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Overview

• Access Control
• Proof-Carrying Authorization
• Logical Framework (LF)
• System Architecture
• Concurrent Logical Framework (CLF)
• Operational Semantics
• Summary
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Access Control

• A plethora of mechanisms
• Physical keys

• Id cards (with magnetic strips)

• Smart cards

• Biometrics

• Username and password

• ...

• Limited expressiveness
• Poor cross-domain interoperability
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Converged Devices (“Smartphones”)

• Significant computing power (500 mHz, J2ME)
• Multiple communication channels

• Microphone, speaker, keypad

• Camera

• Phone calls, GPRS

• Bluetooth

• Becoming ubiquitous
• ∼10,000,000 shipped in 2003

• Set to inherit (dumb) mobile phone market
(∼520,000,000 shipped in 2003, ∼670,000,000 in 2004)
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Towards Universal Access Control

• Smartphones as universal access control device
• Unlock office door (prototype working in HH, CMU)

• Log into computer (prototype working for Windows)

• Open building? Unlock car? ...

• Distributed information gathering!

• Challenges
• Unify access control mechanisms

• Flexible, yet trustworthy policies

• Permit formal analysis

• Small trusted computing base
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Sample Scenario

• D208 is Mike’s office, door lock equipped with a
bluetooth device

• Jon is Mike’s student, carrying a smartphone
• Mike is carrying a smartphone
• Mike allows his students access to his office
• Jon would like to enter Mike’s office
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Proof-Carrying Authorization (PCA)

• [Appel & Felten’99] [Bauer’03]

• Express policy in authorization logic
• Prove right to access resource within logic
• Send actual proof object
• Check proof object to grant access
• First demonstration with web browser

[Bauer et al.’02]
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Interaction

• Jon establishes bluetooth connection to door
• Door issues challenge mike says open(jon, d208)

• Jon cannot prove this
• Jon calls Mike’s phone for help, providing

registrar signed student(jon,mike) asking
mike says open(jon, d208)

• Mike’s phone replies with proof of challenge
• Jon forwards proof to door
• Door verifies proof and opens
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PCA Issues

• Specification of authorization logic
• Logical framework (LF signature)

• Proof generation
• Distributed, certifying prover or decision procedure

• Proof representation
• Logical framework (LF object)

• Proof checking
• Logical framework (LF type checking)

WITS’05, Long Beach, Jan’05 – p.10



Authorization Logic as Modal Logic

• Basic judgments
• P says A — defined as a P -indexed monad

• A true — defined by usual rules of intuitionistic logic

• Examples
• depthead says office(mike, d208)

• registrar says student(jon,mike)
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Judgmental Definition

• Truth assumptions Γ = A1 true, . . . , An true

• Defining principles for P says A

Γ ` A true

Γ ` P says A

• If Γ ` P says A and Γ, A true ` P says C

then Γ ` P says C
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Internalize Modality

• P says A — proposition “P says A”

• Introduction

Γ ` P says A

Γ ` (P says A) true
saysI

• Elimination

Γ ` (P says A) true Γ, A true ` P says C

Γ ` P says C
saysE

• Interplay between judgments of propositions
critical for reasoning about authorization logic
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Example

• Mike gives his students access to his office

mike says

∀O. ∀S. (depthead says office(mike, O))

⊃ (registrar says student(S,mike))

⊃ (mike says open(S,O))
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Rule Specification

• Use LF Logical Framework [Harper et al.’93]

• Meta-language representing deductive systems

• Judgments as types

• Proofs as objects

• Proof checking as type checking

• Tested in the battlefield (PCC, FPCC, FTAL, PCA)

• Minimalistic
• Types A ::= aM1 . . . Mn | A1 → A2 | Πx:A1. A2

• Atomic Objects R ::= c | x | R N

• Normal Objects N ::= λx.N | R
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Rule Examples in LF

princ : type.

prop : type.

saysj : princ -> prop -> type.

true : prop -> type.

st : true A -> saysj P A.

says_i : saysj P A -> true (says P A).

says_e : true (says P A) ->

(true A -> saysj P C) -> saysj P C.
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Signed Statements

• Basic judgment P signed A without rules
• Represented as X.509 certificate

• Include in proofs

P signed A

Γ ` P says A
X.509
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Proof Search

• Usually, logically shallow (decidable)
• Prover produces proof object
• Distributed information gathering, abduction
• Caching
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Derived Rules

• Inference rules as constructors for proof terms

• Definitions for derived rules of inferences

idem : saysj P (says P A) -> saysj P A

= [u] says_e (says_i u)

[u1] says_e u1 [u2] st u2.

P says (P says A)

(P says P says A) true

. . .

A true ` A true

A true ` P says A

(P says A) true ` P says A

P says A
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Proof Representation

• Proofs refer to derived rules idem

• Proofs refer to signed certificates (x509 _)

• Example

ex3 : saysj mike (open jon d208)

= idem (says_e (says_i (x509 x3)) [u3] st

(imp_e (imp_e (all_e (all_e u3 d208) jon)

(says_i ex1)) (says_i ex2))).
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Proof Checking

• Receive proof, including X.509 certificates
• Validate certificates (including expiration)
• Check resulting LF proof object by LF type

checking
• Inherent extensibility

• Any proposition can be signed

• Definitions at the LF level
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PCA Summary

• Formalize authorization logic in LF
• Express policy in authorization logic
• Sample interaction

• Resource challenges with proposition

• Client constructs proof in LF by distributed certifying
theorem proving

• Resource checks LF proof by type-checking

• Flexible, extensible
• Small trusted computing base
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Current Status and Plans

• Reasoning about policies
• Closed-world assumption

• Use meta-logical framework Twelf [Schürmann et al.’99]

• Basic tool: cut elimination theorem for authorization logic

• Need deeper logical properties (focusing)

• Implementation still uses higher-order logic in LF
• Easier to extend?

• Impossible to reason about

• Richer distributed theorem proving
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Interaction Scenario Revisited

• Jon establishes bluetooth connection to door
• Door issues challenge mike says open(jon, d208)

• Jon cannot prove this
• Jon calls Mike’s phone for help, providing

registrar signed student(jon,mike) asking
mike says open(jon, d208)

• Mike’s phone replies with proof of challenge
• Jon forwards proof to door
• Door verifies proof and opens
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System Architecture

• Several interaction protocols
• Jon–Door, Jon–Mike, Mike–Computer, ...

• Multiple communication channels
• Bluetooth

• Camera (read bar code)

• Screen and keypad (choose resource)

• GPRS and text messaging

• Multiple concurrent sessions
• Time stamps, certificate revocation, ...
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Formal Specification

• Should formally specify architecture and protocols!
• Good software engineering

• Simulation

• Reason informally

• Model-check abstraction

• Reason formally

• Varying levels of abstraction
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Modeling Requirements

• Important for faithful simulation
• Expressive (e.g., LF proofs, nonces)

• Sequential (e.g., proving, proof checking)

• Distributed (e.g., resources, theorem proving)

• Concurrent (e.g., multiple sessions)

• Critical for reasoning
• As high-level as possible

• Significant, but not addressed
• Timing

• Probabilities
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The Concurrent Logical Framework

• Conservative extension of LF
• Representation principles

• Judgments as types, proofs as objects (as for LF)

• Concurrent computations as monadic objects

• Underlying type theory
• A → B, Πx:A.B as for LF

• A ( B, A & B, > as in linear logic

• {−} monad as in lax logic, functional programming

• A ⊗ B, 1, !A, ∃x:A.B as in linear logic
encapsulated in the monad
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CLF

• Well-understood theory
[Cervesato,Pfenning,Walker,Watkins’03,’04]

• Current work
• Operational semantics

[Lopez,Pfenning,Polakow,Watkins]

• Fragment implemented in O’CAML [Polakow]

• Theorem proving [Chaudhuri]

• Future work
• Reasoning about specifications

• Abstraction and model-checking
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Representation Methodology

• State of the world as linear context
• Rules in unrestricted context (elide here)
• Linear assumptions can be consumed and added

during logical reasoning
• For example, a state transition r consuming a and

b while adding c and d, is represented by

r : a ⊗ b ( {c ⊗ d}

• Computations as proofs (omit in this talk)
• Computation as proof search
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Role of Monad

• Monad ensures that proofs take the structure of a
concurrent computation

• Without the monad
• Unclear how to obtain a compositional bijection between

proofs and computation (too many proofs)

• Unclear how to endow (all of) linear logic with an
operational semantics adequate for simulation
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The Concurrency Monad

• Judgment A lax , derived with

Γ ` A true

Γ ` A lax

• Substitution principle
If ∆1 ` A lax and ∆2, A true ` C lax then
∆1,∆2 ` C lax

• Corresponds to composing two computations:
• First from ∆1 to obtain A

• Second from the new state ∆2, A to C

• Results in computation from ∆1,∆2 to C
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Monadic Type Constructor

• Type {A} — computation returning an A

∆ ` A lax

∆ ` {A} true
{ }I

∆1 ` {A} true ∆2, A true ` C lax

∆1,∆2 ` C lax
{ }E

• { }I initiates computation

• { }E corresponds to one step
• Can take a step only if we are in concurrent

computation
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Operational Semantics

• Logic programming: computation as proof search
• Novel combination of forward and backward

reasoning
• Backchaining search outside monad (Prolog)

• Forward chaining don’t-care non-determinism
inside monad

• Shown here only by example
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Starting a Computation

• Clause A ◦− B — to solve A solve subgoal B

• Goal A ( {B}

• Add A to state

• Start computation

• Solve B when no further steps are possible
(quiescence)

• Example:

simulate ◦− (listen jon ( {done})
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Broadcast

• !A — A is unrestricted

• In words:
d208 continuously broadcasts that it is a door

• In symbols:

!broadcast d208 door
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Creating Nonces

• In words:
If principal P is listening
and principal Q broadcasts that it is a door
then create a fresh session identifier s

and P sends a hello message to the door
and awaits the challenge from Q with nonce s

• In symbols:
listen P ⊗ !broadcast Q door

( {∃s. send P Q hello s ⊗ receive_challenge P Q s}

• After transition, P no longer listens for broadcast
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Integrating Sequential Computation

• Given a clause A ⊗ B ( {C}, we first solve A,
then B as subgoals before taking a forward step.

• Mostly, A and B are atomic, but can involve
arbitrary (Prolog-like) computation!

• Example:
receive_challenge P Q Sid

⊗ send Q P (challenge J) Sid

⊗ find_proof D J

( {send P Q (proof D J) Sid ⊗ finish_session P Sid}
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Running Sessions Concurrently

• Computation in the monad is don’t-care
non-deterministic

• Proof terms representing computations differing in
the order of independent steps are identified
(true concurrency)

• Example: one session
simulate ◦− (listen jon ( {done})

• Example: two concurrent sessions, interleaved
simulate2 ◦− (listen jon ( listen mike ( {done ⊗ done})
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Summary of Operational Semantics

• Novel combination of forward and backward proof
search

• Outside monad ∆ ` A true

• Backward chaining search (Prolog, λProlog, Twelf)

• Transition to concurrent computation
∆ ` A lax

∆ ` {A} true

• Inside monad ∆ ` A lax

• Don’t-care non-deterministic forward chaining
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Quiescence

• Goal ∆ ` C lax

• Non-deterministically select clause with monadic
head, e.g., A ( {B}

• Solve subgoal ∆ ` A true (usually atom or ⊗)
• Commit, if successful, consuming some

resources, leaving ∆′

• Continue with ∆′ ` C lax

• Try other clause if ∆ ` A true not provable
• Transition to goal ∆ ` C true is no clause applies
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Saturation

• Unrestricted assumptions cannot be consumed
• Inside monad

• A ( {!B} adds unrestricted assumption B if new

• Saturate if no clauses that apply would add a new
assumption

• Useful for specifying decision procedures and
theorem proving at very high level of abstraction
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Current Work

• Prototype implementation (LolliMon) [Polakow]
• No proof terms, only partial dependencies

• Adds affine resources, choice ⊕ and 0

• Adds polymorphism, output, some arithmetic

• Executable specification of architecture
• No principal obstacle to complete model

• Currently partial specification
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Future Work

• Theory
• Full definition of operational semantics

• Properties of operational semantics

• Implementation
• Improve robustness and efficiency

• Add proof terms

• Support richer constraints

• Architecture specification
• Distributed theorem proving

• Multiple levels of abstraction
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Project Summary

• Distributed system security via logical frameworks
• Towards universal access control
• Smartphones as enabling hardware
• Proof-carrying authorization / LF
• Formal system specification / CLF
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Some Future Work

• Deployment in new building (∼70 doors)
• Policy engineering, user interfaces
• Phone upgrades, multiple usage patterns
• Reasoning about policies in authorization logic
• Verifying architecture properties

• Model-checking abstractions of CLF specification

• Full meta-theorem proving

• Probabilistic reasoning and timing constraints
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