Towards Concurrent Type Theory

Luis Caires!, Frank Pfenning?, Bernardo Toninho!+2

! Universidade Nova de Lisboa
2 Carnegie Mellon University

Workshop on Types in Language Design
and Implementation (TLDI)
January 28, 2012

Proofs and programs

® In intuitionistic logic:
m Propositions are simple types
m Proofs are functional programs
m Proof reduction is computation

Proofs and programs

® In intuitionistic logic:
m Propositions are simple types
m Proofs are functional programs
m Proof reduction is computation

m Curry (1934)
m Axiomatic proofs are combinators
m Proof reduction is combinatory reduction

m Howard (1969)
m Natural deductions are A-terms
m Proof reduction is functional computation

Proofs and programs

® In intuitionistic logic:
m Propositions are simple types
m Proofs are functional programs
m Proof reduction is computation

m Curry (1934)

m Axiomatic proofs are combinators
m Proof reduction is combinatory reduction

m Howard (1969)

m Natural deductions are A-terms
m Proof reduction is functional computation

m These are isomorphisms!

Other instances

m Capture computational phenomena logically

m Modal logic (JS4) and staged computation (Davies &
Pf. 1996)
Temporal logic and partial evaluation (Davies 1996)
Lax logic and effects (Benton et al. 1998)
Modal logic (JT) and proof irrelevance (Pf. 2008)
... (but not as easy as it looks)

Other instances

m Capture computational phenomena logically

m Modal logic (JS4) and staged computation (Davies &
Pf. 1996)
Temporal logic and partial evaluation (Davies 1996)
Lax logic and effects (Benton et al. 1998)
Modal logic (JT) and proof irrelevance (Pf. 2008)
m ... (but not as easy as it looks)

m This talk:
m Linear propositions as session types

m Sequent proofs as 7-calculus processes
m Cut reduction as communication

Type theory

m Type theory (Martin-L6f 1980)
m Generalizes intuitionistic logic
m Types depend on programs
m Full integration of reasoning and programming

Type theory

m Type theory (Martin-Lof 1980)

m Generalizes intuitionistic logic
m Types depend on programs
m Full integration of reasoning and programming

m Co-design of language and reasoning principles!

Type theory

m Type theory (Martin-Lof 1980)

m Generalizes intuitionistic logic
m Types depend on programs
m Full integration of reasoning and programming

m Co-design of language and reasoning principles!
m This talk:

m Session types depend on functional values
m Communicate channels and values (= proofs)

Type theory

m Type theory (Martin-Lof 1980)

m Generalizes intuitionistic logic

m Types depend on programs

m Full integration of reasoning and programming
m Co-design of language and reasoning principles!
m This talk:

m Session types depend on functional values
m Communicate channels and values (= proofs)

m Not yet:

m Types do not depend on channels or processes
m Processes are not communicated

Session types for m-calculus

\S]

B Dependent session types

Proof irrelevance

Some results
Conclusion

Judgment forms

m Judgment P x: A
m Process P offers service A along channel x
m Linear sequent

m Cut as composition
A=A A A=C
AN = C

cuty

m Identity as forwarding

A=A

Judgment forms

m Judgment P x: A
m Process P offers service A along channel x
m Linear sequent
X1:AL . X An=> P iix i A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=A N A=C
AN = C

cuty

m Identity as forwarding

A=A

Judgment forms

m Judgment P x: A
m Process P offers service A along channel x
m Linear sequent
x1: AL, X A= P ix i A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A= x: A A xA= z:C
AN = z:C

cutp

m ldentity as forwarding

Judgment forms

m Judgment P x: A
m Process P offers service A along channel x
m Linear sequent
x1: AL, X A= P ix i A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|Q):z:C

cutpy

m ldentity as forwarding

id
Ao A A

Judgment forms

m Judgment P ::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An=> P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|Q)uz:C

cuty

m |dentity as forwarding

id
XA = z A A

Judgment forms

m Judgment P ::x: A
m Process P offers service A along channel x
m Linear sequent
XA X An=> P ix A

-~

A

P uses x;:A; and offers x:A.
m Cut as composition

A=P:x:A AN xA=Q:z:C
AN = (vx)(P|Q)uz:C

cuty

m |dentity as forwarding

ida
xA=[x<z]unz: A

Offering input (A — B)

mPi:x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

AA= B

—_OR
A=A—oB

m Left rule: matching use of service

A=A AN B=C
ANA—oB=C

L

Offering input (A — B)

m P x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

A A= B
A = A—oB

R

m Left rule: matching use of service

A=A A B=C
—ol
AN A—oB=C

Offering input (A — B)

m P x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

Ay A= x:B
A= x:A—B

R

m Left rule: matching use of service

A=A A B=C
—ol
AN A—oB=C

Offering input (A — B)

m P x:A—oB
m P inputs an A along x and then behaves as B
m Right rule: offer of service
AyA=P:x:B
—0
A=x(y)P:x:A—oB

m Can reuse x, due to linearity!

R

m Left rule: matching use of service

A=A A B=C
—ol
AN A—oB=C

Offering input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B
m Right rule: offer of service
Ay A= P:x:B
—0
A=x(y)P:x:A—B

m Can reuse x, due to linearity!

R

m Left rule: matching use of service

A= A A, B= C
AN, A—oB= C

—oL

Offering input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B
m Right rule: offer of service
Ay A= P:x:B
—0
A=x(y)P:x:A—B

m Can reuse x, due to linearity!

R

m Left rule: matching use of service

A= y:A A x:B = z:C
AN x:A— B= z:C

Offering input (A — B)

mP:x:A—oB
m P inputs an A along x and then behaves as B

m Right rule: offer of service

Ay A= P:x:B

—oR
A=x(y)P:x:A—B
m Can reuse x, due to linearity!
m Left rule: matching use of service
A= Py A A xB=Q:z:C

AN x:A— B= (vy)x(y)(P|Q):z:C —t

m Can reuse x, due to linearity
m Channel y must be new (bound output)

Proof and process reduction

m Proof reduction

AA=B A=A AB=C
———————— R ol
A=A-—-B A1, Do, A—B=C
cutp.p
A AL Ay = C
—
A=A AA=B
cutp
AN = B Ny, B=C
cutpg
AN Ay = C

m Corresponding process reduction
A AL Ay = (vx)(x(y).Pr | (vw)(X(w).(P| Q) z: C
N
A AL A = (vx)((vw) (P | Pr{w/y}) | Q) z: C

Process reduction

m Corresponding process reduction

Ex)(x(y)-Pr | (vw)(x(w).(P2 | Q)))

_>
Ex)((vw)(P2 | P{w/y}) | Q)

m Instance of (modulo structural congruence)

(x(y)-P | x(w).Q) — (P{w/y} | Q)

m Synchronous 7-calculus

m Typing modulo structural congruence

m Linear propositions as session types

:A—o B Input a y:A along x and behave as B
:A® B Output new y:A along x and behave as B
1 Terminate session on x

: A& B Offer choice between A and B along x
:A@ B Offer either A or B along x

1A Offer A persistently along x

TTVVVTO
X X X X X X

m Sequent proofs as process expressions

m Proof reduction as process reduction

10/1

Offering output (A ® B)

mP:x:A®RB
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=A AN =8B
AN =ARB

®R

m Left rule: perform matching input

AAB=C ,
AA©B=C "

1/1

Offering output (A ® B)

EP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A = A AN = B
AN = A® B

m Left rule: perform matching input

AAB=C
®L
AARB=C

1/1

Offering output (A ® B)

EP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A= y:A A = x:B
AN = x:A® B

®R

m Left rule: perform matching input

AAB=C
®L
AARB=C

1/1

Offering output (A ® B)

EP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=P:y: A AN=Q:x:B R
(9
AN = (vy)x(y).(P|Q):x:A® B

m Left rule: perform matching input

AAB=C
®L
AARB=C

1/1

Offering output (A ® B)

mP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=P:y: A N=Q:x:B
AN = (vy)x(y).(P|Q):x:A® B

®R

m Left rule: perform matching input

A, A B= C
A, A®B= C

®L

1/1

Offering output (A ® B)

mP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=P:y: A N=Q:x:B
AN = (vy)x(y).(P|Q):x:A® B

®R

m Left rule: perform matching input

A y:Ax:B= z:C
A XxARB = z:C

®L

1/1

Offering output (A ® B)

mP:x:A®B
m P outputs a fresh y:A along x and then behaves as B
m Right rule: offer output

A=P:y: A N=Q:x:B
AN = (vy)x(y).(P|Q):x:A® B

®R

m Left rule: perform matching input
Ay AxB=P:z:C

®L
A xA®B=x(y)P:z:C

1/1

Offering output (A ® B)

m Proof reduction again corresponds to process reduction

m No new rules required
m Apparent asymmetry, but AQ B~ B® A:

x:A®B = x(y).(vw)z{w).([x <> w] | [y ¢ 2]) -z : BRA

12/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

7.:>11R

m Left rule: accept termination

A= C

A,1:>C1L

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

1R
- = 1
m Left rule: accept termination
A= C
— 1L
Al=C

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

1R
- = x:1

m Left rule: accept termination

A= C

A,1:>C1L

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

- 1R
=x().0:x:1

m Left rule: accept termination

A= C

A,1:>C1L

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

— 1R
=x().0:x:1
m Left rule: accept termination
A= C
1L
A 1= C

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

— 1R
=x().0:x:1
m Left rule: accept termination
A= - C
2 1L
A x1l= z:C

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

— 1R
=x().0:x:1
m Left rule: accept termination
A=P:z:C
= 1L

Axl1=x()P:uz:C

m Reduction

13/1

Termination (1)

B P:x:1
m P terminates session on x

m Right rule: offer of termination (unit of ®)

— 1R
=x().0:x:1
m Left rule: accept termination
A=P:z:C
= 1L

Axl1=x()P:uz:C

m Reduction
(x().0 | x().P) — P

13/1

Termination (1)

m This faithful process assignment models synchronous
termination

m We can also model asynchronous termination

m Use a different process assignment (Caires & Pf. 2010)
m Contracting proofs to processes

m Some proof reductions are process identities

14/1

Example: PDF indexing

m Abstract away communicated values for now
index; = file —o (file® 1)
m Shape of a server
srtv = x(F).(vy)x{y).(P | X({).0) :: x : index;
m Shape of a client
client £ (vpdf)x(pdf).x(idx).x().Q
m Composition of server and client

- =srv i x:index; x:index; = client::z:1

cut
- = (vx)(srv | client) - z: 1

15/1

Taking stock |

m At this point we have

Types AB,C

Processes P, Q

input
output
termination

forwarding

parallel composition
name restriction
input

bound output
(wait)
(termination)

16/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B

A=A A=B
A= A&B

&R

m Left rules: making a choice between A and B

AA=C .
AALB=C
AB=C

L,

AA&B= C

17/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B

A= A A= B
A= A& B

&R

m Left rules: making a choice between A and B

AA=C
&Ly
AA&B=C
AB=C
Ly

AA&B= C

17/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B

A= x A A= x: B
A= x:A&B

&R

m Left rules: making a choice between A and B

AA=C
&Ly
AA&B=C
AB=C
Ly

AA&B= C

17/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B
A=P:x:A A= Q:x:B
A = x.case(P,Q) = x: A& B

m Left rules: making a choice between A and B

AA=C
&Ly
AA&B=C
AB=C
Ly

AA&B= C

17/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B
A=P:x:A A= Q:x:B
A = x.case(P,Q) = x: A& B

m Left rules: making a choice between A and B

A, A= C
&Ly
A A&B= C
A, B= C
&L,

A, A&B= C

17/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B
A=P:x:A A= Q:x:B
A = x.case(P,Q) = x: A& B

m Left rules: making a choice between A and B

A xA= z:C
AxA&B= z:C

A, x:B = z:C
AxA&B= z:C

17/1

Offering external choice (A & B)

mP:x:A&B
m P offers the choice between A and B along x

m Right rule: offering choice between A and B
A=P:x:A A= Q:x:B
A = x.case(P,Q) = x: A& B

m Left rules: making a choice between A and B
AxA=Q:z:C
A xA& B = x.inl;Q::z:C

&L,

AxB=Q:z:C
A xA&B = x.inr;Q::z:C

&L,

17/1

Offering external choice (A & B)

m Need binary guarded choice construct

m New reductions
(x.case(P, Q) | x.inl; R) — (P | R)
(x.case(P, Q) | x.inr; R) — (Q | R)

18/1

Example: PDF compression

m Extend previous example
m Offer to index or compress the PDF

server; = (file —o (file ® 1))
& (file —o (file ® 1))

m Different protocol: decision is made later
server, = file —o ((file & file) ® 1)

m In practice, should use labeled products &;{/; : A;}

19/1

Offering internal choice (A & B)

mP:x:A®B
m P offers either A or B along x

m Offering either A or B:

A=A

272 4R
Ao AcB

A =B

2= P 4R
Ao AcB 2

m Accounting for either A or B:

AA=C A B=C
AA®B=C

®L

m No new reductions

20/1

Offering internal choice (A & B)

mP:x:A®B
m P offers either A or B along x
m Offering either A or B:

A= A ©R
A= Ao B
A= B
R
A= AcB
m Accounting for either A or B:
AA=C A B=C
@L

AADB=C
m No new reductions

20/1

Offering internal choice (A & B)

mP:x:A®B
m P offers either A or B along x
m Offering either A or B:

A = x: A
A= x:ADB

SR

A = x: B
A= x:ADB

DR,

m Accounting for either A or B:

AA=C A B=C
AA®B=C

®L

m No new reductions

20/1

Offering internal choice (A & B)

mP:x:A®B
m P offers either A or B along x
m Offering either A or B:

A=>P:x: A
A=xinP:x:ADB

SR

A=P:x:B
A= xinr;P:x:A®B

SR,

m Accounting for either A or B:

AA=C A B=C
AA®B=C

®L

m No new reductions

20/1

Offering internal choice (A & B)

mPi:x:A®B
m P offers either A or B along x
m Offering either A or B:

A=Pi:x: A
A=xin:P:x:ADB

SR

A=P:x:B &
A= xinr;P:x:A®dB

R
m Accounting for either A or B:

A A= C A, B=

Y

A, A®B= C

m No new reductions

oL

20/

Offering internal choice (A & B)

mPi:x:A®B
m P offers either A or B along x
m Offering either A or B:
A=P:x:A
A=xin:P:x:ADB

SR

A=P:x:B &
A= xinr;P:x:A®dB

e

m Accounting for either A or B:
A xA= z:C A x:B= z:C
A xAPB= z:C

oL

m No new reductions

20/1

Offering internal choice (A & B)

mPi:x:A®B
m P offers either A or B along x
m Offering either A or B:

A=Pi:x: A
A=xin:P:x:ADB

SR

A=P:x:B &
A= xinr;P:x:A®dB

R

m Accounting for either A or B:
AxA=P:z:C AxB=Q:z:C .
S
A x:A® B = x.case(P,Q) = z:C

m No new reductions

20/1

Example: PDF indexing

m Offer to index PDF, or indicate failure
index, £ (file — ((file® 1) ® 1))

m In practice, should use labeled sums &;{/; : A;}

21/1

Persistence

m To have persistent services, we generalize the judgment
form (Hodas & Miller 1991; Andreoli 1992; Barber 1996)

Bl,---aBk ; A17...,An = C
—_—— —_——
r A
persistently true linearly true

m Label with shared channels v and linear channels x

u:By, .. ueBe ;s xi: Ay X An = Pz C

r A
shared linear

22/1

Structural rules

m cut! as composition with replicated input

M, - =A IlNA; A=2=C
MA=~C

CUt!A

m No linear channels in P except x

m To use u we have to send it a new channel y for x

23/1

Structural rules

m cut! as composition with replicated input

M, = A r A, A= C
M. A=

CUt!A

m No linear channels in P except x

m To use u we have to send it a new channel y for x

23/1

Structural rules

m cut! as composition with replicated input

M, = x: A NuA;, A= z:C
M, A= z:C

CUt!A

m No linear channels in P except x

m To use u we have to send it a new channel y for x

23/1

Structural rules

m cut! as composition with replicated input
;- =P:x:A NuA, A= Q:z:C
M A= (vu)(lu(x).P|Q)uz:C

CUt!A

m No linear channels in P except x

m To use u we have to send it a new channel y for x

23/1

Structural rules

m cut! as composition with replicated input
[;-=P:x:A NuA, A= Q:z:C
M A= (vu)(lu(x).P|Q)uz:C

cutly

m No linear channels in P except x
m To use u we have to send it a new channel y for x
r A;A A= C
I A;A=

copy

23/1

Structural rules

m cut! as composition with replicated input
[;-=P:x:A NuA, A= Q:z:C
M A= (vu)(lu(x).P|Q)uz:C

cutly

m No linear channels in P except x
m To use u we have to send it a new channel y for x
MuA; AyA= z:C
M uA;, A= z:C

copy

23/1

Structural rules

m cut! as composition with replicated input
[;-=P:x:A NuA, A= Q:z:C
M A= (vu)(lu(x).P|Q)uz:C

cutly

m No linear channels in P except x
m To use u we have to send it a new channel y for x
MuA; Ay A=P:z:C
LuA;, A= (vy)uly)P:z:C

copy

m y will be linear and behave according to A

23/1

Cut! reduction

m Replaying the proof reduction yields:

(vu)(lu(x).P [(vy)a(y).Q)
— (wy)(Ply/x} [(vu)(lu(x).P | Q))

m Instance of standard rule

(tu(x).P [aly).Q) — (P{y/x} | @[lu(x).P)

24 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
mPix:lA
m P persistently offers A along x

m Creating a persistent service
r, =A R
r,-=1A"
m Sharing a persistent service

A A= C

e /]
A A= C

25 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
EPiux: 1A
m P persistently offers A along x

m Creating a persistent service

M . = A
;. = 1A~

m Sharing a persistent service

rAA=C
rAASCt

25 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
EPiux: 1A
m P persistently offers A along x

m Creating a persistent service

M . = y: A
;. = x: 1A

IR

m Sharing a persistent service

rAA=C
rAASCt

25 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
EPiux: 1A
m P persistently offers A along x

m Creating a persistent service
M, - =Py A
IR
M -=Ix(y)Pux:1A

m Sharing a persistent service

rAA=C
rAASC 't

25 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
mPx: 1A
m P persistently offers A along x

m Creating a persistent service
M, =Py A
IR
M, -=Ix(y)P:x:1A

m Sharing a persistent service

r A, A= C
M A, A= C

25 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
mPx: 1A
m P persistently offers A along x

m Creating a persistent service

M, =Py A
IR
M, -=Ix(y)P:x:1A
m Sharing a persistent service
MuA;, A= z:C
L

M A x1A= z:C’

25 /1

Offering persistent service (!A)

m Internalize persistence as a proposition
mPx: 1A
m P persistently offers A along x

m Creating a persistent service
M, =Py A
IR
M, -=Ix(y)P:x:1A

m Sharing a persistent service
NuA; A= Q:z:C
L
M AxIA= x/uQ:z:C

25/1

Promotion

m !L promotes linear channels to shared ones

m No significant operational consequences

@x)(Ix(y)-P [x/u.Q) — (vu)(lu(y).P | Q)

26/1

Example: persistent storage

m Persistent PDF indexing service
indexs : !(file —o file ® 1)

Persistently offer to input a file, then output a file and
terminate session.

m Store a file persistently
store; : I(file —o I(file ® 1))

Persistently offer to input a file, then output a persistent
handle for retrieving this file.

27/1

Taking stock Il

m At this point we have in addition

Types AB,C

Processes P, Q

A& B
ADB
A

x.inl; P | x.inr; P

x.case(P, Q)
lu(x).P
x/u.P

external choice
internal choice
replication

selection
branching
replicating input
(promotion)

28/1

Session types for m-calculus
Dependent session types
Proof irrelevance

Some results

Conclusion

20/1

m Types 7 from a (dependent) type theory
m Hypothetical judgment xy:7q, ..., xx: 7 EF M T
—_———

v
m Some example type constructors

Mx:7.0, 7 — o Functions from 7 to ¢
Yx:Tt.o,7Txo Pairsofatandac
nat Natural numbers

m Integrate into sequent calculus

\Us : I : A =P:x: A
~—~ S~
term variables shared channels linear channels linear

30/1

Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= A
VR
V:[: A= Vy:7.A
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
VL
V.l A, Vyr.A= C

m Proof reduction

31/1

Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, I A= x: A

V:[: A= x:Vy:T.AVR
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
V.l A, Vyr.A= C vt

m Proof reduction

31/1

Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A

Vil A= x(y).P:ux:VyrA R
m Left rule: matching use of service
VEM:7 V;T; A, AM/y} = C
V.l A, Vyr.A= C vt

m Proof reduction

31/1

Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 V;T; A xA{M/y} = z:C
V.l A xVy1.A= z:C

VL

m Proof reduction

31/1

Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyrTA=x(M).Q:z:C

VL

m Proof reduction

31/1

Offering term input (Vy:7.A)

B Px:VyT.A
m P inputs an M : 7 along x and then behaves as A{M/x}
m Right rule: offer of service

Vyr;, ;] A=P:x:A
Vil A= x(y).P:ux:VyrA

VR

m Left rule: matching use of service
VEM:7 VT, A xAM/y}=Q:z:C
V.l Al xVyrTA=x(M).Q:z:C

VL

m Proof reduction

(x)(x(y)-P [x(M).Q) — (vx)(P{M/y} | Q)

31/1

Term passing: other connectives

m Quantified proposition as dependent session types
x:Vy:7.A Input an M : A along x and behave as A{M/y}
x:$7 — A Input an M : A along x and behave as A

x:3Jy:7. A Output an M : A along x and behave as A{M/y}
x:$7® A Output an M : A along x and behave as A

m $7 —o A as shorthand for Vy:7.A if y not free in A
m $7 ® A as shorthand for dy:7.A if y not free in A
m We will omit the ‘$’ for readability

32/1

Examples, carrying proofs

m PDF indexing service

indexs : I(file —o file® 1)
index, @ (Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in
PDF format, then output a PDF file g, and a proof that
g is in PDF format and terminate the session.

m Persistent file storage

store; : I(file —o I(file ® 1))
store, @ I(Vf:file.!3g:file. g = f ®1)

Persistently offer to input a file, then output a persistent
channel for retrieving this file and a proof that the two
are equal.

33/1

Outline

Session types for m-calculus
Dependent session types
Proof irrelevance

Some results

Conclusion

34/1

Proof irrelevance

m In many examples, we want to know that proofs exist, but
we do not want to transmit them

m We can easily check pdf(g) when using the indexing
service

m The proof of g = f (by reflexivity) would not be
informative

m Use proof irrelevance in type theory

m M:[r] — M is a term of type 7 that is computationally
irrelevant

35/1

Proof irrelevance: rules

m Introduction and elimination

VeEM: T VEM:[r] V,x:=7FN:o

vemn —————[IE
[M] : [7] Vilet[x]=MinN:o

VU® promotes hypotheses x+7 to x:7

In examples, may use pattern matching instead of let

By agreement, terms [M] will be erased before
transmission

Typing guarantees this can be done consistently

36/1

Examples with proof irrelevance

m Mark proofs as computationally irrelevant

m PDF indexing service

indexg @ I(Vf:file. pdf(f) —o Jg:file. pdf(g) ® 1)
indexs : !(Vf:file. [pdf(f)] — Jg-file. [pdf(g)] ® 1)

m Persistent file storage

store; : l(Vf:file.!3g:file.g =f®1)
stores : I(Vf:file.!3g:file.[g = f]®1)

m After erasure, communication can be optimized further

37/1

Example: mobile code

m For sensitive documents we want to run indexing locally

m Specification
indexs : 1((Mf:file. [pdf(f)] — Xg:file. [pdf(g)]) ® 1)

m Service persistently offers a function for indexing

m Cannot leak information since only process layer can
communicate

38/1

Outline

Session types for m-calculus
Dependent session types
Proof irrelevance

Some results

Conclusion

39/1

Some results

m Recall: typing is modulo (shallow) structural congruence
m Theorem: type preservation = session fidelity
m Theorem: progress = deadlock freedom

m Theorem: termination

m Via linear logical relations (Pérez et al., ESOP 2012)

m Some commuting conversions = behavioral equivalences
m Theorem: proof reduction = process reduction

m Permuting cut and cut! = structural equivalences

m |dentity elimination = structural reduction (forwarding)

m Propositional reduction = communication

m Some commuting conversion needed if promotion is

suppressed and termination is asynchronous

40/1

Further extensions and results

m Family of monads Qx7 = digital signatures
m Continuum of trust: from proofs to digital signatures
(CPP 2011)
m Functions as session-typed processes (FoSSaCS 2012)

m Translate from natural deduction to sequent calculus

m Via linear natural deduction

m [T — S]=I[T] — [S]: copying evaluation (by name)

m (T — S)*=1(T* — S*): sharing evaluation (futures)
m By-value and by-need are particular schedules for sharing

41/1

Ongoing work

m Polymorphism
m Immediate in the functional layer

m Parametricity in the process layer (Pérez et al., ESOP
2012)
m Asynchronous session types (w. Henry DeYoung)
m Also via Curry-Howard isomorphism!
m Unlocking parallelism with commuting conversions
m Each channel implementable as a bidirectional queue
m Classical linear logic
m Superficially more economical
m Does not enforce locality of shared channels
m All standard session examples (and more) already
expressible in intuitionistic system
m Less likely to lead to full type theory

42/1

Concurrent dependent type theory?

m At present, we have a two-layer system

m Communication layer (both linear and shared channels)
m Value layer (dependent type theory)

m Can we have a concurrent dependently-typed language?
m Problem of linear dependency

Equational reasoning about processes

Integrating natural deduction and sequent calculus

Dependently typed functional translation?

Monadic encapsulation, a la CLF?

43/1

Some related work

m Computational interpretations of linear logic
(Abramsky 1993)

m Relating m-calculus and linear logic (Bellin & Scott 1994)
m Session types (Honda 1993) (Honda et al. 1998) ...
m Lolliproc (Mazurak & Zdancewic 2010)

m Natural deduction for classical linear logic

Purely linear (unrestricted version conjectured)
Tighter integration of functions with processes
Requires control operators and additional coercions

n
n
n
m Dependent version unlikely?

44 /1

m A Curry-Howard isomorphism
m Linear propositions as session types
A — B (input), A® B (output), 1 (termination)
A& B (external choice), A @ B (internal choice), !A
(replication)
m Sequent proofs as m-calculus processes
with a binary guarded choice and channel forwarding
m Cut reduction as mw-calculus reduction
m Term-passing extension with a type theory
m Vx:7.A (term input), 3x:7.A (term output)
m Additional type theory constructs

m [7] for proof irrelevance (not transmitted)
m Oy for affirmations (evidenced by digital signatures)

45/1

