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m Axiomatic proofs are combinators
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m Howard (1969)

m Natural deductions are A-terms
m Proof reduction is functional computation

m These are isomorphisms!
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m Modal logic (JS4) and staged computation (Davies &
Pf. 1996)
Temporal logic and partial evaluation (Davies 1996)
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m ... (but not as easy as it looks)

m This talk:
m Linear propositions as session types

m Sequent proofs as 7-calculus processes
m Cut reduction as communication
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Type theory

m Type theory (Martin-Lof 1980)

m Generalizes intuitionistic logic

m Types depend on programs

m Full integration of reasoning and programming
m Co-design of language and reasoning principles!
m This talk:

m Session types depend on functional values
m Communicate channels and values (= proofs)

m Not yet:

m Types do not depend on channels or processes
m Processes are not communicated



Session types for m-calculus

\S]

B Dependent session types

Proof irrelevance

Some results
Conclusion
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Judgment forms

m Judgment P ::x: A
m Process P offers service A along channel x
m Linear sequent
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-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|Q)uz:C

cuty

m |dentity as forwarding

ida
xA=[x<z]unz: A
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Offering input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

Ay A= P:x:B

—oR
A=x(y)P:x:A—B
m Can reuse x, due to linearity!
m Left rule: matching use of service
A= Py A A xB=Q:z:C

AN x:A— B= (vy)x(y)(P|Q):z:C —t

m Can reuse x, due to linearity
m Channel y must be new (bound output)



Proof and process reduction

m Proof reduction

AA=B A=A AB=C
———————— R ol
A=A-—-B A1, Do, A—B=C
cutp.p
A AL Ay = C
—
A=A AA=B
cutp
AN = B Ny, B=C
cutpg
AN Ay = C

m Corresponding process reduction
A AL Ay = (vx)(x(y).Pr | (vw)(X(w).(P| Q) z: C
N
A AL A = (vx)((vw) (P | Pr{w/y}) | Q) z: C



Process reduction

m Corresponding process reduction

Ex)(x(y)-Pr | (vw)(x(w).(P2 | Q)))

_>
Ex)((vw)(P2 | P{w/y}) | Q)

m Instance of (modulo structural congruence)

(x(y)-P | x(w).Q) — (P{w/y} | Q)

m Synchronous 7-calculus

m Typing modulo structural congruence



m Linear propositions as session types

:A—o B Input a y:A along x and behave as B
:A® B Output new y:A along x and behave as B
1 Terminate session on x

: A& B Offer choice between A and B along x
:A@ B Offer either A or B along x

1A Offer A persistently along x

TTVVVTO
X X X X X X

m Sequent proofs as process expressions

m Proof reduction as process reduction

10/1
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m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=P:y: A N=Q:x:B
AN = (vy)x(y).(P|Q):x:A® B

®R
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Offering output (A ® B)

mP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=P:y: A N=Q:x:B
AN = (vy)x(y).(P|Q):x:A® B

®R

m Left rule: perform matching input
Ay AxB=P:z:C

®L
A xA®B=x(y)P:z:C

1/1



Offering output (A ® B)

m Proof reduction again corresponds to process reduction

m No new rules required
m Apparent asymmetry, but AQ B~ B® A:

x:A®B = x(y).(vw)z{w).([x <> w] | [y ¢ 2]) -z : BRA

12/1



Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

7.:>11R

m Left rule: accept termination

A= C

A,1:>C1L

m Reduction
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Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

— 1R
=x().0:x:1
m Left rule: accept termination
A=P:z:C
= 1L

Axl1=x()P:uz:C

m Reduction
(x().0 | x().P) — P
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Termination (1)

m This faithful process assignment models synchronous
termination

m We can also model asynchronous termination

m Use a different process assignment (Caires & Pf. 2010)
m Contracting proofs to processes

m Some proof reductions are process identities

14/1



Example: PDF indexing

m Abstract away communicated values for now
index; = file —o (file® 1)
m Shape of a server
srtv = x(F).(vy)x{y).(P | X({).0) :: x : index;
m Shape of a client
client £ (vpdf)x(pdf).x(idx).x().Q
m Composition of server and client

- =srv i x:index; x:index; = client::z:1

cut
- = (vx)(srv | client) - z: 1

15/1



Taking stock |

m At this point we have

Types AB,C

Processes P, Q

input
output
termination

forwarding

parallel composition
name restriction
input

bound output
(wait)
(termination)

16/1



Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B

A=A A=B
A= A&B

&R

m Left rules: making a choice between A and B

AA=C .
AALB=C
AB=C

L,

AA&B= C
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Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B
A=P:x:A A= Q:x:B
A = x.case(P,Q) = x: A& B

m Left rules: making a choice between A and B
AxA=Q:z:C
A xA& B = x.inl;Q::z:C

&L,

AxB=Q:z:C
A xA&B = x.inr;Q::z:C

&L,
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Offering external choice (A & B)

m Need binary guarded choice construct

m New reductions
(x.case(P, Q) | x.inl; R) — (P | R)
(x.case(P, Q) | x.inr; R) — (Q | R)

18/1



Example: PDF compression

m Extend previous example
m Offer to index or compress the PDF

server; = (file —o (file ® 1))
& (file —o (file ® 1))

m Different protocol: decision is made later
server, = file —o ((file & file) ® 1)

m In practice, should use labeled products &;{/; : A;}

19/1



Offering internal choice (A & B)

mP:x:A®B
m P offers either A or B along x

m Offering either A or B:

A=A

272 4R
Ao AcB

A =B

2= P 4R
Ao AcB 2

m Accounting for either A or B:

AA=C A B=C
AA®B=C

®L

m No new reductions
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Offering internal choice (A & B)
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SR
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DR,
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Offering internal choice (A & B)

mPi:x:A®B
m P offers either A or B along x
m Offering either A or B:

A=Pi:x: A
A=xin:P:x:ADB

SR

A=P:x:B &
A= xinr;P:x:A®dB

R
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Offering internal choice (A & B)
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m P offers either A or B along x
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SR

A=P:x:B &
A= xinr;P:x:A®dB
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m Accounting for either A or B:
A xA= z:C A x:B= z:C
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Offering internal choice (A & B)

mPi:x:A®B
m P offers either A or B along x
m Offering either A or B:

A=Pi:x: A
A=xin:P:x:ADB

SR

A=P:x:B &
A= xinr;P:x:A®dB

R

m Accounting for either A or B:
AxA=P:z:C AxB=Q:z:C .
S
A x:A® B = x.case(P,Q) = z:C

m No new reductions
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Example: PDF indexing

m Offer to index PDF, or indicate failure
index, £ (file — ((file® 1) ® 1))

m In practice, should use labeled sums &;{/; : A;}

21/1



Persistence

m To have persistent services, we generalize the judgment
form (Hodas & Miller 1991; Andreoli 1992; Barber 1996)

Bl,---aBk ; A17...,An = C
—_—— —_——
r A
persistently true  linearly true

m Label with shared channels v and linear channels x

u:By, .. ueBe ;s xi: Ay X An = Pz C

r A
shared linear

22/1



Structural rules

m cut! as composition with replicated input

M, - =A IlNA; A=2=C
MA=~C

CUt!A

m No linear channels in P except x

m To use u we have to send it a new channel y for x

23/1
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Structural rules

m cut! as composition with replicated input
[;-=P:x:A NuA, A= Q:z:C
M A= (vu)(lu(x).P|Q)uz:C

cutly

m No linear channels in P except x
m To use u we have to send it a new channel y for x
MuA; Ay A=P:z:C
LuA;, A= (vy)uly)P:z:C

copy

m y will be linear and behave according to A
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Cut! reduction

m Replaying the proof reduction yields:

(vu)(lu(x).P [ (vy)a(y).Q)
— (wy)(Ply/x} [ (vu)(lu(x).P | Q))

m Instance of standard rule

(tu(x).P [ aly).Q) — (P{y/x} | @[ lu(x).P)

24 /1



Offering persistent service (!A)

m Internalize persistence as a proposition
mPix:lA
m P persistently offers A along x

m Creating a persistent service
r, =A R
r,-=1A"
m Sharing a persistent service

A A= C

e /]
A A= C
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Offering persistent service (!A)

m Internalize persistence as a proposition
mPx: 1A
m P persistently offers A along x

m Creating a persistent service
M, =Py A
IR
M, -=Ix(y)P:x:1A

m Sharing a persistent service
NuA; A= Q:z:C
L
M AxIA= x/uQ:z:C
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Promotion

m !L promotes linear channels to shared ones

m No significant operational consequences

@x)(Ix(y)-P [ x/u.Q) — (vu)(lu(y).P | Q)

26/1



Example: persistent storage

m Persistent PDF indexing service
indexs : !(file —o file ® 1)

Persistently offer to input a file, then output a file and
terminate session.

m Store a file persistently
store; : I(file —o I(file ® 1))

Persistently offer to input a file, then output a persistent
handle for retrieving this file.

27/1



Taking stock Il

m At this point we have in addition

Types AB,C

Processes P, Q

A& B
ADB
A

x.inl; P | x.inr; P

x.case(P, Q)
lu(x).P
x/u.P

external choice
internal choice
replication

selection
branching
replicating input
(promotion)
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m Types 7 from a (dependent) type theory
m Hypothetical judgment xy:7q, ..., xx: 7 EF M T
—_———

v
m Some example type constructors

Mx:7.0, 7 — o Functions from 7 to ¢
Yx:Tt.o,7Txo Pairsofatandac
nat Natural numbers

m Integrate into sequent calculus

\Us : I : A =P:x: A
~—~ S~
term variables shared channels linear channels linear
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Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= A
VR
V:[: A= Vy:7.A
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
VL
V.l A, Vyr.A= C

m Proof reduction
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Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= x: A

V:[: A= x:Vy:T.AVR
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
V.l A, Vyr.A= C vt

m Proof reduction

31/1



Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A

Vil A= x(y).P:ux:VyrA R
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
V.l A, Vyr.A= C vt

m Proof reduction
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Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 V;T; A xA{M/y} = z:C
V.l A xVy1.A= z:C

VL

m Proof reduction
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Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyrTA=x(M).Q:z:C

VL

m Proof reduction
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Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyrTA=x(M).Q:z:C

VL

m Proof reduction

(x)(x(y)-P [ x(M).Q) — (vx)(P{M/y} | Q)
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Term passing: other connectives

m Quantified proposition as dependent session types
x:Vy:7.A  Input an M : A along x and behave as A{M/y}
x:$7 — A Input an M : A along x and behave as A

x:3Jy:7. A Output an M : A along x and behave as A{M/y}
x:$7® A  Output an M : A along x and behave as A

m $7 —o A as shorthand for Vy:7.A if y not free in A
m $7 ® A as shorthand for dy:7.A if y not free in A
m We will omit the ‘$’ for readability
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Examples, carrying proofs

m PDF indexing service

indexs : I(file —o file® 1)
index, @ (Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in
PDF format, then output a PDF file g, and a proof that
g is in PDF format and terminate the session.

m Persistent file storage

store; : I(file —o I(file ® 1))
store, @ I(Vf:file.!3g:file. g = f ®1)

Persistently offer to input a file, then output a persistent
channel for retrieving this file and a proof that the two
are equal.
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Proof irrelevance

m In many examples, we want to know that proofs exist, but
we do not want to transmit them

m We can easily check pdf(g) when using the indexing
service

m The proof of g = f (by reflexivity) would not be
informative

m Use proof irrelevance in type theory

m M:[r] — M is a term of type 7 that is computationally
irrelevant
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Proof irrelevance: rules

m Introduction and elimination

VeEM: T VEM:[r] V,x:=7FN:o

vemn —————[IE
[M] : [7] Vilet[x]=MinN:o

VU® promotes hypotheses x+7 to x:7

In examples, may use pattern matching instead of let

By agreement, terms [M] will be erased before
transmission

Typing guarantees this can be done consistently
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Examples with proof irrelevance

m Mark proofs as computationally irrelevant

m PDF indexing service

indexg @ I(Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)
indexs : !(Vf:file. [pdf(f)] — Jg-file. [pdf(g)] ® 1)

m Persistent file storage

store; : l(Vf:file.!3g:file.g =f®1)
stores : I(Vf:file.!3g:file.[g = f]®1)

m After erasure, communication can be optimized further
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Example: mobile code

m For sensitive documents we want to run indexing locally

m Specification
indexs : 1((Mf:file. [pdf(f)] — Xg:file. [pdf(g)]) ® 1)

m Service persistently offers a function for indexing

m Cannot leak information since only process layer can
communicate
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Some results

m Recall: typing is modulo (shallow) structural congruence
m Theorem: type preservation = session fidelity
m Theorem: progress = deadlock freedom

m Theorem: termination

m Via linear logical relations (Pérez et al., ESOP 2012)

m Some commuting conversions = behavioral equivalences
m Theorem: proof reduction = process reduction

m Permuting cut and cut! = structural equivalences

m |dentity elimination = structural reduction (forwarding)

m Propositional reduction = communication

m Some commuting conversion needed if promotion is

suppressed and termination is asynchronous
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Further extensions and results

m Family of monads Qx7 = digital signatures
m Continuum of trust: from proofs to digital signatures
(CPP 2011)
m Functions as session-typed processes (FoSSaCS 2012)

m Translate from natural deduction to sequent calculus

m Via linear natural deduction

m [T — S]=I[T] — [S]: copying evaluation (by name)

m (T — S)*=1(T* — S*): sharing evaluation (futures)
m By-value and by-need are particular schedules for sharing
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Ongoing work

m Polymorphism
m Immediate in the functional layer

m Parametricity in the process layer (Pérez et al., ESOP
2012)
m Asynchronous session types (w. Henry DeYoung)
m Also via Curry-Howard isomorphism!
m Unlocking parallelism with commuting conversions
m Each channel implementable as a bidirectional queue
m Classical linear logic
m Superficially more economical
m Does not enforce locality of shared channels
m All standard session examples (and more) already
expressible in intuitionistic system
m Less likely to lead to full type theory

42/1



Concurrent dependent type theory?

m At present, we have a two-layer system

m Communication layer (both linear and shared channels)
m Value layer (dependent type theory)

m Can we have a concurrent dependently-typed language?
m Problem of linear dependency

Equational reasoning about processes

Integrating natural deduction and sequent calculus

Dependently typed functional translation?

Monadic encapsulation, a la CLF?
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Some related work

m Computational interpretations of linear logic
(Abramsky 1993)

m Relating m-calculus and linear logic (Bellin & Scott 1994)
m Session types (Honda 1993) (Honda et al. 1998) ...
m Lolliproc (Mazurak & Zdancewic 2010)

m Natural deduction for classical linear logic

Purely linear (unrestricted version conjectured)
Tighter integration of functions with processes
Requires control operators and additional coercions

n
n
n
m Dependent version unlikely?
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m A Curry-Howard isomorphism
m Linear propositions as session types
A — B (input), A® B (output), 1 (termination)
A& B (external choice), A @ B (internal choice), !A
(replication)
m Sequent proofs as m-calculus processes
with a binary guarded choice and channel forwarding
m Cut reduction as mw-calculus reduction
m Term-passing extension with a type theory
m Vx:7.A (term input), 3x:7.A (term output)
m Additional type theory constructs

m [7] for proof irrelevance (not transmitted)
m Oy for affirmations (evidenced by digital signatures)
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