
Distributed System Security
via Logical Frameworks

Frank Pfenning

Carnegie Mellon University

Invited Talk

Workshop on Issues in the Theory of Security (WITS’05)

Long Beach, California, January 10-11, 2005

WITS’05, Long Beach, Jan’05 – p.1

Acknowledgments

• Joint work with Lujo Bauer, Mike Reiter, Kaustuv
Chaudhuri, Scott Garriss, Jon McCune, Jason
Rouse, Kevin Watkins

• CLF: Iliano Cervesato,Dave Walker,Kevin Watkins
• LolliMon: Pablo Lopez, Jeff Polakow
• Supported by ONR N00014-04-1-0724
• Supported by NSF Cybertrust Center

“Security through Interaction Modeling”
• http://www.cs.cmu.edu/˜self

• Work in progress!
WITS’05, Long Beach, Jan’05 – p.2

Overview

• Access Control
• Proof-Carrying Authorization
• Logical Framework (LF)
• System Architecture
• Concurrent Logical Framework (CLF)
• Operational Semantics
• Summary

WITS’05, Long Beach, Jan’05 – p.3

Access Control

• A plethora of mechanisms
• Physical keys

• Id cards (with magnetic strips)

• Smart cards

• Biometrics

• Username and password

• ...

• Limited expressiveness
• Poor cross-domain interoperability

WITS’05, Long Beach, Jan’05 – p.4

Converged Devices (“Smartphones”)

• Significant computing power (500 mHz, J2ME)
• Multiple communication channels

• Microphone, speaker, keypad

• Camera

• Phone calls, GPRS

• Bluetooth

• Becoming ubiquitous
• ∼10,000,000 shipped in 2003

• Set to inherit (dumb) mobile phone market
(∼520,000,000 shipped in 2003, ∼670,000,000 in 2004)

WITS’05, Long Beach, Jan’05 – p.5

Towards Universal Access Control

• Smartphones as universal access control device
• Unlock office door (prototype working in HH, CMU)

• Log into computer (prototype working for Windows)

• Open building? Unlock car? ...

• Distributed information gathering!

• Challenges
• Unify access control mechanisms

• Flexible, yet trustworthy policies

• Permit formal analysis

• Small trusted computing base
WITS’05, Long Beach, Jan’05 – p.6

Sample Scenario

• D208 is Mike’s office, door lock equipped with a
bluetooth device

• Jon is Mike’s student, carrying a smartphone
• Mike is carrying a smartphone
• Mike allows his students access to his office
• Jon would like to enter Mike’s office

WITS’05, Long Beach, Jan’05 – p.7

Proof-Carrying Authorization (PCA)

• [Appel & Felten’99] [Bauer’03]

• Express policy in authorization logic
• Prove right to access resource within logic
• Send actual proof object
• Check proof object to grant access
• First demonstration with web browser

[Bauer et al.’02]

WITS’05, Long Beach, Jan’05 – p.8

Interaction

• Jon establishes bluetooth connection to door
• Door issues challenge mike says open(jon, d208)

• Jon cannot prove this
• Jon calls Mike’s phone for help, providing

registrar signed student(jon,mike) asking
mike says open(jon, d208)

• Mike’s phone replies with proof of challenge
• Jon forwards proof to door
• Door verifies proof and opens

WITS’05, Long Beach, Jan’05 – p.9

PCA Issues

• Specification of authorization logic
• Logical framework (LF signature)

• Proof generation
• Distributed, certifying prover or decision procedure

• Proof representation
• Logical framework (LF object)

• Proof checking
• Logical framework (LF type checking)

WITS’05, Long Beach, Jan’05 – p.10

Authorization Logic as Modal Logic

• Basic judgments
• P says A — defined as a P -indexed monad

• A true — defined by usual rules of intuitionistic logic

• Examples
• depthead says office(mike, d208)

• registrar says student(jon,mike)

WITS’05, Long Beach, Jan’05 – p.11

Judgmental Definition

• Truth assumptions Γ = A1 true, . . . , An true

• Defining principles for P says A

Γ ` A true

Γ ` P says A

• If Γ ` P says A and Γ, A true ` P says C

then Γ ` P says C

WITS’05, Long Beach, Jan’05 – p.12

Internalize Modality

• P says A — proposition “P says A”

• Introduction

Γ ` P says A

Γ ` (P says A) true
saysI

• Elimination

Γ ` (P says A) true Γ, A true ` P says C

Γ ` P says C
saysE

• Interplay between judgments of propositions
critical for reasoning about authorization logic

WITS’05, Long Beach, Jan’05 – p.13

Example

• Mike gives his students access to his office

mike says

∀O. ∀S. (depthead says office(mike, O))

⊃ (registrar says student(S,mike))

⊃ (mike says open(S,O))

WITS’05, Long Beach, Jan’05 – p.14

Rule Specification

• Use LF Logical Framework [Harper et al.’93]

• Meta-language representing deductive systems

• Judgments as types

• Proofs as objects

• Proof checking as type checking

• Tested in the battlefield (PCC, FPCC, FTAL, PCA)

• Minimalistic
• Types A ::= aM1 . . . Mn | A1 → A2 | Πx:A1. A2

• Atomic Objects R ::= c | x | R N

• Normal Objects N ::= λx.N | R

WITS’05, Long Beach, Jan’05 – p.15

Rule Examples in LF

princ : type.

prop : type.

saysj : princ -> prop -> type.

true : prop -> type.

st : true A -> saysj P A.

says_i : saysj P A -> true (says P A).

says_e : true (says P A) ->

(true A -> saysj P C) -> saysj P C.

WITS’05, Long Beach, Jan’05 – p.16

Signed Statements

• Basic judgment P signed A without rules
• Represented as X.509 certificate

• Include in proofs

P signed A

Γ ` P says A
X.509

WITS’05, Long Beach, Jan’05 – p.17

Proof Search

• Usually, logically shallow (decidable)
• Prover produces proof object
• Distributed information gathering, abduction
• Caching

WITS’05, Long Beach, Jan’05 – p.18

Derived Rules

• Inference rules as constructors for proof terms

• Definitions for derived rules of inferences

idem : saysj P (says P A) -> saysj P A

= [u] says_e (says_i u)

[u1] says_e u1 [u2] st u2.

P says (P says A)

(P says P says A) true

. . .

A true ` A true

A true ` P says A

(P says A) true ` P says A

P says A

WITS’05, Long Beach, Jan’05 – p.19

Proof Representation

• Proofs refer to derived rules idem

• Proofs refer to signed certificates (x509 _)

• Example

ex3 : saysj mike (open jon d208)

= idem (says_e (says_i (x509 x3)) [u3] st

(imp_e (imp_e (all_e (all_e u3 d208) jon)

(says_i ex1)) (says_i ex2))).

WITS’05, Long Beach, Jan’05 – p.20

Proof Checking

• Receive proof, including X.509 certificates
• Validate certificates (including expiration)
• Check resulting LF proof object by LF type

checking
• Inherent extensibility

• Any proposition can be signed

• Definitions at the LF level

WITS’05, Long Beach, Jan’05 – p.21

PCA Summary

• Formalize authorization logic in LF
• Express policy in authorization logic
• Sample interaction

• Resource challenges with proposition

• Client constructs proof in LF by distributed certifying
theorem proving

• Resource checks LF proof by type-checking

• Flexible, extensible
• Small trusted computing base

WITS’05, Long Beach, Jan’05 – p.22

Current Status and Plans

• Reasoning about policies
• Closed-world assumption

• Use meta-logical framework Twelf [Schürmann et al.’99]

• Basic tool: cut elimination theorem for authorization logic

• Need deeper logical properties (focusing)

• Implementation still uses higher-order logic in LF
• Easier to extend?

• Impossible to reason about

• Richer distributed theorem proving

WITS’05, Long Beach, Jan’05 – p.23

Interaction Scenario Revisited

• Jon establishes bluetooth connection to door
• Door issues challenge mike says open(jon, d208)

• Jon cannot prove this
• Jon calls Mike’s phone for help, providing

registrar signed student(jon,mike) asking
mike says open(jon, d208)

• Mike’s phone replies with proof of challenge
• Jon forwards proof to door
• Door verifies proof and opens

WITS’05, Long Beach, Jan’05 – p.24

System Architecture

• Several interaction protocols
• Jon–Door, Jon–Mike, Mike–Computer, ...

• Multiple communication channels
• Bluetooth

• Camera (read bar code)

• Screen and keypad (choose resource)

• GPRS and text messaging

• Multiple concurrent sessions
• Time stamps, certificate revocation, ...

WITS’05, Long Beach, Jan’05 – p.25

Formal Specification

• Should formally specify architecture and protocols!
• Good software engineering

• Simulation

• Reason informally

• Model-check abstraction

• Reason formally

• Varying levels of abstraction

WITS’05, Long Beach, Jan’05 – p.26

Modeling Requirements

• Important for faithful simulation
• Expressive (e.g., LF proofs, nonces)

• Sequential (e.g., proving, proof checking)

• Distributed (e.g., resources, theorem proving)

• Concurrent (e.g., multiple sessions)

• Critical for reasoning
• As high-level as possible

• Significant, but not addressed
• Timing

• Probabilities
WITS’05, Long Beach, Jan’05 – p.27

The Concurrent Logical Framework

• Conservative extension of LF
• Representation principles

• Judgments as types, proofs as objects (as for LF)

• Concurrent computations as monadic objects

• Underlying type theory
• A → B, Πx:A.B as for LF

• A (B, A & B, > as in linear logic

• {−} monad as in lax logic, functional programming

• A ⊗ B, 1, !A, ∃x:A.B as in linear logic
encapsulated in the monad

WITS’05, Long Beach, Jan’05 – p.28

CLF

• Well-understood theory
[Cervesato,Pfenning,Walker,Watkins’03,’04]

• Current work
• Operational semantics

[Lopez,Pfenning,Polakow,Watkins]

• Fragment implemented in O’CAML [Polakow]

• Theorem proving [Chaudhuri]

• Future work
• Reasoning about specifications

• Abstraction and model-checking

WITS’05, Long Beach, Jan’05 – p.29

Representation Methodology

• State of the world as linear context
• Rules in unrestricted context (elide here)
• Linear assumptions can be consumed and added

during logical reasoning
• For example, a state transition r consuming a and

b while adding c and d, is represented by

r : a ⊗ b ({c ⊗ d}

• Computations as proofs (omit in this talk)
• Computation as proof search

WITS’05, Long Beach, Jan’05 – p.30

Role of Monad

• Monad ensures that proofs take the structure of a
concurrent computation

• Without the monad
• Unclear how to obtain a compositional bijection between

proofs and computation (too many proofs)

• Unclear how to endow (all of) linear logic with an
operational semantics adequate for simulation

WITS’05, Long Beach, Jan’05 – p.31

The Concurrency Monad

• Judgment A lax , derived with

Γ ` A true

Γ ` A lax

• Substitution principle
If ∆1 ` A lax and ∆2, A true ` C lax then
∆1,∆2 ` C lax

• Corresponds to composing two computations:
• First from ∆1 to obtain A

• Second from the new state ∆2, A to C

• Results in computation from ∆1,∆2 to C
WITS’05, Long Beach, Jan’05 – p.32

Monadic Type Constructor

• Type {A} — computation returning an A

∆ ` A lax

∆ ` {A} true
{ }I

∆1 ` {A} true ∆2, A true ` C lax

∆1,∆2 ` C lax
{ }E

• { }I initiates computation

• { }E corresponds to one step
• Can take a step only if we are in concurrent

computation

WITS’05, Long Beach, Jan’05 – p.33

Operational Semantics

• Logic programming: computation as proof search
• Novel combination of forward and backward

reasoning
• Backchaining search outside monad (Prolog)

• Forward chaining don’t-care non-determinism
inside monad

• Shown here only by example

WITS’05, Long Beach, Jan’05 – p.34

Starting a Computation

• Clause A ◦− B — to solve A solve subgoal B

• Goal A ({B}

• Add A to state

• Start computation

• Solve B when no further steps are possible
(quiescence)

• Example:

simulate ◦− (listen jon ({done})

WITS’05, Long Beach, Jan’05 – p.35

Broadcast

• !A — A is unrestricted

• In words:
d208 continuously broadcasts that it is a door

• In symbols:

!broadcast d208 door

WITS’05, Long Beach, Jan’05 – p.36

Creating Nonces

• In words:
If principal P is listening
and principal Q broadcasts that it is a door
then create a fresh session identifier s

and P sends a hello message to the door
and awaits the challenge from Q with nonce s

• In symbols:
listen P ⊗ !broadcast Q door

({∃s. send P Q hello s ⊗ receive_challenge P Q s}

• After transition, P no longer listens for broadcast

WITS’05, Long Beach, Jan’05 – p.37

Integrating Sequential Computation

• Given a clause A ⊗ B ({C}, we first solve A,
then B as subgoals before taking a forward step.

• Mostly, A and B are atomic, but can involve
arbitrary (Prolog-like) computation!

• Example:
receive_challenge P Q Sid

⊗ send Q P (challenge J) Sid

⊗ find_proof D J

({send P Q (proof D J) Sid ⊗ finish_session P Sid}

WITS’05, Long Beach, Jan’05 – p.38

Running Sessions Concurrently

• Computation in the monad is don’t-care
non-deterministic

• Proof terms representing computations differing in
the order of independent steps are identified
(true concurrency)

• Example: one session
simulate ◦− (listen jon ({done})

• Example: two concurrent sessions, interleaved
simulate2 ◦− (listen jon (listen mike ({done ⊗ done})

WITS’05, Long Beach, Jan’05 – p.39

Summary of Operational Semantics

• Novel combination of forward and backward proof
search

• Outside monad ∆ ` A true

• Backward chaining search (Prolog, λProlog, Twelf)

• Transition to concurrent computation
∆ ` A lax

∆ ` {A} true

• Inside monad ∆ ` A lax

• Don’t-care non-deterministic forward chaining

WITS’05, Long Beach, Jan’05 – p.40

Quiescence

• Goal ∆ ` C lax

• Non-deterministically select clause with monadic
head, e.g., A ({B}

• Solve subgoal ∆ ` A true (usually atom or ⊗)
• Commit, if successful, consuming some

resources, leaving ∆′

• Continue with ∆′ ` C lax

• Try other clause if ∆ ` A true not provable
• Transition to goal ∆ ` C true is no clause applies

WITS’05, Long Beach, Jan’05 – p.41

Saturation

• Unrestricted assumptions cannot be consumed
• Inside monad

• A ({!B} adds unrestricted assumption B if new

• Saturate if no clauses that apply would add a new
assumption

• Useful for specifying decision procedures and
theorem proving at very high level of abstraction

WITS’05, Long Beach, Jan’05 – p.42

Current Work

• Prototype implementation (LolliMon) [Polakow]
• No proof terms, only partial dependencies

• Adds affine resources, choice ⊕ and 0

• Adds polymorphism, output, some arithmetic

• Executable specification of architecture
• No principal obstacle to complete model

• Currently partial specification

WITS’05, Long Beach, Jan’05 – p.43

Future Work

• Theory
• Full definition of operational semantics

• Properties of operational semantics

• Implementation
• Improve robustness and efficiency

• Add proof terms

• Support richer constraints

• Architecture specification
• Distributed theorem proving

• Multiple levels of abstraction
WITS’05, Long Beach, Jan’05 – p.44

Project Summary

• Distributed system security via logical frameworks
• Towards universal access control
• Smartphones as enabling hardware
• Proof-carrying authorization / LF
• Formal system specification / CLF

WITS’05, Long Beach, Jan’05 – p.45

Some Future Work

• Deployment in new building (∼70 doors)
• Policy engineering, user interfaces
• Phone upgrades, multiple usage patterns
• Reasoning about policies in authorization logic
• Verifying architecture properties

• Model-checking abstractions of CLF specification

• Full meta-theorem proving

• Probabilistic reasoning and timing constraints

WITS’05, Long Beach, Jan’05 – p.46

	Acknowledgments
	Overview
	Access Control
	Converged Devices (``Smartphones'')
	Towards Universal Access Control
	Sample Scenario
	hspace *{-1ex}Proof-Carrying Authorization (PCA)
	Interaction
	PCA Issues
	Authorization Logic as Modal Logic
	Judgmental Definition
	Internalize Modality
	Example
	Rule Specification
	Rule Examples in LF
	Signed Statements
	Proof Search
	Derived Rules
	Proof Representation
	Proof Checking
	PCA Summary
	Current Status and Plans
	Interaction Scenario Revisited
	System Architecture
	Formal Specification
	Modeling Requirements
	hspace *{-1ex}The Concurrent Logical Framework
	CLF
	Representation Methodology
	Role of Monad
	The Concurrency Monad
	Monadic Type Constructor
	Operational Semantics
	Starting a Computation
	Broadcast
	Creating Nonces
	Integrating Sequential Computation
	Running Sessions Concurrently
	Summary of Operational Semantics
	Quiescence
	Saturation
	Current Work
	Future Work
	Project Summary
	Some Future Work

