5 4 80.0% 20 18 90.0%
NUMBER 10 7 70.0% 31 29 93.5%
PERCENT 0 0 - 8 8 -
total 200 173 86.5% 200 187 93.5%

Table 2: Question Analyzer performance by answer type

3.1.2. Translation Module (TM) Performance

The average accuracy of translation was 69.3% for the
EC run and 72.6% for the EJ run. By taking advantage of
translation by web mining, we could successfully
translate some named entities. After manual correction of
keyword translation errors, we immediately gained over
20.0% accuracy in the RS module performance for both
the EC and EJ runs, as shown in row TM in Table 1. This
shows that translation errors have a significant negative
impact on keyword-based document retrieval.

1144

3.1.3. Retrieval Strategist (RS) Performance

The RS module achieved a top 15 accuracy of 30.5%
in the EC run and 44.5% in the EJ run, as shown in
column “RS Top 15” in Table 1. For all the questions that
showed an improved MRR score after manual correction
of keyword translation errors, the TM failed to translate
43 and 88 keywords in the EJ and EC runs, respectively.
Among these keywords, 65.0% for the EJ run and 43.0%
for the EC run were classified as proper nouns and
phrases by the QA module. Most of the proper nouns are
person, location and organization names. We also
observed that in the corpus, the majority of the questions
were drawn from these three types. This helps to explain
the 20.0% accuracy gain achieved from corrected key
term translation.

To illustrate the performance of the RS module, a
CLIR-style analysis is also provided. In Figure 2, the
cumulative frequency of correctly retrieved documents is
plotted for each rank. From the heuristics in the past
training run, we decided to use 15 as the cut-off value for
the number of documents to retrieve. However, the figure
shows that for EC, documents that are ranked 8" or
higher contribute very little to the set of correct
documents. Although it is hard to predict the number of
documents to retrieve in order to reach the best balance
between recall and precision, we should have set a lower
cut-off value for EC.

=
g
o
% -
o
v o
=]
T o= o " A A A bHo&
Eu @ ﬁﬁ&
y @ &
ﬁ%— - ﬁﬂ.
E &
£ o &
(]
& A
P “ El
& EC
o
T T T T T T T
2 4 & 3 10 12 14

Rank

Figure 2: RS evaluation on cumulative frequency and
rank of all the retrieved documents judged with correct
supporting document

3.1.4. Information Extractor (IX) Performance

In the formal run data (row None in Table 1), we
observed big accuracy drops at the RS module and after
the IX module for both EC and EJ, and even bigger
accuracy drops at the IX module for the EJ. The drop in
RS accuracy is expected, but the difference between IX
performance in the EC and EJ run is surprising. After
eliminating errors carried over from earlier modules (see
row TM+QAAaTYPE+RS), the IX in the EC and the EJ runs
show a performance difference of 11.5% (63.0%-51.5%).

As the performance of the RS module increased after
manual correction of keyword translation errors, the IX
module showed a similar increase in performance of
20.0% (50.0%-30.0%) in the EC run and 10.0% (41.5%-
31.5%) in the EJ run. But as we increase the accuracy of

RS from 57.5% in EC and 67.0% in EJ to 100.0%, by
manually creating “perfect” RS output, the performance
of the IX module did not increase as much. The upper
bound on IX performance was 63.0% for the EC run and
51.5% for the EJ run.

The IX in the EC run achieved a higher MRR score in
all cases, and better accuracy in most cases (except in the
formal run). But the EC system had worse overall
accuracy than the EJ system, except in the
TM+QAATYPE+RS case.

Because the answer validation function was not yet
implemented in the AG module to filter out noise such as
answers different from expected answer type, the overall
accuracy of the EC and EJ systems is much lower than
the accuracy of the IX module in both cases. We can see
the degradation caused by the noise in IX output by
examining the TM+QAATtypE row and TM+QAATYPE+RS
row in the EC part of Table 1. The accuracy of the IX
differs only by 12.5% (63.0%-50.5%), but this measure
does not take into account noise in other answer
candidates. The effect of the noise is delayed until the
output of the AG module, where a 31.5% (41.0%-9.5%)
difference in overall answer accuracies and a 22.5%
(43.0%-20.5%) difference including unsupported answers
are seen.

We also performed an evaluation of the overall
accuracy based on the answer type. Figure 3 shows the
overall result classified by answer type, and indicates
poor extraction performance on numeric (money, number,
percent) and temporal (date, time) questions. Following
this analysis, we began experimenting with answer type-
specific approaches in order to address these weak points.

W
M

30
I

25

Frequency
15 20
| |

10
1

O Correct

W ‘Wrong
[[u]
o

i E
T 9 5 =
Answer Type

Figure 3: Number of top 1 correct answer for EJ run,
classified by answer type

3.1.5. Answer Generator (AG) Performance

In order to evaluate the effectiveness of the AG
module, we compared the ranks of answers before the AG
(i.e. IX output) and after the AG module. To evaluate the
AG module on a larger sample, we included gold-
standard answers with or without supporting document.

We can categorize the results of the AG module’s
processing into three groups or answers: answers whose
ranks were successfully raised or stayed at the top,
answers whose rank did not change (except when
remaining at the 1st rank), and answers whose ranks were
lowered. Formally, let Rankgepreac be the rank of the
answer which before input to the AG and let Rankygierac
be the rank of the answer after processing by the AG.

1145

d, = freq(Rank
+ freq(RanchfmAsz 1A RankAfmAG =1)
0, = freq(Rank = Rank

BeforeAG ™~
- .freq(RanchforcAG: I RankAftcrAG =1)

BeforedG> Rank AfterAG)

AfterAG)

o = .freq(RanchforcAG < RankAftcrAG)

As we consider the successful cases to be ones in
which answer ranks were raised or stayed at the top, the
accuracy is calculated in the formula below:

o
Accuracy = ———
0, +0,+0_
‘ 5+ 50 o Accuracy
EC 34 12 14 56.7%
EJ 47 5 11 74.6%

Table 3: # of correct answers whose rank were affected
by AG

Table 3 shows the summary of AG accuracy and how
ranks of correct answers were affected by the AG. Even
though the accuracy reflects the ratio of successfully
boosted answers, it does not reflect to what degree ranks
were improved. To visualize this, we generate a graphical
view of the AG’s performance such as the one shown in
Figure 4. The Y-axis corresponds to the answer rank and
Rankgeporeac and Rank g4 are connected by a solid line
in cases where Rankgfreac >Rankpesc, and by a dotted
line otherwise. A histogram of answer ranks is also
displayed on the side.

of correct answer # of correct answer

hefare AG after AG
25 20 15 10 5 0O 0 5 10 15 20 25
L L1

gy laye

JasSUE 1384100 8U] 10 Huey

Rank of the correct answer

(]

<L |: — Rarkpefoene > Rankatess

g --- Othenwise

5 7 1=

20

Figure 4: Visualization of AG performance (EJ)

4. Issues and Proposed Solutions

From the modular analysis, we observed low
performance of the IX module on numerical and temporal

questions. We also note that for these types of questions,
subtype information (e.g., ‘year’, ‘percentage’) is very
informative and could be used to improve extraction
performance. The AG module is also partially responsible
for the low performance on those types of questions,
since the answer re-ranking algorithm should filter out
answers with incorrect types.

It is difficult to decide how much recall should be
sacrificed for accuracy when the IX module is used in
combination with others. The JAVELIN system for
English incorporates a Planner module which can select
among the set of available IX modules at run-time
(Hiyakumoto, 2004; Nyberg et al, 2005). It is left to
future work to adapt the Planner for use in MLQA.

5. Conclusion

We presented a modular method for evaluating a
complex multilingual Question Answering system. Our
analysis using different levels of gold-standard input
shows that the QA module and the RS module are already
performing fairly well, but there is still room in the IX
module and the AG module for future improvement. Also,
we found that keyword translation accuracy greatly
affects overall performance on the CLQA task.

6. Acknowledgement

This work was supported in part by the Advanced
Research and Development Activity (ARDA)’s Advanced
Question Answering for Intelligence (AQUAINT)
Program. We thank Matt Bilotti, Kerry Hannan, Dave
Svoboda, Jeongwoo Ko for their assistance in building
the CLQA JAVELIN system. We also thank Eric Nyberg
for his help in the final preparation of this paper.

7. References

Buckley C., E. M. Voorhees (2000). Evaluating
Evaluation Measure Stability. In Proceedings of the
23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 33-40.

Hiyakumoto, L.S. (2004). Planning in the JAVELIN QA
System. Carnegie Mellon Computer Science Technical
Report CMU-CS-04-132.

Lin, F., H. Shima, M. Wang, and T. Mitamura (2005).
“CMU JAVELIN System for NTCIR CLQA1,” In
Proceedings of the Fifth NTCIR Workshop, Tokyo,
Japan, December.

Nyberg, E., R. Frederking, T. Mitamura, J. M. Bilotti, K.
Hannan, L. Hiyakumoto, J. Ko, F. Lin, L. Lita, V.
Pedro, A. Schlaikjer (2005). JAVELIN I and II
Systems at TREC 2005. In Proceedings of The
Fourteenth Text REtrieval Conference.

Nyberg, E., T. Mitamura. (2002). Evaluating QA Systems
on Multiple Dimensions. In Proceedings of LREC 2002
Workshop on QA Strategy and Resources.

1146

