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Abstract

We present a simple and scalable graph clus-
tering method called power iteration cluster-
ing (PIC). PIC finds a very low-dimensional
embedding of a dataset using truncated
power iteration on a normalized pair-wise
similarity matrix of the data. This em-
bedding turns out to be an effective cluster
indicator, consistently outperforming widely
used spectral methods such as NCut on real
datasets. PIC is very fast on large datasets,
running over 1,000 times faster than an NCut
implementation based on the state-of-the-art
IRAM eigenvector computation technique.

1. Introduction

We present a simple and scalable clustering method
called power iteration clustering (hereafter PIC). In
essence, it finds a very low-dimensional data embed-
ding using truncated power iteration on a normalized
pair-wise similarity matrix of the data points, and this
embedding turns out to be an effective cluster indica-
tor.

In presenting PIC, we make connections to and make
comparisons with spectral clustering, a well-known, el-
egant and effective clustering method. PIC and spec-
tral clustering methods are similar in that both em-
bed data points in a low-dimensional subspace derived
from the similarity matrix, and this embedding pro-
vides clustering results directly or through a k-means
algorithm. They are different in what this embedding
is and how it is derived. In spectral clustering the
embedding is formed by the bottom eigenvectors of
the Laplacian of an similarity matrix. In PIC the em-
bedding is an approximation to a eigenvalue-weighted
linear combination of all the eigenvectors of an nor-
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malized similarity matrix. This embedding turns out
to be very effective for clustering, and in comparison
to spectral clustering, the cost (in space and time) of
explicitly calculating eigenvectors is replaced by that
of a small number of matrix-vector multiplications.

We test PIC on a number of different types of datasets
and obtain comparable or better clusters than existing
spectral methods. However, the highlights of PIC are
its simplicity and scalability — we demonstrate that
a basic implementation of this method is able to par-
tition a network dataset of 100 million edges within
a few seconds on a single machine, without sampling,
grouping, or other preprocessing of the data.

This work is presented as follows: we begin by describ-
ing power iteration and how its convergence property
indicates cluster membership and how we can use it
to cluster data (Section 2). Then we show experimen-
tal results of PIC on a number of real and synthetic
datasets and compare them to those of spectral cluster-
ing, both in cluster quality (Section 3) and scalability
(Section 4). Next, we survey related work (Section 5),
differentiating PIC from clustering methods that em-
ploy matrix powering and from methods that modifies
the “traditional” spectral clustering to improve on ac-
curacy or scalability. Finally, we conclude with why
we believe this simple and scalable clustering method
is very practical — easily implemented, parallelized,
and well-suited to very large datasets.

2. Power Iteration Clustering

2.1. Notation and Background

Given a dataset X = {x1,x2, ...,xn}, a similarity func-
tion s(xi,xj) is a function where s(xi,xj) = s(xj ,xi)
and s ≥ 0 if i 6= j, and following previous work
(Shi & Malik, 2000), s = 0 if i = j. An affinity matrix
A ∈ Rn×n is defined by Aij = s(xi,xj). The de-
gree matrix D associated with A is a diagonal matrix
with dii =

∑
j Aij. A normalized affinity matrix W is

defined as D−1A. Below we will view W interchange-
ably as a matrix, and an undirected graph with nodes
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(a) 3Circles PIC result (b) t = 50, scale = 0.01708 (c) t = 400, scale = 0.01066 (d) t = 1000, scale = 0.00786

Figure 1. Clustering result and the embedding provided by vt for the 3Circles dataset. In (b) through (d), the value of
each component of vt is plotted against its index. Plots (b) through (d) are re-scaled so the largest value is always at the
very top and the minimum value at the very bottom, and scale is the maximum value minus the minimum value.

X and the edge from xi to xj weighted by s(xi,xj).

W is closely related to the normalized random-walk
Laplacian matrix L of Meilă and Shi (2001), defined
as L = I−D−1A. L has a number of useful properties:
most importantly to this paper, the second-smallest
eigenvector of L (the eigenvector with the second-
smallest eigenvalue) defines a partition of the graph
W that approximately maximizes the Normalized Cut
criteria. More generally, the k smallest eigenvectors
define a subspace where the clusters are often well-
separated. Thus the second-smallest, third-smallest,
. . . , kth smallest eigenvectors of L are often well-suited
for clustering the graph W into k components.

Note that the k smallest eigenvectors of L are also the
k largest eigenvectors of W . One simple method for
computing the largest eigenvector of a matrix is power
iteration (PI), also called the power method . PI is an
iterative method, which starts with an arbitrary vector
v0 6= 0 and repeatedly performs the update

vt+1 = cWvt

where c is a normalizing constant to keep vt from get-
ting too large (here c = 1/||Wvt||1). Unfortunately, PI
does not seem to be particularly useful in this setting.
While the k smallest eigenvectors of L (equivalently,
the largest eigenvectors of W ) are in general interest-
ing (Meilă & Shi, 2001), the very smallest eigenvector
of L (the largest of W ) is not—in fact, it is a constant
vector: since the sum of each row of W is 1, a constant
vector transformed by W will never change in direc-
tion or magnitude, and is hence a constant eigenvector
of W with eigenvalue λ1 = 1.

2.2. Power Iteration Convergence

The central observation of this paper is that, while
running PI to convergence on W does not lead to an
interesting result, the intermediate vectors obtained by

PI during the convergence process are extremely inter-
esting. This is best illustrated by example. Figure 1(a)
shows a simple dataset—i.e., each xi is a point in R2

space, with s(xi,xj) defined as exp
(
−||xi−xj ||2

2σ2

)
. Fig-

ures 1(b) to 1(d) shows vt at various values of t, each
illustrated by plotting vt(i) for each xi. For purposes
of visualization, the instances x in the “bulls-eye” are
ordered first, followed by instances in the central ring,
then by those in the outer ring. We have also re-scaled
the plots to span the same vertical distance—the scale
is shown below each plot; as we can see the differences
between the distinct values of the vt’s become smaller
as t increases. Qualitatively, PI first converges locally
within a cluster: by t = 400 the points from each clus-
ter have approximately the same value in vt, leading to
three disjoint line segments in the visualization. Then,
after local convergence, the line segments draw closer
together more slowly.

2.3. Further Analysis of PI’s Convergence

Let us assume that W has eigenvectors e1, . . . , en

with eigenvalues λ1, . . . , λn, where λ1 = 1 and e1

is constant. Given W , we define the spectral repre-
sentation of a value a ∈ {1, . . . , n} to be the vector
sa = 〈e1(a), . . . , ek(a)〉, and define the spectral dis-
tance between a and b as

spec(a, b) ≡ ||sa − sb||2 =

√√√√
k∑

i=2

(ei(a)− ei(b))2

Usually in spectral clustering it is assumed that the
eigenvalues λ2, . . . , λk are larger than the remaining
ones. We define W to have an (α, β)-eigengap between
the kth and (k + 1)th eigenvector if λk/λ2 ≥ α and
λk+1/λ2 ≤ β. We will also say that W is γe-bounded
if ∀i, a, b ∈ {1, . . . , n}, |ei(a) − ei(b)| ≤ γe; note that
every W is γe-bounded for some γe. Letting vt be
the result of of the tth iteration of PI, we define the
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(t,v0)-distance between a and b as

pict(v0; a, b) ≡ |vt(a)− vt(b)|
For brevity, we will usually drop v0 from our notation
(e.g., writing pict(a, b)). Our goal is to relate pict(a, b)
and spec(a, b). Let us first define

signalt(a, b) ≡
k∑

i=2

[ei(a)− ei(b)]ciλ
t
i

noiset(a, b) ≡
n∑

j=k+1

[ej(a)− ej(b)]cjλ
t
j

Proposition 1. For any W with e1 a constant vector,

pict(a, b) = |signalt(a, b) + noiset(a, b)|

Proof. To verify the proposition, note that (ignoring
renormalization)

vt = Wvt−1 = W 2vt−2 = ... = W tv0

= c1W
te1 + c2W

te2 + ... + cnW ten

= c1λ
t
1e1 + c2λ

t
2e2 + ... + cnλt

nen

Rearranging terms,

pict(a, b) =
∣∣∣∣[e1(a)− e1(b)]c1λ

t
1

+
k∑

i=2

[ei(a)− ei(b)]ciλ
t
i +

n∑

j=k+1

[ej(a)− ej(b)]cjλ
t
j

∣∣∣∣

where the second and third terms correspond to
signalt and noiset respectively, and the first term is
zero because e1 is a constant vector.

The implications of the proposition are somewhat
clearer if we define a “radius” Rt ≡ 1

λt
2

and consider
the product of Rt and the quantities above:

Rtsignalt(a, b) =
k∑

i=2

[ei(a)− ei(b)]ci

(
λi

λ2

)t

(1)

Rtnoiset(a, b) ≤
n∑

j=k+1

γecjβ
t (2)

So, after rescaling points by Rt, we see that noiset

will shrink quickly, if the β parameter of the eigengap
is small. We also see that signalt is an approximate
version of spec: the differences are that signalt is (a)
compressed to the small radius Rt (b) has components
distorted by ci and (λi/λ2)t and (c) has terms that
are additively combined (rather than combined with
Euclidean distance).

Note that the size of the radius is of no importance
in clustering, since most clustering methods (e.g., k-
means) are based on the relative distance between
points, not the absolute distance. Furthermore, if the
ci’s are not too large or too small, the distorting fac-
tors are dominated by the factors of (λi/λ2)t, which
implies that the importance of the dimension associ-
ated with the i-th eigenvector is downweighted by (a
power of) its eigenvalue; in Section 3.2 we will show
that experimentally, this weighting scheme often im-
proves performance for spectral methods.

We are then left with the difference (c) that the
terms in the sum defining signalt are additively com-
bined. How does this effect the utility of signalt as
a cluster indicator? In prior work by Meilă and Shi
(Meilă & Shi, 2001), it is noted that for many natural
problems, W is approximately block-stochastic, and
hence the first k eigenvectors are approximately piece-
wise constant over the k clusters. This means that
if a and b are in the same cluster, spec(a, b) would
be nearly 0, and conversely if a and b are in different
clusters, spec(a, b) would be large.

It is easy to see that when spec(a, b) is small, signalt

must also be small. However, when a and b are in
different clusters, since the terms are signed and addi-
tively combined, it is possible that they may “cancel
each other out” and make a and b seem to be of the
same cluster. Fortunately, this seems to be uncom-
mon in practice when the number of clusters k is not
too large. Hence, for large enough α, small enough t,
signalt is very likely a good cluster indicator.

2.4. Early Stopping for PI

These observations suggest that an effective clustering
algorithm might run PI for some small number of it-
erations t, stopping after it has converged within clus-
ters but before final convergence, leadning to an ap-
proximately piecewise constant vector, where the ele-
ments that are in the same cluster have similar values.
Specifically, define the velocity at t to be the vector
δt = vt − vt−1 and define the acceleration at t to be
the vector εt = δt− δt−1. We pick a small threshold ε̂
and stop PI when ||εt||∞ ≤ ε̂.

Our stopping heuristic is based on the assumption
and observation that while the clusters are “locally
converging”, the rate of convergence changes rapidly;
whereas during the final global convergence, the con-
verge rate appears more stable. This assumption turns
out to be well-justified. Recall that vt = c1λ

t
1e1 +
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Algorithm 1 The PIC algorithm
Input: A row-normalized affinity matrix W and the
number of clusters k
Pick an initial vector v0

repeat
Set vt+1 ← Wvt

||Wvt||1 and δt+1 ← |vt+1 − vt|.
Increment t

until |δt − δt−1| ' 0
Use k-means to cluster points on vt

Output: Clusters C1, C2, ..., Ck

c2λ
t
2e2 + ... + cnλt

nen. Then

vt

c1λt
1

= e1 +
c2

c1

(
λ2

λ1

)t

e2 + ... +
cn

c1

(
λn

λ1

)t

en

It can be seen that the convergence rate of PI towards
the dominant eigenvector e1 depends on (λi/λ1)t for
the significant terms i = 2, ..., k, since their eigenval-
ues are close to 1 if the clusters are well-separated
(Meilă & Shi, 2001), making (λi/λ1)t ' 1. This im-
plies that in the beginning of PI, it converges towards
a linear combination of the top k eigenvectors, with
terms k+1, . . . , n diminishing at a rate of ≥ (λk+1/1)t.
After the noise terms k +1, . . . , n go away, the conver-
gence rate towards e1 becomes nearly constant. The
complete algorithm, which we call power iteration clus-
tering (PIC), is shown in Figure 1. In all experiments
in this paper, we let ε̂ = 1×10−5

n where n is the number
of data instances.

The convergence trajectory for PI will be the simi-
lar for any non-constant initial vector v0. However,
we found it useful to let v0(i) be

∑
j Aij

V (A) , where V (A)
is the volume of the affinity matrix A and V (A) =∑

i

∑
j Aij. Since for each element in this vector also

correspond to the degree distribution of the graph un-
derlying the affinity matrix A, we will also call this
vector the degree vector d. The degree vector gives
more initial weight to the high-degree nodes in the
underlying graph, which means that, in the averag-
ing view, values will be distributed more evenly and
quickly, leading to faster local convergence.

As mentioned near the end of Section 2.3, when k is
sufficiently large, collision of clusters on a single di-
mension may happen. In that case, we compute mul-
tiple vt’s with random v0’s. We then form a matrix
V whose columns are vt’s and k-means is used rows
of V as embedded data points. However, we find that
often just one dimension is good enough — in fact, all
the experiments done in this paper use only a single
vector for embedding.

3. Accuracy of PIC

3.1. Experimental Comparisons

We demonstrate the effectiveness of PIC on a variety
of real datasets; they have known labels and have been
used for both classification and clustering tasks:

Iris contains flower petal and sepal measurements from

three species of irises, two of which non-linearly separa-

ble (Fisher, 1936). 150 instances.

PenDigits01 and PenDigits17 are hand-written digit

datasets (Alimoglu & Alpaydin, 1997) with digits “0”,

“1” and “1”, “7”, respectively. 200 instances, 100 per

digit. PenDigits01 represents an “easy” dataset and

PenDigits17 a more “difficult” dataset.

PolBooks is co-purchase network of 105 political books

(Newman, 2006). Each book is labeled “liberal”, “con-

servative”, or “neutral”, mostly in the first two category.

UBMCBlog is a connected network dataset of 404 lib-

eral and conservative political blogs mined from blog

posts (Kale et al., 2007).

AGBlog is a connected network dataset of 1222 liberal

and conservative political blogs mined from blog home-

pages (Adamic & Glance, 2005).

20ng* are subsets of the 20 newsgroups text dataset

(Mitchell, 1997). 20ngA contains 100 documents from

2 newsgroups: misc.forsale and soc.religion.christian.

20ngB adds 100 documents to each group of 20ngA.

20ngC adds 200 from talk.politics.guns to 20ngB. 20ngD

adds 200 from rec.sport.baseball to 20ngC.

For the network datasets (Polbooks, UBMGBlog, AG-
Blog), the affinity matrix is simply Aij = 1 if blog i
has a link to j or vice versa, otherwise Aij = 0. For all
other datasets, the affinity matrix is simply the cosine
similarity between feature vectors: xi·xj

||xi||2||xj ||2 . Cosine
similarity is used instead of the distance function in
Figure 1 to avoid having to tune σ2. For the text
datasets, word counts are used as feature vectors with
only stop words and singleton words removed.

We use these labeled datasets for clustering experi-
ments and evaluate the clustering results against the
labels using three measures: cluster purity (Purity),
normalized mutual information (NMI), and Rand in-
dex (RI). All three measures are used to ensure a more
thorough and complete evaluation of clustering results
(for example, NMI takes into account cluster size dis-
tribution, which is ignored by Purity). Due to space
constraints, we refer reader to (Manning et al., 2008)
for details regarding these measures.

We also compare the results of PIC against those of
spectral clustering methods Normalized Cuts (NCut)
(Shi & Malik, 2000; Meilă & Shi, 2001) and the Ng-
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Table 1. Clustering performance of PIC and spectral clustering algorithms on several real datasets. For all measures a
higher number means better clustering. Bold numbers are the highest in its row.

NCut NJW PIC
Dataset k Purity NMI RI Purity NMI RI Purity NMI RI

Iris 3 0.6733 0.7235 0.7779 0.7667 0.6083 0.7978 0.9800 0.9306 0.9741
PenDigits01 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PenDigits17 2 0.7550 0.2066 0.6301 0.7550 0.2043 0.6301 0.7550 0.2066 0.6301
PolBooks 3 0.8476 0.5745 0.8447 0.8286 0.5422 0.8329 0.8667 0.6234 0.8603

UBMCBlog 2 0.9530 0.7488 0.9104 0.9530 0.7375 0.9104 0.9480 0.7193 0.9014
AGBlog 2 0.5205 0.0060 0.5006 0.5205 0.0006 0.5007 0.9574 0.7465 0.9185
20ngA 2 0.9600 0.7594 0.9232 0.9600 0.7594 0.9232 0.9600 0.7594 0.9232
20ngB 2 0.5050 0.0096 0.5001 0.5525 0.0842 0.5055 0.8700 0.5230 0.7738
20ngC 3 0.6183 0.3295 0.6750 0.6317 0.3488 0.6860 0.6933 0.4450 0.7363
20ngD 4 0.4750 0.2385 0.6312 0.5150 0.2959 0.6820 0.5825 0.3133 0.7149

Average 0.7308 0.4596 0.7393 0.7483 0.4581 0.7469 0.8613 0.6267 0.8433

Table 2. Clustering performance of eigenvalue-weighted NCut on several real datasets. For all measures a higher number
means better clustering. Bold numbers are the highest in its row.

uniform weights ei weighted by λi ei weighted by λ15
i

Dataset k Purity NMI RI Purity NMI RI Purity NMI RI
Iris 3 0.6667 0.6507 0.7254 0.9800 0.9306 0.9741 0.9800 0.9306 0.9741

PenDigits01 2 0.7000 0.2746 0.5800 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PenDigits17 2 0.7000 0.1810 0.5800 0.7550 0.2066 0.6301 0.7550 0.2066 0.6301
PolBooks 3 0.4857 0.1040 0.4413 0.8476 0.5861 0.8514 0.8381 0.5936 0.8453

UBMCBlog 2 0.9505 0.7400 0.9059 0.9505 0.7400 0.9059 0.9530 0.7488 0.9104
AGBlog 2 0.9493 0.7143 0.9037 0.9509 0.7223 0.9066 0.9501 0.7175 0.9051
20ngA 2 0.5600 0.0685 0.5072 0.9600 0.7594 0.9232 0.9450 0.7005 0.8961
20ngB 2 0.7125 0.2734 0.5903 0.9450 0.7042 0.8961 0.5050 0.0096 0.5001
20ngC 3 0.6867 0.3866 0.6546 0.6617 0.3772 0.7025 0.6350 0.4719 0.6784
20ngD 4 0.4763 0.2365 0.6368 0.4875 0.2555 0.6425 0.5263 0.2906 0.7129

Average 0.6888 0.3630 0.6525 0.8538 0.6282 0.8432 0.8087 0.5670 0.8052

Jordan-Weiss algorithm (NJW) (Ng et al., 2002) and
present the results in Table 1. In every experiment the
k-means algorithm is run 100 times with random start-
ing points and the most frequent cluster assignment is
used. This is done so no algorithm would get “lucky”;
the result reported is the most likely result and gives
us an idea of the quality of the embedding. In practice,
one may want to instead run several k-means trials as
time allows and pick the one with the least within-
cluster sum of squares, or even use another algorithm
instead of k-means.

On most datasets PIC does equally well or does better
than the other methods for most evaluation measures.
In the case where NCut or NJW fails badly (AGBlog,
20ngB), the most likely cause is that the top k eigen-
vectors of the graph Laplacian fail to provide a good
low-dimensional embedding for k-means. This might
be improved by use of additional heuristics to choose
the “good” eigenvectors and discard the “bad” eigen-
vectors (Zelnik-Manor & Perona, 2005; Li et al., 2007;
Xiang & Gong, 2008). PIC, on the other hand, does
not choose among eigenvectors — the embedding uses
a weighted linear combinations of the all eigenvectors.

3.2. On Eigenvalue Weighting

As we can see in Section 2.3, in distance metric used by
PIC, the i-th eigenvector is weighted by ciλ

t
i, with λt

dominating the weight term as the number of iteration
t grows. In other words, the eigenvectors are weighted
according to their corresponding eigenvalues raised to
the power t. Based on analyses in (Meilă & Shi, 2001;
von Luxburg, 2007), weighting the eigenvectors ac-
cording to eigenvalues seems reasonable, since eigen-
values of a row-normalized affinity matrix range from 0
to 1 and good cluster indicators should have eigenval-
ues close to 1 and “spurious” eigenvalues close to 0 (the
opposite is true in the case of normalized Laplacian
matrices). To test this on real data, we run the NCut
algorithm with the following modification: instead of
using the first k eigenvectors, we use the first 10 vectors
and weight them in different ways. First, we use them
directly without any additional weighting. Second, we
scale them by their corresponding eigenvalues. Lastly,
we scale them by their corresponding eigenvalue raised
to a power t. The result is shown in Table 2.

In Table 2, we can see that using the eigenvectors
with uniform weights produces poor clustering on most
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datasets, even on PenDigits01, which is a relatively
easy dataset. However, note that it does rather well
on the blog datasets, and it even outperforms the orig-
inal NCut algorithm on AGBlog, showing that origi-
nal NCut is missing an important cluster indicator by
choosing only the first k eigenvectors. In this light, we
can view PIC as an approximation to the eigenvalue-
weighted modification of NCut.

4. Scalability

Perhaps one of the greatest advantages of PIC lies in
its scalability. Space-wise it needs only a single vec-
tor of size n for vt and two more of the same to keep
track of convergence. Speed-wise, power iteration is
known to be fast on sparse matrices and converges fast
on many real-world datasets; yet PIC converges even
more quickly than power iteration, since it naturally
stops when vt is no longer accelerating towards con-
vergence. Table 3 shows the runtime of PIC and the
spectral clustering algorithms on datasets described in
the previous section, and Table 4 shows the runtime
on large, synthetic datasets.

For testing the runtime of the spectral clustering
algorithms, we tried two different ways of finding
eigenvectors. NCutE uses the slower, classic eigen-
value decomposition method to find all the eigen-
vectors. NCutI uses the fast Implicitly Restarted
Arnoldi Method (IRAM) (Lehoucq & Sorensen, 1996),
a memory-efficient version of the fast Lanczos algo-
rithm for non-symmetric matrices. With IRAM we
can ask only for the top k eigenvectors, resulting in
less computation time.1

As we see PIC to be particularly useful for large
datasets with sparse features, and large datasets with
cluster labels are generally hard to find, we gener-
ated synthetic datasets with a modified version of the
Erdős-Rényi random network model, which generates
a connected block-stochastic graph with two compo-
nents.2 Results are averaged over five random net-
work datasets and three trials for each dataset. We
do not report the accuracy due to space constraints
but all accuracies are above 0.99. The number of it-
eration PIC requires does not seem to increase with
dataset size; real datasets averages 13 iterations and

1Due to space constraints NJW runtimes are not re-
ported, but they are very similar to that of NCut.

2The n nodes are in two equal-sized blocks, and the
number of edges is 0.01n2. We define an additional pa-
rameter e = 0.2, and when generating a edge between two
nodes, with probability 1−e the edge is placed between two
random nodes of the same cluster and otherwise between
two nodes of different clusters.

the largest synthetic dataset converges in 3 iterations.
NCutE and NCutI were not run on the largest syn-
thetic datasets because they required more memory
than was available.3

Table 3. Runtime comparison (in milliseconds) of PIC and
spectral clustering algorithms on several real datasets.

Dataset Size NCutE NCutI PIC
Iris 150 17 61 1

PenDigits01 200 28 23 1
PenDigits17 200 30 36 1
PolBooks 102 7 22 1

UBMCBlog 404 104 32 1
AGBlog 1,222 1095 70 3
20ngA 200 32 37 1
20ngB 400 124 56 3
20ngC 600 348 213 5
20ngD 800 584 385 10

Table 4. Runtime comparison (in milliseconds) of PIC and
spectral clustering algorithms on synthetic datasets.

Nodes Edges NCutE NCutI PIC
1k 10k 1,885 177 1
5k 250k 154,797 6,939 7

10k 1,000k 1,111,441 42,045 34
50k 25,000k - - 849

100k 100,000k - - 2,960

5. Related Work

Clustering with Matrix Powering. (Tishby & Slonim,
2000) describes a clustering method that turns the sim-
ilarity matrix into a Markov process and then exam-
ine the decay of mutual-information during the relax-
ation of this process, and then as clusters emerge, they
are extracted using the information bottleneck method
(Tishby et al., 1999). Besides having a information-
theoretic approach, this method is very different from
PIC, (a) it uses matrix-matrix instead of matrix-
vector multiplication, and (b) the clusters are ex-
tracted from the relaxed matrix using the informa-
tion bottleneck method. Note these differences make
this approach less appealing in terms of scalability.
(Zhou & Woodruff, 2004) describes a simpler algo-
rithm, also involving matrix-matrix multiplication, on
an unnormalized similarity matrix. However, it is not
clear how to choose two crucial parameters: the power
t and the two-cluster threshold ε and no results on
real datasets were reported. A more general frame-
work using diffusion kernels (powered similarity ma-
trices) for dimensionality reduction, clustering, and
semi-supervised learning is presented in (Lafon & Lee,

3Implemented in MATLAB and ran on a Linux machine
with two quad-core 2.26Ghz CPUs and 24GB RAM.



Power Iteration Clustering

2006), and a connection is made between diffusion ker-
nels and spectral clustering methods.

Spectral Clustering. Spectral clustering began with
the discovery of the correlation between the eigenval-
ues of the Laplacian matrix and the connectivity of a
graph (Fiedler, 1973). Much later it was introduced
to the machine learning community through Ratio
Cut (Roxborough & Sen, 1997) and Normalized Cuts
(Shi & Malik, 2000), and since it has sparked much
interest and lead to further analyses and modifica-
tions (Ng et al., 2002; von Luxburg, 2007). Typically,
a spectral clustering algorithm first defines a Laplacian
matrix. Then the k smallest eigenvectors (those with
the smallest corresponding eigenvalues), deemed the
most informative, are used to embed the data onto a k-
dimensional space. Finally, clusters are obtained with
a k-means algorithm. While shown to be effective on
many datasets, and noted particularly for dealing with
non-linearly separable data, these “classical” spectral
clustering approaches have two inherent shortcomings:

(1) Finding eigenvectors of a large matrix is com-
putationally costly. It takes O(n3) in general, and
even with fast approximating techniques like IRAM
(which can run into convergence issues), much space
and time are required for larger datasets. Recent work
aims to address this problem with sampling techniques
(Fowlkes et al., 2004; Yan et al., 2009) or a multi-
level approach (Tolliver et al., 2005). By making cer-
tain assumptions about the structure of the data, the
eigenvector-finding is done only on a small subset of
the data, avoiding costly computation.

(2) Spectral clustering decides the “informative” eigen-
vectors used for the embedding a priori (usually the
smallest k eigenvectors). This assumption seems to fail
on many real datasets, especially when there is much
noise. It is not unlikely that the k-th eigenvector cor-
responds to some particularly salient noise in the data,
and while the k+1-th eigenvector contains good cluster
indicators, it is missed entirely. This prompted much
work on selecting “good” eigenvectors and dealing
noise in spectral clustering (Zelnik-Manor & Perona,
2005; Li et al., 2007; Xiang & Gong, 2008). However,
for every additional eigenvector that is evaluated for its
quality, more computational cost is incurred for both
finding the eigenvector and evaluating it.

PIC is related to spectral clustering in that it finds
a low-dimensional embedding of data, and a k-means
algorithm is used to produce the final clusters. But
as the results in this paper show, it is not necessary
to find any eigenvector (as most spectral clustering
methods do), in order to find a low-dimensional em-
bedding for clustering—the embedding just needs to

be a good linear combination of the eigenvectors. In
this respect, PIC is a very different approach from the
spectral methods mentioned above.

Another recent graph clustering approach that has
shown substantial speed improvement over spec-
tral clustering methods is multilevel kernel k-means
(Dhillon et al., 2007), where the general weighted ker-
nel k-means is shown to be equivalent to a number
of spectral clustering methods in its objective when
the right weights and kernel matrix are used. Perfor-
mance wise, spectral clustering methods are slow but
tend to get globally better solutions, whereas kernel k-
means is faster but get stuck easily in a local minima.
This work exploits this trade-off using a multilevel ap-
proach: first an iterative coarsening heuristic is used to
reduce the graph to one with 5k nodes where k is the
number of desired clusters. Then spectral clustering
is used on this coarse graph to produce a base clus-
tering, and then the graph and is refined iteratively
(to undo the coarsening), and at each refinement it-
eration the clustering results of the previous iteration
is used as the starting point for kernel k-means. Ad-
ditional point-swapping can be used to further avoid
being trapped in local minima.

Semi-Supervised Methods. PIC’s particular repeated
matrix-vector multiplication can be viewed as a
sort of iterative averaging or a backward random
walk. While this behavior has been used in the
graph-based semi-supervised learning community
to propagate class label information, (Zhu et al.,
2003; Macskassy & Provost, 2007; Baluja et al., 2008;
Talukdar et al., 2008), and its “clustering effect” has
been noted in (Crawell & Szummer, 2007), the current
work, as far as we know, is the first to take advantage
of it to develop a simple and scalable clustering
method and test it on synthetic and real datasets.

6. Conclusion

We describe a novel and simple clustering method
based on applying power iteration to the row-
normalized affinity matrix of the data points. It is
easy to understand and implement (matrix-vector mul-
tiplications), readily parallelizable (Page et al., 1998;
Kang et al., 2009), and very efficient and scalable in
terms of time and space. Experiments on a number
of different types of labeled datasets show that PIC
is able to obtain clusters that are just as well, if not
better, than some of the spectral clustering methods.
Experiments also show that in practice PIC is very
fast without using sampling techniques — which also
makes PIC a good candidate for sampling techniques
for potentially even greater scalability gains.
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Marius, Ravichandran, Deepak, Bhagat, Rahul, and
Pereira, Fernando. Weakly-supervised acquisition of
labeled class instances using graph random walks. In
EMNLP, 2008.

Tishby, Naftali and Slonim, Noam. Data clustering
by markovian relaxation and the information bot-
tleneck method. In NIPS, 2000.

Tishby, Naftali, Pereira, Fernando C., and Bialek,
William. The information bottleneck method. In
The 37th Annual Allerton Conference on Commu-
nication, Control and Computing, 1999.

Tolliver, David, Collins, Robert T., and Baker, Si-
mon. Multilevel spectral partitioning for efficient
image segmentation and tracking. In The Seventh
IEEE Workshops on Application of Computer Vi-
sion, 2005.

von Luxburg, Ulrike. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, 2007.

Xiang, Tao and Gong, Shaogang. Spectral clustering
with eigenvector selection. Pattern Recognition, 41
(3):1012–1029, 2008.

Yan, Donghui, Huang, Ling, and Jordan, Michael I.
Fast approximate spectral clustering. In KDD, 2009.

Zelnik-Manor, Lihi and Perona, Pietro. Self-tuning
spectral clustering. In NIPS, 2005.

Zhou, Hanson and Woodruff, David. Clustering via
matrix powering. In PODS, 2004.

Zhu, Xiaojin, Ghahramani, Zoubin, and Lafferty,
John. Semi-supervised learning using Gaussian
fields and harmonic functions. In ICML, 2003.


